Upwards homogeneity of symmetric extensions

Calliope Ryan-Smith

Univeristy of Leeds

1st February 2024

Joint work in progress with Jonathan Schilhan and Yujun Wei

c.Ryan-Smith@leeds.ac.uk

https://academic.calliope.mx

For a notion of forcing \mathbb{P} , a \mathbb{P} -name \dot{x} is a set of tuples $\langle p, \dot{y} \rangle$, where $p \in \mathbb{P}$ and \dot{y} is a \mathbb{P} -name. We say that \dot{y} appears in \dot{x} whenever there is p such that $\langle p, \dot{y} \rangle \in \dot{x}$.

For a notion of forcing \mathbb{P} , a \mathbb{P} -name \dot{x} is a set of tuples $\langle p, \dot{y} \rangle$, where $p \in \mathbb{P}$ and \dot{y} is a \mathbb{P} -name. We say that \dot{y} appears in \dot{x} whenever there is p such that $\langle p, \dot{y} \rangle \in \dot{x}$.

For $\pi \in \operatorname{Aut}(\mathbb{P})$, we inductively define $\pi \dot{x}$ by

 $\pi \dot{x} = \{ \langle \pi p, \pi \dot{y} \rangle \mid \langle p, \dot{y} \rangle \in \dot{x} \}$

For a notion of forcing \mathbb{P} , a \mathbb{P} -name \dot{x} is a set of tuples $\langle p, \dot{y} \rangle$, where $p \in \mathbb{P}$ and \dot{y} is a \mathbb{P} -name. We say that \dot{y} appears in \dot{x} whenever there is p such that $\langle p, \dot{y} \rangle \in \dot{x}$.

For $\pi \in \operatorname{Aut}(\mathbb{P})$, we inductively define $\pi \dot{x}$ by

 $\pi \dot{x} = \{ \langle \pi p, \pi \dot{y} \rangle \mid \langle p, \dot{y} \rangle \in \dot{x} \}$

Lemma (Symmetry Lemma)

For all formulae $\varphi(\dot{x})$ and $\pi \in Aut(\mathbb{P})$,

 $p \Vdash \varphi(\dot{x})$ if and only if $\pi p \Vdash \varphi(\pi \dot{x})$

< □ > < 同 > < 回 > < 回 > .

Ξ.

Definition

Given a group \mathscr{G} , a **filter of subgroups** of \mathscr{G} is a set \mathscr{F} of subgroups of \mathscr{G} such that:

- $\blacktriangleright \ \mathscr{G} \in \mathscr{F};$
- if $H \leq H'$ and $H \in \mathscr{F}$ then $H' \in \mathscr{F}$; and
- ▶ if $H, H' \in \mathscr{F}$ then $H \cap H' \in \mathscr{F}$.

Definition

Given a group \mathscr{G} , a **filter of subgroups** of \mathscr{G} is a set \mathscr{F} of subgroups of \mathscr{G} such that:

- $\blacktriangleright \ \mathscr{G} \in \mathscr{F};$
- if $H \leq H'$ and $H \in \mathscr{F}$ then $H' \in \mathscr{F}$; and
- if $H, H' \in \mathscr{F}$ then $H \cap H' \in \mathscr{F}$.

 \mathscr{F} is **normal** if for all $H \in \mathscr{F}$ and $\pi \in \mathscr{G}$, $\pi H \pi^{-1} \in \mathscr{F}$.

Definition

Given a group \mathscr{G} , a **filter of subgroups** of \mathscr{G} is a set \mathscr{F} of subgroups of \mathscr{G} such that:

- $\blacktriangleright \ \mathscr{G} \in \mathscr{F};$
- if $H \leq H'$ and $H \in \mathscr{F}$ then $H' \in \mathscr{F}$; and

• if $H, H' \in \mathscr{F}$ then $H \cap H' \in \mathscr{F}$.

 \mathscr{F} is **normal** if for all $H \in \mathscr{F}$ and $\pi \in \mathscr{G}$, $\pi H \pi^{-1} \in \mathscr{F}$.

If \mathscr{F} is a filter of subgroups of $\mathscr{G} \leq \operatorname{Aut}(\mathbb{P})$ and $\operatorname{sym}_{\mathscr{G}}(\dot{x}) \in \mathscr{F}$ then we say that \dot{x} is \mathscr{F} -symmetric.

Definition

Given a group \mathscr{G} , a **filter of subgroups** of \mathscr{G} is a set \mathscr{F} of subgroups of \mathscr{G} such that:

- $\blacktriangleright \ \mathscr{G} \in \mathscr{F};$
- if $H \leq H'$ and $H \in \mathscr{F}$ then $H' \in \mathscr{F}$; and

• if $H, H' \in \mathscr{F}$ then $H \cap H' \in \mathscr{F}$.

 \mathscr{F} is **normal** if for all $H \in \mathscr{F}$ and $\pi \in \mathscr{G}$, $\pi H \pi^{-1} \in \mathscr{F}$.

If \mathscr{F} is a filter of subgroups of $\mathscr{G} \leq \operatorname{Aut}(\mathbb{P})$ and $\operatorname{sym}_{\mathscr{G}}(\dot{x}) \in \mathscr{F}$ then we say that \dot{x} is \mathscr{F} -symmetric.

We define hereditary symmetry recursively: If \dot{x} is \mathscr{F} -symmetric and, for all \dot{y} appearing in \dot{x} , \dot{y} is hereditarily \mathscr{F} -symmetric, we say that \dot{x} is **hereditarily** \mathscr{F} -symmetric.

A **symmetric system** is a triple $\mathscr{S} = \langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ such that:

- \mathbb{P} is a notion of forcing;
- $\mathscr{G} \leqslant \operatorname{Aut}(\mathbb{P})$; and
- \mathscr{F} is a normal filter of subgroups of \mathscr{G} .

In this case, let $\mathsf{HS}_{\mathscr{F}}$ refer to the class of hereditarily $\mathscr{F}\text{-symmetric}$ $\mathbb{P}\text{-names}.$

A **symmetric system** is a triple $\mathscr{S} = \langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ such that:

- \mathbb{P} is a notion of forcing;
- $\mathscr{G} \leqslant \operatorname{Aut}(\mathbb{P})$; and
- \mathscr{F} is a normal filter of subgroups of \mathscr{G} .

In this case, let $\mathsf{HS}_{\mathscr{F}}$ refer to the class of hereditarily $\mathscr{F}\text{-symmetric}$ $\mathbb{P}\text{-names}.$

Theorem (Scott, Jech (?) See [])

If $V \vDash \mathsf{ZF}$ *and* $G \subseteq V$ *is* \mathbb{P} *-generic, then*

$$V[G]_{\mathscr{S}} \coloneqq \left\{ \dot{x}^G \; \big| \; \dot{x} \in \mathsf{HS}_{\mathscr{F}} \right\}$$

is a transitive subclass of V[G] and is a model of ZF.

A **symmetric system** is a triple $\mathscr{S} = \langle \mathbb{P}, \mathscr{G}, \mathscr{F} \rangle$ such that:

- \mathbb{P} is a notion of forcing;
- $\mathscr{G} \leqslant \operatorname{Aut}(\mathbb{P})$; and
- \mathscr{F} is a normal filter of subgroups of \mathscr{G} .

In this case, let $\mathsf{HS}_{\mathscr{F}}$ refer to the class of hereditarily $\mathscr{F}\text{-symmetric}$ $\mathbb{P}\text{-names}.$

Theorem (Scott, Jech (?) See [])

If $V \vDash \mathsf{ZF}$ *and* $G \subseteq V$ *is* \mathbb{P} *-generic, then*

$$V[G]_{\mathscr{S}} \coloneqq \left\{ \dot{x}^G \; \middle| \; \dot{x} \in \mathsf{HS}_{\mathscr{F}} \right\}$$

is a transitive subclass of V[G] and is a model of ZF.

You will more commonly see $HS^G_{\mathscr{F}}$ used for $V[G]_{\mathscr{F}}$.

▶ $\mathbb{P} = \text{Add}(\omega, \omega)$: Conditions are partial functions $p: \omega \times \omega \to 2$ such that dom(p) is finite and $q \leq p$ if and only if $q \supseteq p$.

▶ $\mathbb{P} = \text{Add}(\omega, \omega)$: Conditions are partial functions $p: \omega \times \omega \to 2$ such that dom(p) is finite and $q \leq p$ if and only if $q \supseteq p$. For $n < \omega$, let $\dot{a}_n = \{\langle p, \check{m} \rangle \mid p(n, m) = 1\}$. Let $\dot{A} = \{\langle \mathbb{1}, \dot{a}_n \rangle \mid n < \omega\}$.

- ▶ $\mathbb{P} = \text{Add}(\omega, \omega)$: Conditions are partial functions $p: \omega \times \omega \to 2$ such that dom(p) is finite and $q \leq p$ if and only if $q \supseteq p$. For $n < \omega$, let $\dot{a}_n = \{\langle p, \check{m} \rangle \mid p(n, m) = 1\}$. Let $\dot{A} = \{\langle \mathbb{1}, \dot{a}_n \rangle \mid n < \omega\}$.
- \mathscr{G} is finitary permutations of ω , with action on \mathbb{P} given by $\pi p(\pi m, n) = p(m, n)$.

- ▶ $\mathbb{P} = \text{Add}(\omega, \omega)$: Conditions are partial functions $p: \omega \times \omega \to 2$ such that dom(p) is finite and $q \leq p$ if and only if $q \supseteq p$. For $n < \omega$, let $\dot{a}_n = \{\langle p, \check{m} \rangle \mid p(n, m) = 1\}$. Let $\dot{A} = \{\langle \mathbb{1}, \dot{a}_n \rangle \mid n < \omega\}$.
- \mathscr{G} is finitary permutations of ω , with action on \mathbb{P} given by $\pi p(\pi m, n) = p(m, n)$.

$$\pi \dot{a}_n = \dot{a}_{\pi(n)}$$
 and $\pi \dot{A} = \dot{A}$

- ▶ $\mathbb{P} = \text{Add}(\omega, \omega)$: Conditions are partial functions $p: \omega \times \omega \to 2$ such that dom(p) is finite and $q \leq p$ if and only if $q \supseteq p$. For $n < \omega$, let $\dot{a}_n = \{\langle p, \check{m} \rangle \mid p(n, m) = 1\}$. Let $\dot{A} = \{\langle \mathbb{1}, \dot{a}_n \rangle \mid n < \omega\}$.
- \mathscr{G} is finitary permutations of ω , with action on \mathbb{P} given by $\pi p(\pi m, n) = p(m, n)$.

$$\pi \dot{a}_n = \dot{a}_{\pi(n)}$$
 and $\pi \dot{A} = \dot{A}$

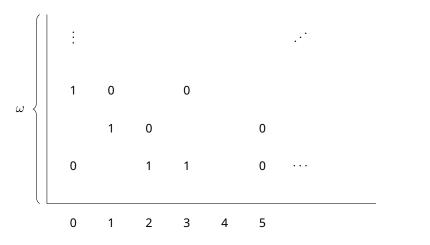
► For $E \in [\omega]^{<\omega}$, let $\operatorname{fix}(E) = \{\pi \in \mathscr{G} \mid \pi \upharpoonright E = \operatorname{id}\}$. Then \mathscr{F} is the filter generated by $\operatorname{fix}(E)$ for all $E \in [\omega]^{<\omega}$.

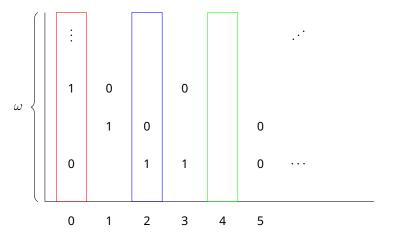
- ▶ $\mathbb{P} = \text{Add}(\omega, \omega)$: Conditions are partial functions $p: \omega \times \omega \to 2$ such that dom(p) is finite and $q \leq p$ if and only if $q \supseteq p$. For $n < \omega$, let $\dot{a}_n = \{\langle p, \check{m} \rangle \mid p(n, m) = 1\}$. Let $\dot{A} = \{\langle \mathbb{1}, \dot{a}_n \rangle \mid n < \omega\}$.
- \mathscr{G} is finitary permutations of ω , with action on \mathbb{P} given by $\pi p(\pi m, n) = p(m, n)$.

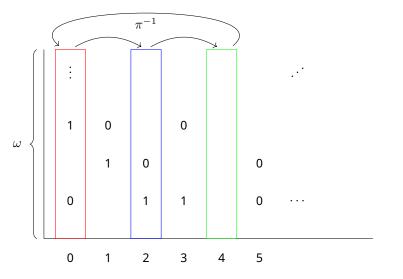
$$\pi \dot{a}_n = \dot{a}_{\pi(n)}$$
 and $\pi \dot{A} = \dot{A}$

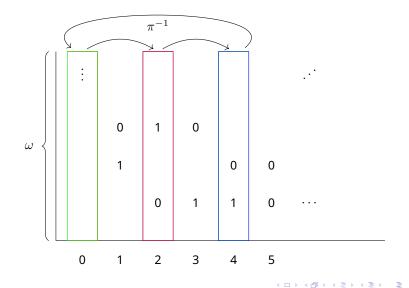
For E ∈ [ω]^{<ω}, let fix(E) = {π ∈ 𝔅 | π ↾ E = id}. Then 𝔅 is the filter generated by fix(E) for all E ∈ [ω]^{<ω}. Therefore fix({n}) ≤ sym(ȧ_n) and 𝔅 = sym(Ȧ), so ȧ_n and Ȧ are hereditarily symmetric.

イロト 不得 トイヨト イヨト 二日









Let $G \subseteq \mathbb{P}$ be V-generic.

Lemma

In $V[G]_{\mathscr{S}}$, $A = \dot{A}^G$ is infinite but there are no injections $\omega \to A$.

- (A)

Let $G \subseteq \mathbb{P}$ be V-generic.

Lemma

In $V[G]_{\mathscr{S}}$, $A = \dot{A}^G$ is infinite but there are no injections $\omega \to A$.

Proof.

Let $\dot{f} \in \text{HS}$ be a name for a function $\check{\omega} \to \dot{A}$. Since $\dot{f} \in \text{HS}$, there is $E \in [\omega]^{<\omega}$ such that $\text{fix}(E) \leq \text{sym}(\dot{f})$.

Let $G \subseteq \mathbb{P}$ be V-generic.

Lemma

In $V[G]_{\mathscr{S}}$, $A = \dot{A}^G$ is infinite but there are no injections $\omega \to A$.

Proof.

Let $\dot{f} \in$ HS be a name for a function $\check{\omega} \to \dot{A}$. Since $\dot{f} \in$ HS, there is $E \in [\omega]^{<\omega}$ such that $\operatorname{fix}(E) \leq \operatorname{sym}(\dot{f})$. Suppose that $p \Vdash \dot{f}(\check{m}) = \dot{a}_n$ for some $n \notin E$ and $m < \omega$. dom(p) is finite, so there is $k \notin E$ such that for all $l < \omega, \langle k, l \rangle \notin \operatorname{dom}(p)$. Let

 $\pi = (k \quad n).$

Let $G \subseteq \mathbb{P}$ be V-generic.

Lemma

In $V[G]_{\mathscr{S}}$, $A = \dot{A}^G$ is infinite but there are no injections $\omega \to A$.

Proof.

Let $\dot{f} \in \text{HS}$ be a name for a function $\check{\omega} \to \dot{A}$. Since $\dot{f} \in \text{HS}$, there is $E \in [\omega]^{<\omega}$ such that $\text{fix}(E) \leq \text{sym}(\dot{f})$. Suppose that $p \Vdash \dot{f}(\check{m}) = \dot{a}_n$ for some $n \notin E$ and $m < \omega$.

dom(p) is finite, so there is $k \notin E$ such that for all $l < \omega$, $\langle k, l \rangle \notin \text{dom}(p)$. Let $\pi = (k \ n)$.

Then $\pi p \Vdash \pi \dot{f}(\pi \check{m}) = \pi \dot{a}_n$. However, $\pi \dot{f} = \dot{f}$, $\pi \check{m} = \check{m}$, $\pi \dot{a}_n = \dot{a}_k$, and $\pi p \parallel p$. Therefore

$$\pi p \cup p \Vdash \dot{f}(\check{m}) = \dot{a}_n \wedge \dot{f}(\check{m}) = \dot{a}_k \quad (\dot{f} \text{ is not a funtion).}$$

We can define the iteration system $\mathscr{S} = \mathscr{S}_0 * \dot{\mathscr{S}}_1 = \langle \mathbb{P} * \dot{\mathbb{Q}}, \mathscr{G}, \mathscr{F} \rangle$:

We can define the iteration system $\mathscr{S} = \mathscr{S}_0 * \dot{\mathscr{S}}_1 = \langle \mathbb{P} * \dot{\mathbb{Q}}, \mathscr{G}, \mathscr{F} \rangle$:

1. \mathscr{G} is pairs $\bar{\pi} = \langle \pi_0, \dot{\pi}_1 \rangle$ with $\pi_0 \in \mathscr{G}_0$ and $\mathbb{P} \Vdash \dot{\pi}_1 \in \dot{\mathscr{G}}_1$,

We can define the iteration system $\mathscr{S} = \mathscr{S}_0 * \dot{\mathscr{S}}_1 = \langle \mathbb{P} * \dot{\mathbb{Q}}, \mathscr{G}, \mathscr{F} \rangle$:

1. \mathscr{G} is pairs $\bar{\pi} = \langle \pi_0, \dot{\pi}_1 \rangle$ with $\pi_0 \in \mathscr{G}_0$ and $\mathbb{P} \Vdash \dot{\pi}_1 \in \dot{\mathscr{G}_1}$,

2. \mathscr{F} is generated by $H_0 * \dot{H}_1$ with $H_0 \in \mathscr{F}_0$ and $\mathbb{P} \Vdash \dot{H}_1 \in \dot{\mathscr{F}}_1$,

We can define the iteration system $\mathscr{S} = \mathscr{S}_0 * \dot{\mathscr{S}}_1 = \langle \mathbb{P} * \dot{\mathbb{Q}}, \mathscr{G}, \mathscr{F} \rangle$:

- 1. \mathscr{G} is pairs $\bar{\pi} = \langle \pi_0, \dot{\pi}_1 \rangle$ with $\pi_0 \in \mathscr{G}_0$ and $\mathbb{P} \Vdash \dot{\pi}_1 \in \dot{\mathscr{G}_1}$,
- 2. \mathscr{F} is generated by $H_0 * \dot{H}_1$ with $H_0 \in \mathscr{F}_0$ and $\mathbb{P} \Vdash \dot{H}_1 \in \dot{\mathscr{F}}_1$, and
- 3. " $H_0 * \dot{H}_1$ " is wordy to define but not scary.

8/14

We can define the iteration system $\mathscr{S} = \mathscr{S}_0 * \dot{\mathscr{S}}_1 = \langle \mathbb{P} * \dot{\mathbb{Q}}, \mathscr{G}, \mathscr{F} \rangle$:

- 1. \mathscr{G} is pairs $\bar{\pi} = \langle \pi_0, \dot{\pi}_1 \rangle$ with $\pi_0 \in \mathscr{G}_0$ and $\mathbb{P} \Vdash \dot{\pi}_1 \in \dot{\mathscr{G}_1}$,
- 2. \mathscr{F} is generated by $H_0 * \dot{H}_1$ with $H_0 \in \mathscr{F}_0$ and $\mathbb{P} \Vdash \dot{H}_1 \in \dot{\mathscr{F}}_1$, and
- 3. " $H_0 * \dot{H}_1$ " is wordy to define but not scary.

Definition

 \mathscr{S} is **upwards homogeneous** if for all $H_0 * \dot{H}_1 \in \mathscr{F}$ there is a dense set of conditions $\langle p^{\circ}, \dot{q}^{\circ} \rangle \in \mathbb{P} * \dot{\mathbb{Q}}$ that are $H_0 * \dot{H}_1$ -**controlling**. That is: For all $\langle p, \dot{q} \rangle, \langle p, \dot{q}' \rangle \leqslant \langle p^{\circ}, \dot{q}^{\circ} \rangle$ there is $\bar{\pi} \in H_0 * \dot{H}_1$ such that $\bar{\pi} \langle p, \dot{q} \rangle \parallel \langle p, \dot{q}' \rangle$.

Theorem (RS.-Schilhan-Wei)

An iteration of symmetric systems $\mathscr{S} = \mathscr{S}_0 * \dot{\mathscr{S}}_1$ is upwards homogeneous if and only if for all V-generic $G \times H \subseteq \mathbb{P} * \dot{\mathbb{Q}}$,

 $\mathscr{P}(V)\cap V[G]_{\mathscr{S}_0}=\mathscr{P}(V)\cap V[G][H]_{\mathscr{S}}$

In particular, there are no new sets of ordinals in $V[G][H]_{\mathscr{S}}$ that did not already appear in $V[G]_{\mathscr{S}_0}$.

Theorem (RS.-Schilhan-Wei)

An iteration of symmetric systems $\mathscr{S} = \mathscr{S}_0 * \dot{\mathscr{S}}_1$ is upwards homogeneous if and only if for all V-generic $G \times H \subseteq \mathbb{P} * \dot{\mathbb{Q}}$,

 $\mathscr{P}(V)\cap V[G]_{\mathscr{S}_0}=\mathscr{P}(V)\cap V[G][H]_{\mathscr{S}}$

In particular, there are no new sets of ordinals in $V[G][H]_{\mathscr{S}}$ that did not already appear in $V[G]_{\mathscr{S}_0}$.

Sketch proof of \implies direction.

We aim to show that if \dot{X} is a $\mathbb{P} * \dot{\mathbb{Q}}$ -name for a subset of V with $H_0 * \dot{H}_1 \leq \operatorname{sym}(\dot{X})$ and $\langle p^{\circ}, \dot{q}^{\circ} \rangle$ is $H_0 * \dot{H}_1$ -controlling, then whenever $\langle p, \dot{q} \rangle \leq \langle p^{\circ}, \dot{q}^{\circ} \rangle$ is such that $\langle p, \dot{q} \rangle \Vdash \check{x} \in \dot{X}$, we have $\langle p, \dot{q}^{\circ} \rangle \Vdash \check{x} \in \dot{X}$.

Theorem (RS.-Schilhan-Wei)

An iteration of symmetric systems $\mathscr{S} = \mathscr{S}_0 * \dot{\mathscr{S}}_1$ is upwards homogeneous if and only if for all V-generic $G \times H \subseteq \mathbb{P} * \dot{\mathbb{Q}}$,

 $\mathscr{P}(V)\cap V[G]_{\mathscr{S}_0}=\mathscr{P}(V)\cap V[G][H]_{\mathscr{S}}$

In particular, there are no new sets of ordinals in $V[G][H]_{\mathscr{S}}$ that did not already appear in $V[G]_{\mathscr{S}_0}$.

Sketch proof of \implies direction.

We aim to show that if \dot{X} is a $\mathbb{P} * \dot{\mathbb{Q}}$ -name for a subset of V with $H_0 * \dot{H}_1 \leq \operatorname{sym}(\dot{X})$ and $\langle p^{\circ}, \dot{q}^{\circ} \rangle$ is $H_0 * \dot{H}_1$ -controlling, then whenever $\langle p, \dot{q} \rangle \leq \langle p^{\circ}, \dot{q}^{\circ} \rangle$ is such that $\langle p, \dot{q} \rangle \Vdash \check{x} \in \dot{X}$, we have $\langle p, \dot{q}^{\circ} \rangle \Vdash \check{x} \in \dot{X}$. If this is the case, then p° forces that \dot{q}° already knows everything about \dot{X} , so $\dot{X}^{G \times H} \in V[G]_{\mathscr{P}_0}$.

< □ > < □ > < □ > < □ > < □</p>

Sketch proof of \implies direction.

We aim to show that if \dot{X} is a $\mathbb{P} * \dot{\mathbb{Q}}$ -name for a subset of V, with

 $H_0 * \dot{H}_1 \leq \operatorname{sym}(\dot{X})$, then if $\langle p^{\circ}, \dot{q}^{\circ} \rangle$ is $H_0 * \dot{H}_1$ -controlling, $\langle p, \dot{q} \rangle \leq \langle p^{\circ}, \dot{q}^{\circ} \rangle$, and $\langle p, \dot{q} \rangle \Vdash \check{x} \in \dot{X}$, then $\langle p, \dot{q}^{\circ} \rangle \Vdash \check{x} \in \dot{X}$.

If this is the case, then p° forces that \dot{q}° already knows everything about \dot{X} , so $\dot{X}^{G \times H} \in V[G]_{\mathscr{P}_0}$.

We aim to show that if \dot{X} is a $\mathbb{P} * \dot{\mathbb{Q}}$ -name for a subset of V, with $H_0 * \dot{H}_1 \leq \operatorname{sym}(\dot{X})$, then if $\langle p^{\circ}, \dot{q}^{\circ} \rangle$ is $H_0 * \dot{H}_1$ -controlling, $\langle p, \dot{q} \rangle \leq \langle p^{\circ}, \dot{q}^{\circ} \rangle$, and $\langle p, \dot{q} \rangle \Vdash \check{x} \in \dot{X}$, then $\langle p, \dot{q}^{\circ} \rangle \Vdash \check{x} \in \dot{X}$. If this is the case, then p° forces that \dot{q}° already knows everything about \dot{X} , so $\dot{X}^{G \times H} \in V[G]_{\mathscr{S}_0}$.

Continuation of the proof.

Suppose that $\langle p, \dot{q}^{\circ} \rangle \not\Vdash \check{x} \in \dot{X}$. Then there is $\langle p', \dot{q}' \rangle \leqslant \langle p, \dot{q}^{\circ} \rangle$ such that $\langle p', \dot{q}' \rangle \Vdash \check{x} \notin \dot{X}$.

We aim to show that if \dot{X} is a $\mathbb{P} * \dot{\mathbb{Q}}$ -name for a subset of V, with $H_0 * \dot{H}_1 \leq \operatorname{sym}(\dot{X})$, then if $\langle p^{\circ}, \dot{q}^{\circ} \rangle$ is $H_0 * \dot{H}_1$ -controlling, $\langle p, \dot{q} \rangle \leq \langle p^{\circ}, \dot{q}^{\circ} \rangle$, and $\langle p, \dot{q} \rangle \Vdash \check{x} \in \dot{X}$, then $\langle p, \dot{q}^{\circ} \rangle \Vdash \check{x} \in \dot{X}$. If this is the case, then p° forces that \dot{q}° already knows everything about \dot{X} , so $\dot{X}^{G \times H} \in V[G]_{\mathscr{S}_0}$.

Continuation of the proof.

Suppose that $\langle p, \dot{q}^{\circ} \rangle \not\Vdash \check{x} \in \dot{X}$. Then there is $\langle p', \dot{q}' \rangle \leqslant \langle p, \dot{q}^{\circ} \rangle$ such that $\langle p', \dot{q}' \rangle \Vdash \check{x} \notin \dot{X}$. By the $H_0 * \dot{H}_1$ -controlling property, there is $\bar{\pi} \in H_0 * \dot{H}_1$ such that $\bar{\pi} \langle p', \dot{q} \rangle \parallel \langle p', \dot{q}' \rangle$.

We aim to show that if \dot{X} is a $\mathbb{P} * \dot{\mathbb{Q}}$ -name for a subset of V, with $H_0 * \dot{H}_1 \leq \operatorname{sym}(\dot{X})$, then if $\langle p^{\circ}, \dot{q}^{\circ} \rangle$ is $H_0 * \dot{H}_1$ -controlling, $\langle p, \dot{q} \rangle \leq \langle p^{\circ}, \dot{q}^{\circ} \rangle$, and $\langle p, \dot{q} \rangle \Vdash \check{x} \in \dot{X}$, then $\langle p, \dot{q}^{\circ} \rangle \Vdash \check{x} \in \dot{X}$. If this is the case, then p° forces that \dot{q}° already knows everything about \dot{X} , so $\dot{X}^{G \times H} \in V[G]_{\mathscr{S}_0}$.

Continuation of the proof.

Suppose that $\langle p, \dot{q}^{\circ} \rangle \not\Vdash \check{x} \in \dot{X}$. Then there is $\langle p', \dot{q}' \rangle \leqslant \langle p, \dot{q}^{\circ} \rangle$ such that $\langle p', \dot{q}' \rangle \Vdash \check{x} \notin \dot{X}$. By the $H_0 * \dot{H}_1$ -controlling property, there is $\bar{\pi} \in H_0 * \dot{H}_1$ such that $\bar{\pi} \langle p', \dot{q} \rangle \parallel \langle p', \dot{q}' \rangle$. $\langle p', \dot{q} \rangle \leqslant \langle p, \dot{q} \rangle$, so $\langle p', \dot{q} \rangle \Vdash \check{x} \in \dot{X}$. By symmetry,

$$\bar{\pi}\langle p',\dot{q}\rangle \Vdash \underbrace{\bar{\pi}\check{x}}_{=\check{x}} \in \underbrace{\bar{\pi}\dot{X}}_{=\dot{X}} \quad \text{i.e.} \quad \bar{\pi}\langle p',\dot{q}'\rangle \Vdash \check{x} \in \dot{X}.$$

< 4 → <

We aim to show that if \dot{X} is a $\mathbb{P} * \dot{\mathbb{Q}}$ -name for a subset of V, with $H_0 * \dot{H}_1 \leq \operatorname{sym}(\dot{X})$, then if $\langle p^{\circ}, \dot{q}^{\circ} \rangle$ is $H_0 * \dot{H}_1$ -controlling, $\langle p, \dot{q} \rangle \leq \langle p^{\circ}, \dot{q}^{\circ} \rangle$, and $\langle p, \dot{q} \rangle \Vdash \check{x} \in \dot{X}$, then $\langle p, \dot{q}^{\circ} \rangle \Vdash \check{x} \in \dot{X}$. If this is the case, then p° forces that \dot{q}° already knows everything about \dot{X} , so $\dot{X}^{G \times H} \in V[G]_{\mathscr{S}_0}$.

Continuation of the proof.

Suppose that $\langle p, \dot{q}^{\circ} \rangle \not\Vdash \check{x} \in \dot{X}$. Then there is $\langle p', \dot{q}' \rangle \leqslant \langle p, \dot{q}^{\circ} \rangle$ such that $\langle p', \dot{q}' \rangle \Vdash \check{x} \notin \dot{X}$. By the $H_0 * \dot{H}_1$ -controlling property, there is $\bar{\pi} \in H_0 * \dot{H}_1$ such that $\bar{\pi} \langle p', \dot{q} \rangle \parallel \langle p', \dot{q}' \rangle$. $\langle p', \dot{q} \rangle \leqslant \langle p, \dot{q} \rangle$, so $\langle p', \dot{q} \rangle \Vdash \check{x} \in \dot{X}$. By symmetry,

$$\bar{\pi}\langle p',\dot{q}\rangle \Vdash \underbrace{\bar{\pi}\check{x}}_{=\check{x}} \in \underbrace{\bar{\pi}\dot{X}}_{=\dot{X}} \qquad \text{i.e.} \qquad \bar{\pi}\langle p',\dot{q}'\rangle \Vdash \check{x} \in \dot{X}.$$

This contradicts that $\bar{\pi} \langle p', \dot{q} \rangle \parallel \langle p', \dot{q}' \rangle$.

Let M be Cohen's first model and let $A \in M$ be the canonical Dedekind-finite set.

For a cardinal κ , let $\operatorname{Col}(A, \kappa)$ be finite partial functions $p: A \to \kappa$, with $q \leq p$ if and only if $q \supseteq p$.

Let M be Cohen's first model and let $A \in M$ be the canonical Dedekind-finite set.

For a cardinal κ , let $Col(A, \kappa)$ be finite partial functions $p: A \to \kappa$, with $q \leq p$ if and only if $q \supseteq p$.

Theorem (Karagila–Schlict, [2])

If H is M-generic for $Add(A, \kappa)$ then M and M[H] have the same sets of ordinals.

Let M be Cohen's first model and let $A \in M$ be the canonical Dedekind-finite set.

For a cardinal κ , let $Col(A, \kappa)$ be finite partial functions $p: A \to \kappa$, with $q \leq p$ if and only if $q \supseteq p$.

Theorem (Karagila–Schlict, [2])

If H is M-generic for $Add(A, \kappa)$ then M and M[H] have the same sets of ordinals.

It is a fact that in M there is no surjection $A \to \omega_1$. However, after forcing with $\operatorname{Col}(A, \kappa)$ we introduce a generic surjection $A \to \kappa$.

Since there are no new sets of ordinals, no cardinals are collapsed.

Questions

Calliope Ryan-Smith (Univeristy of Leeds)

wards homogeneity of symmetric extensic

1st February 2024 12 /

Ξ.

< ロ > < 回 > < 回 > < 回 > < 回 >

What does upward homogeneity "look like" in the intermediate model? Is there a simple condition on a symmetric system that guarantees that it does not add sets of ordinals?

- What does upward homogeneity "look like" in the intermediate model? Is there a simple condition on a symmetric system that guarantees that it does not add sets of ordinals?
- Can other new sets be avoided by similar techniques? E.g., what if we wish to not add any new sets of a certain von-Neumann rank?

- What does upward homogeneity "look like" in the intermediate model? Is there a simple condition on a symmetric system that guarantees that it does not add sets of ordinals?
- Can other new sets be avoided by similar techniques? E.g., what if we wish to not add any new sets of a certain von-Neumann rank?
- When are upwards homogeneous iterations equivalent to normal forcing iterations?

- Thomas Jech. Set theory. millennium. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003, pp. xiv+769. ISBN: 3-540-44085-2.
- [2] Asaf Karagila and Philipp Schlicht. "How to have more things by forgetting how to count them". In: *Proc. A.* 476.2239 (2020), pp. 20190782, 12. ISSN: 1364-5021,1471-2946. DOI: 10.1098/rspa.2019.0782. URL: https://doi.org/10.1098/rspa.2019.0782.

Thank you

Calliope Ryan-Smith (Univeristy of Leeds)

Is homogeneity of symmetric extensions

1st February 2024

∃ ⊳

14/14

2