
Upwards homogeneity of symmetric extensions

Calliope Ryan-Smith

Univeristy of Leeds

1st February 2024

Joint work in progress with Jonathan Schilhan and Yujun Wei

c.Ryan-Smith@leeds.ac.uk

https://academic.calliope.mx

Calliope Ryan-Smith (Univeristy of Leeds) Upwards homogeneity of symmetric extensions 1st February 2024 1 / 14

c.Ryan-Smith@leeds.ac.uk
https://academic.calliope.mx


Definition
For a notion of forcing P, a P-name ẋ is a set of tuples ⟨p, ẏ⟩, where p ∈ P
and ẏ is a P-name. We say that ẏ appears in ẋ whenever there is p such
that ⟨p, ẏ⟩ ∈ ẋ.

For π ∈ Aut(P), we inductively define πẋ by

πẋ = {⟨πp, πẏ⟩ | ⟨p, ẏ⟩ ∈ ẋ}

Lemma (Symmetry Lemma)
For all formulae φ(ẋ) and π ∈ Aut(P),

p ⊩ φ(ẋ) if and only if πp ⊩ φ(πẋ)
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For π ∈ Aut(P), we inductively define πẋ by
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that ⟨p, ẏ⟩ ∈ ẋ.
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For G ⩽ Aut(P), let symG (ẋ) = {π ∈ G | πẋ = ẋ}.

Definition
Given a group G , a filter of subgroups of G is a set F of subgroups of G

such that:
▶ G ∈ F ;
▶ if H ⩽ H ′ and H ∈ F then H ′ ∈ F ; and
▶ if H, H ′ ∈ F then H ∩ H ′ ∈ F .

F is normal if for all H ∈ F and π ∈ G , πHπ−1 ∈ F .

If F is a filter of subgroups of G ⩽ Aut(P) and symG (ẋ) ∈ F then we say
that ẋ is F -symmetric.

We define hereditary symmetry recursively: If ẋ is F -symmetric and, for
all ẏ appearing in ẋ, ẏ is hereditarily F -symmetric, we say that ẋ is
hereditarily F -symmetric.
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hereditarily F -symmetric.

Calliope Ryan-Smith (Univeristy of Leeds) Upwards homogeneity of symmetric extensions 1st February 2024 3 / 14



For G ⩽ Aut(P), let symG (ẋ) = {π ∈ G | πẋ = ẋ}.
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Definition
A symmetric system is a triple S = ⟨P, G , F ⟩ such that:

• P is a notion of forcing;
• G ⩽ Aut(P); and
• F is a normal filter of subgroups of G .

In this case, let HSF refer to the class of hereditarily F -symmetric
P-names.

Theorem (Scott, Jech (?) See [1])
If V ⊨ ZF and G ⊆ V is P-generic, then

V [G]S ..=
{

ẋG
∣∣ ẋ ∈ HSF

}
is a transitive subclass of V [G] and is a model of ZF.

You will more commonly see HSG
F used for V [G]S .
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Cohen’s first model

▶ P = Add(ω, ω): Conditions are partial functions p : ω × ω → 2 such that
dom(p) is finite and q ⩽ p if and only if q ⊇ p.

For n < ω, let ȧn = {⟨p, m̌⟩ | p(n, m) = 1}. Let Ȧ = {⟨1, ȧn⟩ | n < ω}.
▶ G is finitary permutations of ω, with action on P given by

πp(πm, n) = p(m, n).

πȧn = ȧπ(n) and πȦ = Ȧ

▶ For E ∈ [ω]<ω, let fix(E) = {π ∈ G | π ↾ E = id}. Then F is the filter
generated by fix(E) for all E ∈ [ω]<ω.
Therefore fix({n}) ⩽ sym(ȧn) and G = sym(Ȧ), so ȧn and Ȧ are
hereditarily symmetric.
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hereditarily symmetric.

Calliope Ryan-Smith (Univeristy of Leeds) Upwards homogeneity of symmetric extensions 1st February 2024 5 / 14



Cohen’s first model

▶ P = Add(ω, ω): Conditions are partial functions p : ω × ω → 2 such that
dom(p) is finite and q ⩽ p if and only if q ⊇ p.
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hereditarily symmetric.

Calliope Ryan-Smith (Univeristy of Leeds) Upwards homogeneity of symmetric extensions 1st February 2024 5 / 14



Cohen’s first model

▶ P = Add(ω, ω): Conditions are partial functions p : ω × ω → 2 such that
dom(p) is finite and q ⩽ p if and only if q ⊇ p.
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Example: π = (0 4 2)

ω

0 1 1 0

1 0 0

1 0 0

... . .
.

· · ·

0 1 2 3 4 5

π−1

0

1

1

0
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Cohen’s first model
Let G ⊆ P be V -generic.

Lemma
In V [G]S , A = ȦG is infinite but there are no injections ω → A.

Proof.
Let ḟ ∈ HS be a name for a function ω̌ → Ȧ. Since ḟ ∈ HS, there is
E ∈ [ω]<ω such that fix(E) ⩽ sym(ḟ). Suppose that p ⊩ ḟ(m̌) = ȧn for some
n /∈ E and m < ω.
dom(p) is finite, so there is k /∈ E such that for all l < ω, ⟨k, l⟩ /∈ dom(p). Let
π = (k n).
Then πp ⊩ πḟ(πm̌) = πȧn. However, πḟ = ḟ , πm̌ = m̌, πȧn = ȧk, and πp ∥ p.
Therefore

πp ∪ p ⊩ ḟ(m̌) = ȧn ∧ ḟ(m̌) = ȧk (ḟ is not a funtion).
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Let S0 = ⟨P, G0, F0⟩ be a symmetric system, and Ṡ1 = ⟨Q̇, Ġ1, Ḟ1⟩ ∈ HSF0

be a name for a symmetric system.

We can define the iteration system S = S0 ∗ Ṡ1 = ⟨P ∗ Q̇, G , F ⟩:

1. G is pairs π̄ = ⟨π0, π̇1⟩ with π0 ∈ G0 and P ⊩ π̇1 ∈ Ġ1,
2. F is generated by H0 ∗ Ḣ1 with H0 ∈ F0 and P ⊩ Ḣ1 ∈ Ḟ1, and
3. “H0 ∗ Ḣ1” is wordy to define but not scary.

Definition
S is upwards homogeneous if for all H0 ∗ Ḣ1 ∈ F there is a dense set of
conditions ⟨p◦, q̇◦⟩ ∈ P ∗ Q̇ that are H0 ∗ Ḣ1-controlling. That is:

For all ⟨p, q̇⟩, ⟨p, q̇′⟩ ⩽ ⟨p◦, q̇◦⟩ there is π̄ ∈ H0 ∗ Ḣ1 such that
π̄⟨p, q̇⟩ ∥ ⟨p, q̇′⟩.
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conditions ⟨p◦, q̇◦⟩ ∈ P ∗ Q̇ that are H0 ∗ Ḣ1-controlling. That is:

For all ⟨p, q̇⟩, ⟨p, q̇′⟩ ⩽ ⟨p◦, q̇◦⟩ there is π̄ ∈ H0 ∗ Ḣ1 such that
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π̄⟨p, q̇⟩ ∥ ⟨p, q̇′⟩.

Calliope Ryan-Smith (Univeristy of Leeds) Upwards homogeneity of symmetric extensions 1st February 2024 8 / 14



Theorem (RS.–Schilhan–Wei)
An iteration of symmetric systems S = S0 ∗ Ṡ1 is upwards homogeneous if
and only if for all V -generic G × H ⊆ P ∗ Q̇,

P(V ) ∩ V [G]S0 = P(V ) ∩ V [G][H]S

In particular, there are no new sets of ordinals in V [G][H]S that did not
already appear in V [G]S0 .

Sketch proof of =⇒ direction.
We aim to show that if Ẋ is a P ∗ Q̇-name for a subset of V with
H0 ∗ Ḣ1 ⩽ sym(Ẋ) and ⟨p◦, q̇◦⟩ is H0 ∗ Ḣ1-controlling, then whenever
⟨p, q̇⟩ ⩽ ⟨p◦, q̇◦⟩ is such that ⟨p, q̇⟩ ⊩ x̌ ∈ Ẋ, we have ⟨p, q̇◦⟩ ⊩ x̌ ∈ Ẋ.
If this is the case, then p◦ forces that q̇◦ already knows everything about
Ẋ, so ẊG×H ∈ V [G]S0 .
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If this is the case, then p◦ forces that q̇◦ already knows everything about
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Sketch proof of =⇒ direction.
We aim to show that if Ẋ is a P ∗ Q̇-name for a subset of V , with
H0 ∗ Ḣ1 ⩽ sym(Ẋ), then if ⟨p◦, q̇◦⟩ is H0 ∗ Ḣ1-controlling, ⟨p, q̇⟩ ⩽ ⟨p◦, q̇◦⟩,
and ⟨p, q̇⟩ ⊩ x̌ ∈ Ẋ, then ⟨p, q̇◦⟩ ⊩ x̌ ∈ Ẋ.
If this is the case, then p◦ forces that q̇◦ already knows everything about
Ẋ, so ẊG×H ∈ V [G]S0 .

Continuation of the proof.
Suppose that ⟨p, q̇◦⟩ ⊮ x̌ ∈ Ẋ. Then there is ⟨p′, q̇′⟩ ⩽ ⟨p, q̇◦⟩ such that
⟨p′, q̇′⟩ ⊩ x̌ /∈ Ẋ. By the H0 ∗ Ḣ1-controlling property, there is π̄ ∈ H0 ∗ Ḣ1

such that π̄⟨p′, q̇⟩ ∥ ⟨p′, q̇′⟩.
⟨p′, q̇⟩ ⩽ ⟨p, q̇⟩, so ⟨p′, q̇⟩ ⊩ x̌ ∈ Ẋ. By symmetry,

π̄⟨p′, q̇⟩ ⊩ π̄x̌︸︷︷︸
=x̌

∈ π̄Ẋ︸︷︷︸
=Ẋ

i.e. π̄⟨p′, q̇′⟩ ⊩ x̌ ∈ Ẋ.

This contradicts that π̄⟨p′, q̇⟩ ∥ ⟨p′, q̇′⟩.
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Example: How to have more things by forgetting how to count them

Let M be Cohen’s first model and let A ∈ M be the canonical
Dedekind-finite set.

For a cardinal κ, let Col(A, κ) be finite partial functions p : A → κ, with
q ⩽ p if and only if q ⊇ p.

Theorem (Karagila–Schlict, [2])
If H is M -generic for Add(A, κ) then M and M [H] have the same sets of
ordinals.

It is a fact that in M there is no surjection A → ω1. However, after forcing
with Col(A, κ) we introduce a generic surjection A → κ.

Since there are no new sets of ordinals, no cardinals are collapsed.
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Questions

▶ What does upward homogeneity “look like” in the intermediate
model? Is there a simple condition on a symmetric system that
guarantees that it does not add sets of ordinals?

▶ Can other new sets be avoided by similar techniques? E.g., what if we
wish to not add any new sets of a certain von-Neumann rank?

▶ When are upwards homogeneous iterations equivalent to normal
forcing iterations?
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Thank you
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