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Cichoń’s diagram

Cichoń’s diagram is a table of representative cardinal invariants.

add(N )

cov(N )

add(M)

b

non(M)

cov(M)

d

cof(M)

non(N )

cof(N )

ℵ1

2ℵ0

Here, an arrow x → y denotes that the inequality x ≤ y holds.
Moreover, cof(M) = max{d, non(M)} and
add(M) = min{b, cov(M)} also hold .
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Separation of Cichoń’s diagram

Cichoń’s diagram is said to be complete, i.e., no more arrows can
be added there.

Moreover, it can be divided into two parts anywhere.

More precisely, any assignment of ℵ1 and ℵ2 to the numbers in the
diagram is consistent whenever it does not conflict with the arrows
and the two equations.
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More values: simultaneous separation

The separations with two values are well studied.

→ More values?

In this sense, the ultimate question is the following:

Ultimate Question.
Can we separate Cichoń’s diagram with as many values as possible?

“as many values as possible” ... except for add(M) and cof(M).

Such a simultaneous separation model is called Cichoń’s maximum.

(The ultimate question ⇐⇒ Does Cichoń’s maximum exist?)
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Cichoń’s maximum

In [GKS19] and [GKMS22] they solved the question positively,
constructing Cichoń’s maximum with the following order.

add(N )

θ1

cov(N )

θ2

·

b
θ3

non(M)

θ4

cov(M)

θ5

d
θ6

·

non(N )

θ7

cof(N )

θ8

ℵ1

2ℵ0

θ9

Fig: Cichoń’s maximum. add(M) and cof(M) are omitted as dots “ ·”.
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After Cichoń’s maximum

After the birth of Cichoń’s maximum, the following question is one
of the main themes of the study of simultaneous separations.

Theme.
Can we separate more cardinal invariants simultaneously?
In particular, what number can be added to Cichoń’s maximum?

We focus on the evasion number e, one of the classical cardinal
invariants.
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Prediction and evasion

Definition (prediction)
• A predictor π = (D, {πn : n ∈ D}) consists of:

• D ∈ [ω]ω, the set of prediction points, and
• πn : ω

n → ω, local predictors at each prediction point n ∈ D.

• π predicts f ∈ ωω

:⇔ for all but finitely many n ∈ D, f(n) = πn(f↾n).
• f evades π :⇔ π does not predict f .

D

ω

f(n)

nn− 1. . . . . .

f

f↾n
predict
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Evasion/prediction number and Cichoń’s diagram

Definition (evasion number e, prediction number pr)

• pr := min

{
|Π| :

Π consists of predictors,
∀f ∈ ωω ∃π ∈ Π π predicts f

}
.

• e := min {|F | : F ⊆ ωω, ∀predictor π ∃f ∈ F f evades π}.

add(N )

cov(N )

e

pr

add(M)

b

non(M)

cov(M)

d

cof(M)

non(N )

cof(N )

ℵ1

2ℵ0
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Cichoń’s maximum with evasion number

We prove the two numbers can be added to Cichoń’s maximum.

Main Theorem(Y.)

The following separation constellation consistently holds.

add(N )

θ1

cov(N )

θ2

·

b
θ3

e θ4

non(M)

θ5

cov(M)

θ6

pr
θ7

d

θ8

·

non(N )

θ9

cof(N )

θ10

ℵ1

2ℵ0

θ11
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Things to note:

• Goldstern, Kellner, Mejía and Shelah [GKMS21] stated that
they obtained the same separation, but later they found a gap
in their proof.

• Our proof is not a modification of the gap. We simply used a
different method.
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Construction of Cichoń’s maximum with evasion number

The construction of Cichoń’s maximum with the evasion number
consists of two steps:

1. separate the left side of the diagram. ⇒ 2. separate the right.

∗

∗

·

∗
∗

∗

∗

∗
∗

·

∗

∗

∗

∗

⇒

∗

∗

·

∗
∗

∗

∗

∗
∗

·

∗

∗

∗

∗

Methods:
left finite support iteration of ccc forcings.

right Boolean Ultrapowers. [GKS19, with large cardinals]
submodel method. [GKMS22, without large cardinals]
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Separation of the left

Once we separate the left side, the separation of the right is
obtained by a simple application of either of the two methods, so
the main work is to separate the left side, as follows.

add(N )

λ1

cov(N )

λ2

·

b

λ3

e λ4

non(M)

λ5

cov(M)

λ6
pr

d

·

non(N )

cof(N )

ℵ1

2ℵ0
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Finite suppotrt iteration

We perform a fsi (finite support iteration) P6 of length λ6 + λ6.

λ6 + λ6λ6

Cohen forcings C subforcings of A,B,D,PR,E

• The first λ6 iterands are C (for technical reason).
• Each of the remaining λ6 iterands is a subforcing of some

poset of some size according to the table below left:

poset size increase
A < λ1 add(N )
B < λ2 cov(N )
D < λ3 b
PR < λ4 e
E < λ5 non(M)

add(N )

λ1

cov(N )

λ2

·

b
λ3

e λ4

non(M)

λ5

λ6

ℵ1
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Large and small

Let us see that each number is large (x ≥ λi) and small (x ≤ λi).

large By bookkeeping, we can increase each number.
small By standard preservation arguments (e.g. “cov(N ) ≤ λ2” is

preserved through fsi of σ-centered or small (< λ2) forcings),
add(N ), cov(N ), non(M) and 2ℵ0 are kept small.

→ The smallness of b and e (i.e., b ≤ λ3 and e ≤ λ4) remains.

For b, ultrafilter-limit method does work, as in [GKS19].

For e, we introduced a new limit notion, closed-ultrafilter-limit.
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What is ultrafilter-limit?

ultrafilter...non-principal ultrafilter on ω.

Q ⊆ P is ultrafiter-limit-linked
:⇔ For any countable sequence q̄ = ⟨qm⟩m<ω ∈ Qω, we can define
the limit condition q∞ = lim q̄ satisfying the following principle:

Principle of Ultrafilter-Limit.
p∞ forces that ultrafilter many pm are in the generic filter.
In particular, p∞ ⊩ ∃∞m < ω pm ∈ Ġ.

P is µ [< µ]-ultrafilter-limit-linked if P is a union of µ [< µ]-many
ultrafilter-limit-linked components, respectively.

Example.
Singletons are ultrafilter-limit-linked.
Hence, every P is |P|-ultrafilter-limit-linked.
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P is µ [< µ]-ultrafilter-limit-linked if P is a union of µ [< µ]-many
ultrafilter-limit-linked components, respectively.

Example.
Singletons are ultrafilter-limit-linked.
Hence, every P is |P|-ultrafilter-limit-linked.
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ultrafilter-limit for iteration

Let us define ultrafilter-limits also for a fsi Pγ = ⟨Pα, Q̇α⟩α<γ .

p̄ = ⟨pm⟩m<ω ∈ (Pγ)
ω is neatly-lined-up if:

• {dom(pm) : m < ω} form a ∆-system with some root ∇.
• For α ∈ ∇, ⊩α Q̇α ⊆ Q̇α is an uf-limit-linked component such

that ⊩α pm(α) ∈ Q̇α for all m < ω.
For such p̄, we can define the limit condition p∞ = lim p̄ by:

• dom(p∞) := ∇.
• For α ∈ ∇, ⊩α p∞(α) := lim⟨pm(α)⟩m<ω.

The limit also satisfies the principle, i.e., it forces that ultrafilter
many conditions are in the generic filter.

We say Pγ has < µ-ultrafilter-limits if it is an iteration of
< µ-ultrafilter-limit-linked forcings and hence we can consider
ultrafilter-limits for suitably many sequences (details omitted).
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What is “closed”-ultrafilter-limit?

Let P be a poset (not an iteration).
An uf-lim-linked Q ⊆ P is closed if lim q̄ ∈ Q holds for all q̄ ∈ Qω.

The advantage is that we can consider “limit condition of limit
conditions”: Let q̄i ∈ Qω for each i < ω. Then, qi∞ := lim q̄i ∈ Q
holds for all i, so we can again take the limit q∞∞ := lim⟨qi∞⟩i<ω.

Closedness also holds for iteration: If all p̄i ∈ (Pγ)
ω for i < ω are

neatly-lined-up witnessed by some common ∇ and Q̇α for α ∈ ∇,
then the limits ⟨pi∞ = lim p̄i⟩i<ω also form a neatly-lined-up
sequence with the same witnesses ∇ and Q̇α for α ∈ ∇.

We show that this new limit notion helps to control e.

Main Lemma(Y.)

Closed-ultrafilter-limits keep e small.
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Linkedness of each iterand of P6

Back to the case of P6.

The linkedness of each iterand is illustrated in the table below.
(Note: every P is |P|-closed-uf-lim-linked, splitting into singletons.)

iterand size µ-uf-lim-linked µ-closed-uf-lim-linked
A < λ1 < λ1 < λ1

B < λ2 < λ2 < λ2

D < λ3 < λ3 < λ3

PR < λ4 ω < λ4

E < λ5 ω ω

Hence, P6 has < λ3-uf-limits and < λ4-closed-uf-limits.

As a consequence, P6 forces b ≤ λ3 and e ≤ λ4.
(This is what “∗∗-limits keep x small” actually means.)
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Closed-ultrafilter-limits keep e small

We give a sketch of the proof of e ≤ λ4.

Theorem(Y.)

P6 forces e ≤ λ4. Moreover, the set of the first λ4-many Cohen
reals is an evading family.

Sketch of proof. Assume towards contradiction that there is a name
π̇ = (Ḋ, {π̇k : k ∈ Ḋ}) of a predictor such that some p ∈ P forces
π̇ predicts all the λ4 Cohen reals.

After some refining argument (e.g. ∆-System Lemma) (and
arranging the initial segments of Cohen reals), we obtain n < ω,
s ∈ ωn, neatly-lined-up sequence p̄ = ⟨pm⟩m<ω (below p) and
countably many Cohen reals ⟨ċm⟩m<ω such that for each m < ω:

pm ⊩ ċm <n π̇ and ċm↾ (n+ 1) = s⌢m,
where f <n π :⇔ f(k) = πk(f↾ k) for all k ≥ n in D.
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(Recall: pm ⊩ ċm <n π̇ and ċm↾ (n+ 1) = s⌢m for m < ω.)

n− 1
n

s

ċm↾n
infinite

predict
impossible!

Let p∞ := limm<ω pm.
By the principle of ultrafilter-limit,
p∞ ⊩ ∃∞m < ω pm ∈ Ġ.
We show p∞ ⊩ n /∈ Ḋ. If not,
cm(n) = m = πn(cm↾n) = πn(s) for
infinitely many m, a contradiction.

Now we have excluded one possible
prediction point n, but in fact we can
exclude arbitrary finitely many points:

By arranging the initial segments of the Cohen reals more carefully,
we obtain for each i < ω a limit condition pi∞ such that:

pi∞ ⊩ [n, n+ i) ∩ Ḋ = ∅,

where [a, b) denotes the interval {n < ω : a ≤ n < b}.
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(Recall: pm ⊩ ċm <n π̇ and ċm↾ (n+ 1) = s⌢m for m < ω.)
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Let p∞ := limm<ω pm.
By the principle of ultrafilter-limit,
p∞ ⊩ ∃∞m < ω pm ∈ Ġ.
We show p∞ ⊩ n /∈ Ḋ.

If not,
cm(n) = m = πn(cm↾n) = πn(s) for
infinitely many m, a contradiction.

Now we have excluded one possible
prediction point n, but in fact we can
exclude arbitrary finitely many points:
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(Recall: pi∞ ⊩ [n, n+ i) ∩ Ḋ = ∅ for i < ω)

Thanks to closedness, in fact, ⟨pi∞⟩i<ω is also neatly-lined-up.

Thus, we can take the limit of the limit conditions
p∞∞ := limi<ω pi∞. Then, we have:

p∞∞ ⊩ [n, n+ i) ∩ Ḋ = ∅ for infinitely many i,

which contradicts that Ḋ ∈ [ω]ω is an infinite set. 2

ωn n+ i n+ i′

Ḋ ∈ [ω]ω,
somewhere

· · ·

· · ·

no prediction points

no prediction points



Cichoń’s maximum and evasion number Ultrafilter-Limit and Closed-Ultrafilter-Limit Conclusion and Open Problems

(Recall: pi∞ ⊩ [n, n+ i) ∩ Ḋ = ∅ for i < ω)
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which contradicts that Ḋ ∈ [ω]ω is an infinite set. 2

ωn n+ i n+ i′
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Conclusion and Open Problems

Conclusion:

• By modifying the ultrafilter-limit method (which was
introduced to keep b small), we introduced the
closed-ultrafilter-limit method, which keeps e small.

• As an application, we added the evasion/prediction numbers to
Cichoń’s maximum with distinct values.

Question 1.
Other than e, are there other cardinal invariants which are kept
small through forcings with closed-ultrafilter-limits?

Question 2.
Is there some mix with the FAM-limit, which is another kind of
limit notion, focusing on finitely additive measures on ω?
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