A model with p-measures and no p-point

Jonathan Cancino-Manríquez
Joint work with P. Borodulin-Nadzieja and A. Morawski
Institute of Mathematics
of the Czech Academy of Sciences
cancino@math.cas.cz
January 30, 2024
Hejnice, Czech Republic

Definition.

A measure on ω is a function $\mu: \mathcal{P}(\omega) \rightarrow[0,1]$ such that:
(1) $\mu(\emptyset)=0$.

Definition.

A measure on ω is a function $\mu: \mathcal{P}(\omega) \rightarrow[0,1]$ such that:
(1) $\mu(\emptyset)=0$.
(2) φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B=\emptyset$, $\varphi(A \cup B)=\varphi(A)+\varphi(B)$.

Definition.

A measure on ω is a function $\mu: \mathcal{P}(\omega) \rightarrow[0,1]$ such that:
(1) $\mu(\emptyset)=0$.
(2) φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B=\emptyset$, $\varphi(A \cup B)=\varphi(A)+\varphi(B)$.
(3) φ vanishes at points, i. e., $\varphi(\{n\})=0$ for all $n \in \omega$.

Definition.

A measure on ω is a function $\mu: \mathcal{P}(\omega) \rightarrow[0,1]$ such that:
(1) $\mu(\emptyset)=0$.
(2) φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B=\emptyset$, $\varphi(A \cup B)=\varphi(A)+\varphi(B)$.
(3) φ vanishes at points, i. e., $\varphi(\{n\})=0$ for all $n \in \omega$.

Definition.

A measure on ω is a function $\mu: \mathcal{P}(\omega) \rightarrow[0,1]$ such that:
(1) $\mu(\emptyset)=0$.
(2) φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B=\emptyset$, $\varphi(A \cup B)=\varphi(A)+\varphi(B)$.
(3) φ vanishes at points, i. e., $\varphi(\{n\})=0$ for all $n \in \omega$.

Examples:

(1) An ultrafilter \mathcal{U} defines a two valued measure: $\delta_{\mathcal{U}}(A)=1$ if $A \in \mathcal{U}$ and $\delta_{\mathcal{U}}(A)=0$ if $A \notin \mathcal{U}$. This is the Dirac delta at \mathcal{U}.

Definition.

A measure on ω is a function $\mu: \mathcal{P}(\omega) \rightarrow[0,1]$ such that:
(1) $\mu(\emptyset)=0$.
(2) φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B=\emptyset$, $\varphi(A \cup B)=\varphi(A)+\varphi(B)$.
(3) φ vanishes at points, i. e., $\varphi(\{n\})=0$ for all $n \in \omega$.

Examples:

(1) An ultrafilter \mathcal{U} defines a two valued measure: $\delta_{\mathcal{U}}(A)=1$ if $A \in \mathcal{U}$ and $\delta_{\mathcal{U}}(A)=0$ if $A \notin \mathcal{U}$. This is the Dirac delta at \mathcal{U}.
(2) Taking suitable \mathcal{U}-limits gives another measure: for $A \subseteq \omega$, define $h_{A}(n)=|A \cap n| / n$. Then

$$
d_{\mathcal{U}}(A)=\mathcal{U}-\lim \left\langle h_{A}(n): n \in \omega\right\rangle
$$

Definition.

A measure on ω is a function $\mu: \mathcal{P}(\omega) \rightarrow[0,1]$ such that:
(1) $\mu(\emptyset)=0$.
(2) φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B=\emptyset$, $\varphi(A \cup B)=\varphi(A)+\varphi(B)$.
(3) φ vanishes at points, i. e., $\varphi(\{n\})=0$ for all $n \in \omega$.

Examples:

(1) An ultrafilter \mathcal{U} defines a two valued measure: $\delta_{\mathcal{U}}(A)=1$ if $A \in \mathcal{U}$ and $\delta_{\mathcal{U}}(A)=0$ if $A \notin \mathcal{U}$. This is the Dirac delta at \mathcal{U}.
(2) Taking suitable \mathcal{U}-limits gives another measure: for $A \subseteq \omega$, define $h_{A}(n)=|A \cap n| / n$. Then

$$
d_{\mathcal{U}}(A)=\mathcal{U}-\lim \left\langle h_{A}(n): n \in \omega\right\rangle
$$

Definition.

A measure on ω is a function $\mu: \mathcal{P}(\omega) \rightarrow[0,1]$ such that:
(1) $\mu(\emptyset)=0$.
(2) φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B=\emptyset$, $\varphi(A \cup B)=\varphi(A)+\varphi(B)$.
(3) φ vanishes at points, i. e., $\varphi(\{n\})=0$ for all $n \in \omega$.

Examples:

(1) An ultrafilter \mathcal{U} defines a two valued measure: $\delta_{\mathcal{U}}(A)=1$ if $A \in \mathcal{U}$ and $\delta_{\mathcal{U}}(A)=0$ if $A \notin \mathcal{U}$. This is the Dirac delta at \mathcal{U}.
(2) Taking suitable \mathcal{U}-limits gives another measure: for $A \subseteq \omega$, define $h_{A}(n)=|A \cap n| / n$. Then

$$
d_{\mathcal{U}}(A)=\mathcal{U}-\lim \left\langle h_{A}(n): n \in \omega\right\rangle
$$

It is easy to see that $d_{\mathcal{U}}$ extends asymptotic density.

Definition(A. Mekler, 1984)

Let μ be a measure on ω. We say that μ is a p-measure $(A P$-measure or has $A P$-property), if for any \subseteq-decreasing sequence $\left\langle A_{n}: n \in \omega\right\rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:

Definition(A. Mekler, 1984)

Let μ be a measure on ω. We say that μ is a p-measure $(A P$-measure or has $A P$-property), if for any \subseteq-decreasing sequence $\left\langle A_{n}: n \in \omega\right\rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:
(1) $B \subseteq^{*} A_{n}$ for all $n \in \omega$.

Definition(A. Mekler, 1984)

Let μ be a measure on ω. We say that μ is a p-measure $(A P$-measure or has $A P$-property), if for any \subseteq-decreasing sequence $\left\langle A_{n}: n \in \omega\right\rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:
(1) $B \subseteq^{*} A_{n}$ for all $n \in \omega$.
(2) $\mu(B)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.

Definition(A. Mekler, 1984)

Let μ be a measure on ω. We say that μ is a p-measure $(A P$-measure or has $A P$-property), if for any \subseteq-decreasing sequence $\left\langle A_{n}: n \in \omega\right\rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:
(1) $B \subseteq^{*} A_{n}$ for all $n \in \omega$.
(2) $\mu(B)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.

Definition(A. Mekler, 1984)

Let μ be a measure on ω. We say that μ is a p-measure $(A P$-measure or has $A P$-property), if for any \subseteq-decreasing sequence $\left\langle A_{n}: n \in \omega\right\rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:
(1) $B \subseteq^{*} A_{n}$ for all $n \in \omega$.
(2) $\mu(B)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.

Examples:
(1) Let \mathcal{U} be a p-point, then $\delta_{\mathcal{U}}$ is a two valued p-measure.

Definition(A. Mekler, 1984)

Let μ be a measure on ω. We say that μ is a p-measure $(A P$-measure or has $A P$-property), if for any \subseteq-decreasing sequence $\left\langle A_{n}: n \in \omega\right\rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:
(1) $B \subseteq^{*} A_{n}$ for all $n \in \omega$.
(2) $\mu(B)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.

Examples:
(1) Let \mathcal{U} be a p-point, then $\delta_{\mathcal{U}}$ is a two valued p-measure.
(2) Let \mathcal{U} be a p-point, then $d_{\mathcal{U}}$ is a p-measure.

Definition(A. Mekler, 1984)

Let μ be a measure on ω. We say that μ is a p-measure $(A P$-measure or has $A P$-property), if for any \subseteq-decreasing sequence $\left\langle A_{n}: n \in \omega\right\rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:
(1) $B \subseteq^{*} A_{n}$ for all $n \in \omega$.
(2) $\mu(B)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.

Examples:
(1) Let \mathcal{U} be a p-point, then $\delta_{\mathcal{U}}$ is a two valued p-measure.
(2) Let \mathcal{U} be a p-point, then $d_{\mathcal{U}}$ is a p-measure.

Definition(A. Mekler, 1984)

Let μ be a measure on ω. We say that μ is a p-measure($A P$-measure or has $A P$-property), if for any \subseteq-decreasing sequence $\left\langle A_{n}: n \in \omega\right\rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:
(1) $B \subseteq^{*} A_{n}$ for all $n \in \omega$.
(2) $\mu(B)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$.

Examples:
(1) Let \mathcal{U} be a p-point, then $\delta_{\mathcal{U}}$ is a two valued p-measure.
(2) Let \mathcal{U} be a p-point, then $d_{\mathcal{U}}$ is a p-measure.

Remark. The existence of p-points implies the existence of p-measures.

Question. Does ZFC proves the existence of p-measures?

Question. Does ZFC proves the existence of p-measures?

Theorem(A. Mekler, 1984)
It is consistent that there is no p-measure.

Question. Does ZFC proves the existence of p-measures?

Theorem(A. Mekler, 1984)
It is consistent that there is no p-measure.

Proof.

Question. Does ZFC proves the existence of p-measures?

Theorem(A. Mekler, 1984)
It is consistent that there is no p-measure.

Proof.

(1) Make a countable support iteration of length ω_{2} such that each step is of the form $\mathcal{G}\left(\mathcal{F}^{\omega}\right)$, where $\mathcal{F}=\{A \subseteq \omega: \mu(A)=1\}$, where μ is a measure on ω,

Question. Does ZFC proves the existence of p-measures?

Theorem(A. Mekler, 1984)
It is consistent that there is no p-measure.

Proof.

(1) Make a countable support iteration of length ω_{2} such that each step is of the form $\mathcal{G}\left(\mathcal{F}^{\omega}\right)$, where $\mathcal{F}=\{A \subseteq \omega: \mu(A)=1\}$, where μ is a measure on ω,
(2) Make sure that \mathcal{F}_{μ} appears at some step of the iteration for all μ which appears along the iteration.

Question. Does ZFC proves the existence of p-measures?

Theorem(A. Mekler, 1984)
It is consistent that there is no p-measure.

Proof.

(1) Make a countable support iteration of length ω_{2} such that each step is of the form $\mathcal{G}\left(\mathcal{F}^{\omega}\right)$, where $\mathcal{F}=\{A \subseteq \omega: \mu(A)=1\}$, where μ is a measure on ω,
(2) Make sure that \mathcal{F}_{μ} appears at some step of the iteration for all μ which appears along the iteration.
(3) Forcing with $\mathcal{G}\left(\mathcal{F}^{\omega}\right)$ forces the existence of a \subseteq-decreasing sequence for which all pseudointersection has measure 0 .

Question. Does ZFC proves the existence of p-measures?

Theorem(A. Mekler, 1984)
It is consistent that there is no p-measure.

Proof.

(1) Make a countable support iteration of length ω_{2} such that each step is of the form $\mathcal{G}\left(\mathcal{F}^{\omega}\right)$, where $\mathcal{F}=\{A \subseteq \omega: \mu(A)=1\}$, where μ is a measure on ω,
(2) Make sure that \mathcal{F}_{μ} appears at some step of the iteration for all μ which appears along the iteration.
(3) Forcing with $\mathcal{G}\left(\mathcal{F}^{\omega}\right)$ forces the existence of a \subseteq-decreasing sequence for which all pseudointersection has measure 0 .
(4) This property is preserved along the iteration by the ω^{ω}-bounding property of the steps(once a p-measure is killed, it does not resurrect).

Remark. In Mekler's model there is no p-point.

Remark. In Mekler's model there is no p-point.

Question. Does the existence of p-measures imply the existence of p-points?

Remark. In Mekler's model there is no p-point.

Question. Does the existence of p-measures imply the existence of p-points?

Theorem(J. Grebík, 2019)
If there is an ultrafilter \mathcal{U} such that $d_{\mathcal{U}}$ is a p-measure, then there is a p-point. In fact, there is $f: \omega \rightarrow \omega$ finite to one such that $f(\mathcal{U})$ is a p-point.

Remark. In Mekler's model there is no p-point.

Question. Does the existence of p-measures imply the existence of p-points?

Theorem(J. Grebík, 2019)
If there is an ultrafilter \mathcal{U} such that $d_{\mathcal{U}}$ is a p-measure, then there is a p-point. In fact, there is $f: \omega \rightarrow \omega$ finite to one such that $f(\mathcal{U})$ is a p-point.

Theorem(P. Borodulin-Nadzieja, D. Sobota, 2023)
If there is a p-point in the ground model, then after adding any number of random reals there is a p-measure.

Remark. In Mekler's model there is no p-point.

Question. Does the existence of p-measures imply the existence of p-points?

Theorem(J. Grebík, 2019)

If there is an ultrafilter \mathcal{U} such that $d_{\mathcal{U}}$ is a p-measure, then there is a p-point. In fact, there is $f: \omega \rightarrow \omega$ finite to one such that $f(\mathcal{U})$ is a p-point.

Theorem(P. Borodulin-Nadzieja, D. Sobota, 2023)

If there is a p-point in the ground model, then after adding any number of random reals there is a p-measure.

Remark. The measure in the previous theorem still uses a p-point in its definition, although not so direct as in the \mathcal{U}-limit.

Theorem(P. Borodulin-Nadzieja, C., A. Morawski)
It is consistent that there is a p-measure, there is no p-point, and $2^{\aleph_{0}}$ is arbitrarily large. Moreover, it is consitent that no p-measure is a Dirac measure neither an ultrafilter density.

Three main ingredients in the proof:

Three main ingredients in the proof:
Theorem(K. Kunen)
If \mathcal{U} is a selective ultrafilter, then after forcing with $\mathbb{B}_{\kappa}, \mathcal{U}$ can not be extended to a p-point.

Three main ingredients in the proof:

Theorem(K. Kunen)
If \mathcal{U} is a selective ultrafilter, then after forcing with $\mathbb{B}_{\kappa}, \mathcal{U}$ can not be extended to a p-point.

Theorem(S. Shelah)
It is consistent that there is only one p-point(up to permutation), which, therefore, should be a selective ultrafilter.

Three main ingredients in the proof:

Theorem(K. Kunen)
If \mathcal{U} is a selective ultrafilter, then after forcing with $\mathbb{B}_{\kappa}, \mathcal{U}$ can not be extended to a p-point.

Theorem(S. Shelah)
It is consistent that there is only one p-point(up to permutation), which, therefore, should be a selective ultrafilter.

Theorem(P. Borodulin-Nadzieja, D. Sobota)
If there is a p-point in the ground model, then there is a p-measure after forcing with \mathbb{B}_{κ}.

Three main ingredients in the proof:

Theorem(K. Kunen)
If \mathcal{U} is a selective ultrafilter, then after forcing with $\mathbb{B}_{\kappa}, \mathcal{U}$ can not be extended to a p-point.

Theorem(S. Shelah)
It is consistent that there is only one p-point(up to permutation), which, therefore, should be a selective ultrafilter.

Theorem(P. Borodulin-Nadzieja, D. Sobota)
If there is a p-point in the ground model, then there is a p-measure after forcing with \mathbb{B}_{κ}.

Forcing with Random over Shelah's model?

Three main ingredients in the proof:

Theorem(K. Kunen)
If \mathcal{U} is a selective ultrafilter, then after forcing with $\mathbb{B}_{\kappa}, \mathcal{U}$ can not be extended to a p-point.

Theorem(S. Shelah)
It is consistent that there is only one p-point(up to permutation), which, therefore, should be a selective ultrafilter.

Theorem(P. Borodulin-Nadzieja, D. Sobota)
If there is a p-point in the ground model, then there is a p-measure after forcing with \mathbb{B}_{κ}.

Forcing with Random over Shelah's model? That's almost the case, we need a natural modification of Shelah's model as in the case of Mekler's model.

Definition(A. Blass, 1986).
Two filters \mathcal{U}, \mathcal{F} are said to be nearly coherent if there is a finite to one function $f: \omega \rightarrow \omega$ such that $f(\mathcal{U}) \cup f(\mathcal{F})$ generates a filter.

Definition(A. Blass, 1986).

Two filters \mathcal{U}, \mathcal{F} are said to be nearly coherent if there is a finite to one function $f: \omega \rightarrow \omega$ such that $f(\mathcal{U}) \cup f(\mathcal{F})$ generates a filter.

Remarks.

Definition(A. Blass, 1986).

Two filters \mathcal{U}, \mathcal{F} are said to be nearly coherent if there is a finite to one function $f: \omega \rightarrow \omega$ such that $f(\mathcal{U}) \cup f(\mathcal{F})$ generates a filter.

Remarks.

(1) If $\mathcal{F}_{0}, \mathcal{F}_{1}$ are nearly coherent ultrafilters via the function f, then $f\left(\mathcal{F}_{0}\right)=f\left(\mathcal{F}_{1}\right)$

Definition(A. Blass, 1986).

Two filters \mathcal{U}, \mathcal{F} are said to be nearly coherent if there is a finite to one function $f: \omega \rightarrow \omega$ such that $f(\mathcal{U}) \cup f(\mathcal{F})$ generates a filter.

Remarks.

(1) If $\mathcal{F}_{0}, \mathcal{F}_{1}$ are nearly coherent ultrafilters via the function f, then $f\left(\mathcal{F}_{0}\right)=f\left(\mathcal{F}_{1}\right)$.
(2) If \mathcal{F}_{0} is an ultrafilter an \mathcal{F}_{1} is just a filter, then they are nearly coherent if and only if there is a finite to one function such that $f\left(\mathcal{F}_{1}\right) \subseteq f\left(\mathcal{F}_{0}\right)$.

Definition(S. Shelah)

Let \mathcal{F}_{0} and \mathcal{F}_{1} be two filters on ω. The game $\mathcal{G}\left(\mathcal{F}_{0}, \mathcal{F}_{1}\right)$ between Player I and Player II is defined as:
(1) At stages $j \equiv 0(\bmod 4)$, Player I plays a set $A_{j} \in \mathcal{F}_{0}$.

Definition(S. Shelah)

Let \mathcal{F}_{0} and \mathcal{F}_{1} be two filters on ω. The game $\mathcal{G}\left(\mathcal{F}_{0}, \mathcal{F}_{1}\right)$ between Player I and Player II is defined as:
(1) At stages $j \equiv 0(\bmod 4)$, Player I plays a set $A_{j} \in \mathcal{F}_{0}$.
(2) At the next stage, Player II answers with $a_{j} \in A_{j}$.

Definition(S. Shelah)

Let \mathcal{F}_{0} and \mathcal{F}_{1} be two filters on ω. The game $\mathcal{G}\left(\mathcal{F}_{0}, \mathcal{F}_{1}\right)$ between Player I and Player II is defined as:
(1) At stages $j \equiv 0(\bmod 4)$, Player I plays a set $A_{j} \in \mathcal{F}_{0}$.
(2) At the next stage, Player II answers with $a_{j} \in A_{j}$.
(3) At stages $j \equiv 2(\bmod 4)$, Player I plays a set $B_{j} \in \mathcal{F}_{1}$.

Definition(S. Shelah)

Let \mathcal{F}_{0} and \mathcal{F}_{1} be two filters on ω. The game $\mathcal{G}\left(\mathcal{F}_{0}, \mathcal{F}_{1}\right)$ between Player I and Player II is defined as:
(1) At stages $j \equiv 0(\bmod 4)$, Player I plays a set $A_{j} \in \mathcal{F}_{0}$.
(2) At the next stage, Player II answers with $a_{j} \in A_{j}$.
(3) At stages $j \equiv 2(\bmod 4)$, Player I plays a set $B_{j} \in \mathcal{F}_{1}$.
(4) At the next stage, Player II answers with $F_{j} \in\left[B_{j}\right]^{<\omega}$.

Definition(S. Shelah)

Let \mathcal{F}_{0} and \mathcal{F}_{1} be two filters on ω. The game $\mathcal{G}\left(\mathcal{F}_{0}, \mathcal{F}_{1}\right)$ between Player I and Player II is defined as:
(1) At stages $j \equiv 0(\bmod 4)$, Player I plays a set $A_{j} \in \mathcal{F}_{0}$.
(2) At the next stage, Player II answers with $a_{j} \in A_{j}$.
(3) At stages $j \equiv 2(\bmod 4)$, Player I plays a set $B_{j} \in \mathcal{F}_{1}$.
(4) At the next stage, Player II answers with $F_{j} \in\left[B_{j}\right]^{<\omega}$.

Definition(S. Shelah)

Let \mathcal{F}_{0} and \mathcal{F}_{1} be two filters on ω. The game $\mathcal{G}\left(\mathcal{F}_{0}, \mathcal{F}_{1}\right)$ between Player I and Player II is defined as:
(1) At stages $j \equiv 0(\bmod 4)$, Player I plays a set $A_{j} \in \mathcal{F}_{0}$.
(2) At the next stage, Player II answers with $a_{j} \in A_{j}$.
(3) At stages $j \equiv 2(\bmod 4)$, Player I plays a set $B_{j} \in \mathcal{F}_{1}$.
(4) At the next stage, Player II answers with $F_{j} \in\left[B_{j}\right]^{<\omega}$.

Player II wins if and only if $\left\{a_{n}: n \in \omega\right\} \in \mathcal{F}_{0}$ and $\bigcup_{n \in \omega} F_{n} \in \mathcal{F}_{1}$.

Lemma(S. Shelah)
If \mathcal{F}_{0} is a selective ultrafiler, \mathcal{F}_{1} is a p-point, and they are not nearly coherent, then Player I has no winning strategy in the game $\mathcal{G}\left(\mathcal{F}_{0}, \mathcal{F}_{1}\right)$.

Lemma(S. Shelah)
If \mathcal{F}_{0} is a selective ultrafiler, \mathcal{F}_{1} is a p-point, and they are not nearly coherent, then Player I has no winning strategy in the game $\mathcal{G}\left(\mathcal{F}_{0}, \mathcal{F}_{1}\right)$.

This lemma needs still works if instead of \mathcal{F}_{1} being just p-filter instead of a p-point.

Theorem(S. Shelah)
Let \mathcal{U} be a p-point. There is a forcing $S P(\mathcal{U})$ having the following properties:

Theorem(S. Shelah)
Let \mathcal{U} be a p-point. There is a forcing $S P(\mathcal{U})$ having the following properties:
(1) $S P(\mathcal{U})$ is proper and ω^{ω}-bounding.

Theorem(S. Shelah)

Let \mathcal{U} be a p-point. There is a forcing $S P(\mathcal{U})$ having the following properties:
(1) $S P(\mathcal{U})$ is proper and ω^{ω}-bounding.
(2) If $\dot{\mathbb{Q}}$ is a $\mathbb{P}(\mathcal{U})$-name for a proper ω^{ω}-bounding forcing, then $S P(\mathcal{U}) * \dot{\mathbb{Q}}$ forces that \mathcal{U} can not be extended to a p-point.

Theorem(S. Shelah)

Let \mathcal{U} be a p-point. There is a forcing $S P(\mathcal{U})$ having the following properties:
(1) $S P(\mathcal{U})$ is proper and ω^{ω}-bounding.
(2) If $\dot{\mathbb{Q}}$ is a $\mathbb{P}(\mathcal{U})$-name for a proper ω^{ω}-bounding forcing, then $S P(\mathcal{U}) * \dot{\mathbb{Q}}$ forces that \mathcal{U} can not be extended to a p-point.
(3) If \mathcal{V} is a selective ultrafilter which is not nearly coherent with \mathcal{U}, then $\operatorname{SP}(\mathcal{U})$ preserves \mathcal{V} as an ultrafilter.

Theorem(S. Shelah)

Let \mathcal{U} be a p-point. There is a forcing $S P(\mathcal{U})$ having the following properties:
(1) $S P(\mathcal{U})$ is proper and ω^{ω}-bounding.
(2) If $\dot{\mathbb{Q}}$ is a $\mathbb{P}(\mathcal{U})$-name for a proper ω^{ω}-bounding forcing, then $S P(\mathcal{U}) * \dot{\mathbb{Q}}$ forces that \mathcal{U} can not be extended to a p-point.
(3) If \mathcal{V} is a selective ultrafilter which is not nearly coherent with \mathcal{U}, then $\operatorname{SP}(\mathcal{U})$ preserves \mathcal{V} as an ultrafilter.

Theorem(S. Shelah)

Let \mathcal{U} be a p-point. There is a forcing $S P(\mathcal{U})$ having the following properties:
(1) $S P(\mathcal{U})$ is proper and ω^{ω}-bounding.
(2) If $\dot{\mathbb{Q}}$ is a $\mathbb{P}(\mathcal{U})$-name for a proper ω^{ω}-bounding forcing, then $S P(\mathcal{U}) * \dot{\mathbb{Q}}$ forces that \mathcal{U} can not be extended to a p-point.
(3) If \mathcal{V} is a selective ultrafilter which is not nearly coherent with \mathcal{U}, then $\operatorname{SP}(\mathcal{U})$ preserves \mathcal{V} as an ultrafilter.

It turns out that in the previous theorem it is enough to require \mathcal{U} to be a non-meager p-filter to get properties 1-3.

Theorem(S. Shelah)

Let \mathcal{U} be a p-point. There is a forcing $S P(\mathcal{U})$ having the following properties:
(1) $S P(\mathcal{U})$ is proper and ω^{ω}-bounding.
(2) If $\dot{\mathbb{Q}}$ is a $\mathbb{P}(\mathcal{U})$-name for a proper ω^{ω}-bounding forcing, then $S P(\mathcal{U}) * \dot{\mathbb{Q}}$ forces that \mathcal{U} can not be extended to a p-point.
(3) If \mathcal{V} is a selective ultrafilter which is not nearly coherent with \mathcal{U}, then $\operatorname{SP}(\mathcal{U})$ preserves \mathcal{V} as an ultrafilter.

It turns out that in the previous theorem it is enough to require \mathcal{U} to be a non-meager p-filter to get properties 1-3.
The proof of 1) and 2) makes use of the p-filter game.

Theorem(S. Shelah)

Let \mathcal{U} be a p-point. There is a forcing $S P(\mathcal{U})$ having the following properties:
(1) $S P(\mathcal{U})$ is proper and ω^{ω}-bounding.
(2) If $\dot{\mathbb{Q}}$ is a $\mathbb{P}(\mathcal{U})$-name for a proper ω^{ω}-bounding forcing, then $S P(\mathcal{U}) * \dot{\mathbb{Q}}$ forces that \mathcal{U} can not be extended to a p-point.
(3) If \mathcal{V} is a selective ultrafilter which is not nearly coherent with \mathcal{U}, then $\operatorname{SP}(\mathcal{U})$ preserves \mathcal{V} as an ultrafilter.

It turns out that in the previous theorem it is enough to require \mathcal{U} to be a non-meager p-filter to get properties 1-3.
The proof of 1) and 2) makes use of the p-filter game.
In the proof of 3) we use the previous lemma about the game $\mathcal{G}(\mathcal{V}, \mathcal{U})$.

Definition.

Let \mathbb{B} be the random forcing and $\dot{\mathcal{U}}$ a \mathbb{B}-name for an ultrafilter. For $p \in \mathbb{B}$, define $\dot{\mathcal{U}}[p]=\{A \subseteq \omega: p \Vdash A \in \dot{\mathcal{U}}\}$.

Definition.

Let \mathbb{B} be the random forcing and $\dot{\mathcal{U}}$ a \mathbb{B}-name for an ultrafilter. For $p \in \mathbb{B}$, define $\dot{\mathcal{U}}[p]=\{A \subseteq \omega: p \Vdash A \in \dot{\mathcal{U}}\}$.

Lemma

If $\dot{\mathcal{U}}$ is a \mathbb{B}-name for a p-point, then $\dot{\mathcal{U}}[p]$ is a saturated filter for any $p \in \mathcal{B}$.

Definition.

Let \mathbb{B} be the random forcing and $\dot{\mathcal{U}}$ a \mathbb{B}-name for an ultrafilter. For $p \in \mathbb{B}$, define $\dot{\mathcal{U}}[p]=\{A \subseteq \omega: p \Vdash A \in \dot{\mathcal{U}}\}$.

Lemma

If $\dot{\mathcal{U}}$ is a \mathbb{B}-name for a p-point, then $\dot{\mathcal{U}}[p]$ is a saturated filter for any $p \in \mathcal{B}$.

Recall that a filter is \mathcal{F} if the quotient $\mathcal{P}(\omega) / \mathcal{F}$ is ccc. Equivalently, if $\mathcal{A} \subseteq \mathcal{F}^{+}$is such that for any different $A, B \in \mathcal{A} A \cap B \in \mathcal{F}^{*}$, then \mathcal{A} is countable.

Proof.

(1) Assume otherwise $\dot{\mathcal{U}}[p]$ is not saturated and let $\left\langle\mathcal{A}_{\alpha}: \alpha \in \omega_{1}\right\rangle \subseteq \dot{\mathcal{U}}[p]$ be such that for any different $\alpha, \beta \in \omega_{1}, A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}[p]^{*}$.

Proof.

(1) Assume otherwise $\dot{\mathcal{U}}[p]$ is not saturated and let $\left\langle\mathcal{A}_{\alpha}: \alpha \in \omega_{1}\right\rangle \subseteq \dot{\mathcal{U}}[p]$ be such that for any different $\alpha, \beta \in \omega_{1}, A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}[p]^{*}$.
(2) First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \backslash X \in \dot{\mathcal{U}}$.

Proof.

(1) Assume otherwise $\dot{\mathcal{U}}[p]$ is not saturated and let $\left\langle\mathcal{A}_{\alpha}: \alpha \in \omega_{1}\right\rangle \subseteq \dot{\mathcal{U}}[p]$ be such that for any different $\alpha, \beta \in \omega_{1}, A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}[p]^{*}$.
(2) First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \backslash X \in \dot{\mathcal{U}}$.
(3) So for each $\alpha \in \omega_{1}$, there is $q_{\alpha} \leq p$ such that $q_{\alpha} \Vdash \omega \backslash A_{\alpha} \in \dot{\mathcal{U}}$.

Proof.

(1) Assume otherwise $\dot{\mathcal{U}}[p]$ is not saturated and let $\left\langle\mathcal{A}_{\alpha}: \alpha \in \omega_{1}\right\rangle \subseteq \dot{\mathcal{U}}[p]$ be such that for any different $\alpha, \beta \in \omega_{1}, A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}[p]^{*}$.
(2) First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \backslash X \in \dot{\mathcal{U}}$.
(3) So for each $\alpha \in \omega_{1}$, there is $q_{\alpha} \leq p$ such that $q_{\alpha} \Vdash \omega \backslash A_{\alpha} \in \dot{\mathcal{U}}$.
(4) Second, note that for $\alpha \neq \beta, q_{\alpha}$ and q_{β} are incompatible, since a common extension would force that $A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}$, but $p \Vdash \omega \backslash\left(A_{\alpha} \cap A_{\beta}\right) \in \dot{\mathcal{U}}$.

Proof.

(1) Assume otherwise $\dot{\mathcal{U}}[p]$ is not saturated and let $\left\langle\mathcal{A}_{\alpha}: \alpha \in \omega_{1}\right\rangle \subseteq \dot{\mathcal{U}}[p]$ be such that for any different $\alpha, \beta \in \omega_{1}, A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}[p]^{*}$.
(2) First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \backslash X \in \dot{\mathcal{U}}$.
(3) So for each $\alpha \in \omega_{1}$, there is $q_{\alpha} \leq p$ such that $q_{\alpha} \Vdash \omega \backslash A_{\alpha} \in \dot{\mathcal{U}}$.
(4) Second, note that for $\alpha \neq \beta, q_{\alpha}$ and q_{β} are incompatible, since a common extension would force that $A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}$, but $p \Vdash \omega \backslash\left(A_{\alpha} \cap A_{\beta}\right) \in \dot{\mathcal{U}}$.
(5) Therefore, $\left\{q_{\alpha}: \alpha \in \omega_{1}\right\}$ is an uncountable antichain in the Random forcing, which is impossible.

Proof.

(1) Assume otherwise $\dot{\mathcal{U}}[p]$ is not saturated and let $\left\langle\mathcal{A}_{\alpha}: \alpha \in \omega_{1}\right\rangle \subseteq \dot{\mathcal{U}}[p]$ be such that for any different $\alpha, \beta \in \omega_{1}, A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}[p]^{*}$.
(2) First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \backslash X \in \dot{\mathcal{U}}$.
(3) So for each $\alpha \in \omega_{1}$, there is $q_{\alpha} \leq p$ such that $q_{\alpha} \Vdash \omega \backslash A_{\alpha} \in \dot{\mathcal{U}}$.
(4) Second, note that for $\alpha \neq \beta, q_{\alpha}$ and q_{β} are incompatible, since a common extension would force that $A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}$, but $p \Vdash \omega \backslash\left(A_{\alpha} \cap A_{\beta}\right) \in \dot{\mathcal{U}}$.
(5) Therefore, $\left\{q_{\alpha}: \alpha \in \omega_{1}\right\}$ is an uncountable antichain in the Random forcing, which is impossible.

Proof.

(1) Assume otherwise $\dot{\mathcal{U}}[p]$ is not saturated and let $\left\langle\mathcal{A}_{\alpha}: \alpha \in \omega_{1}\right\rangle \subseteq \dot{\mathcal{U}}[p]$ be such that for any different $\alpha, \beta \in \omega_{1}, A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}[p]^{*}$.
(2) First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \backslash X \in \dot{\mathcal{U}}$.
(3) So for each $\alpha \in \omega_{1}$, there is $q_{\alpha} \leq p$ such that $q_{\alpha} \Vdash \omega \backslash A_{\alpha} \in \dot{\mathcal{U}}$.
(4) Second, note that for $\alpha \neq \beta, q_{\alpha}$ and q_{β} are incompatible, since a common extension would force that $A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}$, but $p \Vdash \omega \backslash\left(A_{\alpha} \cap A_{\beta}\right) \in \dot{\mathcal{U}}$.
(5) Therefore, $\left\{q_{\alpha}: \alpha \in \omega_{1}\right\}$ is an uncountable antichain in the Random forcing, which is impossible.
This proves that $\dot{\mathcal{U}}[p]$ is saturated.
(1) Let $\vec{A}=\left\langle A_{n}: n \in \omega\right\rangle \subseteq \dot{U}[p]$ be a \subseteq-decreasing sequence.
(1) Let $\vec{A}=\left\langle A_{n}: n \in \omega\right\rangle \subseteq \dot{U}[p]$ be a \subseteq-decreasing sequence.
(2) Then p forces there is a pseudointersection of \vec{A} in $\dot{\mathcal{U}}$, that is, there is a function $\dot{f}: \omega \rightarrow \omega$ such that

$$
\bigcup_{n \in \omega} A_{n} \cap \dot{f}(n) \in \dot{\mathcal{U}}
$$

(1) Let $\vec{A}=\left\langle A_{n}: n \in \omega\right\rangle \subseteq \dot{\mathcal{U}}[p]$ be a \subseteq-decreasing sequence.
(2) Then p forces there is a pseudointersection of \vec{A} in $\dot{\mathcal{U}}$, that is, there is a function $\dot{f}: \omega \rightarrow \omega$ such that

$$
\bigcup_{n \in \omega} A_{n} \cap \dot{f}(n) \in \dot{\mathcal{U}}
$$

(3) Since \mathcal{B} is bounding and ccc, there is an increasing function $g: \omega \rightarrow \omega$ in the ground model such that $p \Vdash \dot{f} \leq^{*} g$.
(1) Let $\vec{A}=\left\langle A_{n}: n \in \omega\right\rangle \subseteq \dot{\mathcal{U}}[p]$ be a \subseteq-decreasing sequence.
(2) Then p forces there is a pseudointersection of \vec{A} in $\dot{\mathcal{U}}$, that is, there is a function $\dot{f}: \omega \rightarrow \omega$ such that

$$
\bigcup_{n \in \omega} A_{n} \cap \dot{f}(n) \in \dot{\mathcal{U}}
$$

(3) Since \mathcal{B} is bounding and ccc, there is an increasing function $g: \omega \rightarrow \omega$ in the ground model such that $p \Vdash \dot{f} \leq^{*} g$.
(4) Then we have that $p \Vdash \bigcup_{n \in \omega} A_{n} \cap g(n) \in \dot{\mathcal{U}}$, so $\bigcup_{n \in \omega} A_{n} \cap g(n) \in \dot{\mathcal{U}}[p]$

Lemma
Let \mathcal{U} be a selective ultrafilter and $\dot{\mathcal{V}}$ be a \mathbb{B}-name such that $\mathbb{B} \Vdash \dot{\mathcal{V}}$ is a p-point. Then for all $p \in \mathbb{B}, \mathcal{U}$ and $\dot{\mathcal{V}}[p]$ are not nearly coherent.

Proof.

1 First note that if \mathcal{F} is a filter which is Rudin-Blass above \mathcal{U}, witness by f, then \mathcal{F} can not be extended to a p-point after forcing with \mathbb{B} : otherwise, if \mathcal{V} is a p-point extending \mathcal{F}, then $f(\mathcal{V})$ would be a p-point extending \mathcal{U}, which is not possible by Kunen's theorem.

Proof.

1 First note that if \mathcal{F} is a filter which is Rudin-Blass above \mathcal{U}, witness by f, then \mathcal{F} can not be extended to a p-point after forcing with \mathbb{B} : otherwise, if \mathcal{V} is a p-point extending \mathcal{F}, then $f(\mathcal{V})$ would be a p-point extending \mathcal{U}, which is not possible by Kunen's theorem.
2 Now assume otherwise there is $p_{0} \in \mathbb{B}$ such that \mathcal{U} and $\dot{\mathcal{V}}\left[p_{0}\right]$ are nearly coherent, witnessed by $h: \omega \rightarrow \omega$.

Proof.

1 First note that if \mathcal{F} is a filter which is Rudin-Blass above \mathcal{U}, witness by f, then \mathcal{F} can not be extended to a p-point after forcing with \mathbb{B} : otherwise, if $\dot{\mathcal{V}}$ is a p-point extending \mathcal{F}, then $f(\mathcal{V})$ would be a p-point extending \mathcal{U}, which is not possible by Kunen's theorem.
2 Now assume otherwise there is $p_{0} \in \mathbb{B}$ such that \mathcal{U} and $\dot{\mathcal{V}}\left[p_{0}\right]$ are nearly coherent, witnessed by $h: \omega \rightarrow \omega$.

3 Then we have that $h\left(\dot{\mathcal{V}}\left[p_{0}\right]\right) \subseteq h(\mathcal{U})$.

Proof.

1 First note that if \mathcal{F} is a filter which is Rudin-Blass above \mathcal{U}, witness by f, then \mathcal{F} can not be extended to a p-point after forcing with \mathbb{B} : otherwise, if \mathcal{V} is a p-point extending \mathcal{F}, then $f(\mathcal{V})$ would be a p-point extending \mathcal{U}, which is not possible by Kunen's theorem.
2 Now assume otherwise there is $p_{0} \in \mathbb{B}$ such that \mathcal{U} and $\dot{\mathcal{V}}\left[p_{0}\right]$ are nearly coherent, witnessed by $h: \omega \rightarrow \omega$.

3 Then we have that $h\left(\dot{\mathcal{V}}\left[p_{0}\right]\right) \subseteq h(\mathcal{U})$.
4 By 1 , we have that for all $p \in \mathbb{B}, h(\mathcal{U}) \not \leq_{R B} \dot{\mathcal{V}}[p]$.

Proof.

1 First note that if \mathcal{F} is a filter which is Rudin-Blass above \mathcal{U}, witness by f, then \mathcal{F} can not be extended to a p-point after forcing with \mathbb{B} : otherwise, if \mathcal{V} is a p-point extending \mathcal{F}, then $f(\mathcal{V})$ would be a p-point extending \mathcal{U}, which is not possible by Kunen's theorem.
2 Now assume otherwise there is $p_{0} \in \mathbb{B}$ such that \mathcal{U} and $\dot{\mathcal{V}}\left[p_{0}\right]$ are nearly coherent, witnessed by $h: \omega \rightarrow \omega$.

3 Then we have that $h\left(\dot{\mathcal{V}}\left[p_{0}\right]\right) \subseteq h(\mathcal{U})$.
4 By 1 , we have that for all $p \in \mathbb{B}, h(\mathcal{U}) \not \leq_{R B} \dot{\mathcal{V}}[p]$.
5 Then, for all $p \leq p_{0}$, there is $A_{p} \in h(\mathcal{U})$ such that $h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}[p]$.

Proof.

1 First note that if \mathcal{F} is a filter which is Rudin-Blass above \mathcal{U}, witness by f, then \mathcal{F} can not be extended to a p-point after forcing with \mathbb{B} : otherwise, if \mathcal{V} is a p-point extending \mathcal{F}, then $f(\mathcal{V})$ would be a p-point extending \mathcal{U}, which is not possible by Kunen's theorem.
2 Now assume otherwise there is $p_{0} \in \mathbb{B}$ such that \mathcal{U} and $\dot{\mathcal{V}}\left[p_{0}\right]$ are nearly coherent, witnessed by $h: \omega \rightarrow \omega$.
3 Then we have that $h\left(\dot{\mathcal{V}}\left[p_{0}\right]\right) \subseteq h(\mathcal{U})$.
4 By 1 , we have that for all $p \in \mathbb{B}, h(\mathcal{U}) \not \leq_{R B} \dot{\mathcal{V}}[p]$.
5 Then, for all $p \leq p_{0}$, there is $A_{p} \in h(\mathcal{U})$ such that $h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}[p]$.
6 By definition of $\dot{\mathcal{V}}\left[p_{0}\right]$, for each $q \leq p$, there is $q \leq p$ such that $q \Vdash h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}$.

Proof.

1 First note that if \mathcal{F} is a filter which is Rudin-Blass above \mathcal{U}, witness by f, then \mathcal{F} can not be extended to a p-point after forcing with \mathbb{B} : otherwise, if \mathcal{V} is a p-point extending \mathcal{F}, then $f(\mathcal{V})$ would be a p-point extending \mathcal{U}, which is not possible by Kunen's theorem.
2 Now assume otherwise there is $p_{0} \in \mathbb{B}$ such that \mathcal{U} and $\dot{\mathcal{V}}\left[p_{0}\right]$ are nearly coherent, witnessed by $h: \omega \rightarrow \omega$.
3 Then we have that $h\left(\dot{\mathcal{V}}\left[p_{0}\right]\right) \subseteq h(\mathcal{U})$.
4 By 1 , we have that for all $p \in \mathbb{B}, h(\mathcal{U}) \not \leq_{R B} \dot{\mathcal{V}}[p]$.
5 Then, for all $p \leq p_{0}$, there is $A_{p} \in h(\mathcal{U})$ such that $h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}[p]$.
6 By definition of $\dot{\mathcal{V}}\left[p_{0}\right]$, for each $q \leq p$, there is $q \leq p$ such that $q \Vdash h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}$.
7 Then $D=\left\{p \leq p_{0}:(\exists A \in h(\mathcal{U}))\left(p \Vdash h^{-1}[A] \notin \dot{\mathcal{V}}\right)\right\}$ is dense below p_{0}.

8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_{0}, and for each $p \in \mathcal{A}$, let $A_{p} \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}$.

8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_{0}, and for each $p \in \mathcal{A}$, let $A_{p} \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}$.
$9 \mathcal{A}$ is countable, so there is $X \in h(\mathcal{U})$ such that $X \subseteq^{*} A_{p}$, for all $p \in \mathcal{A}$.

8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_{0}, and for each $p \in \mathcal{A}$, let $A_{p} \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}$.
$9 \mathcal{A}$ is countable, so there is $X \in h(\mathcal{U})$ such that $X \subseteq^{*} A_{p}$, for all $p \in \mathcal{A}$.
10 It follows that $p \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$, for all $p \in \mathcal{A}$, otherwise, we would have for some $p \in \mathcal{A}$, there exist $q \leq p$ such that $q \Vdash h^{-1}\left[A_{p}\right] \in \dot{\mathcal{V}}$, which is a contradiction.

8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_{0}, and for each $p \in \mathcal{A}$, let $A_{p} \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}$.
$9 \mathcal{A}$ is countable, so there is $X \in h(\mathcal{U})$ such that $X \subseteq^{*} A_{p}$, for all $p \in \mathcal{A}$.
10 It follows that $p \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$, for all $p \in \mathcal{A}$, otherwise, we would have for some $p \in \mathcal{A}$, there exist $q \leq p$ such that $q \Vdash h^{-1}\left[A_{p}\right] \in \dot{\mathcal{V}}$, which is a contradiction.
11 Since \mathcal{A} is a maximal antichain below p_{0}, it follows that $p_{0} \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$.

8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_{0}, and for each $p \in \mathcal{A}$, let $A_{p} \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}$.
$9 \mathcal{A}$ is countable, so there is $X \in h(\mathcal{U})$ such that $X \subseteq^{*} A_{p}$, for all $p \in \mathcal{A}$.
10 It follows that $p \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$, for all $p \in \mathcal{A}$, otherwise, we would have for some $p \in \mathcal{A}$, there exist $q \leq p$ such that $q \Vdash h^{-1}\left[A_{p}\right] \in \dot{\mathcal{V}}$, which is a contradiction.
11 Since \mathcal{A} is a maximal antichain below p_{0}, it follows that $p_{0} \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$.
12 This means that $p_{0} \Vdash \omega \backslash h^{-1}[X] \in \dot{\mathcal{V}}$, so $\omega \backslash h^{-1}[X] \in \dot{\mathcal{V}}$.

8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_{0}, and for each $p \in \mathcal{A}$, let $A_{p} \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}\left[A_{p}\right] \notin \dot{\mathcal{V}}$.
$9 \mathcal{A}$ is countable, so there is $X \in h(\mathcal{U})$ such that $X \subseteq^{*} A_{p}$, for all $p \in \mathcal{A}$.
10 It follows that $p \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$, for all $p \in \mathcal{A}$, otherwise, we would have for some $p \in \mathcal{A}$, there exist $q \leq p$ such that $q \Vdash h^{-1}\left[A_{p}\right] \in \dot{\mathcal{V}}$, which is a contradiction.
11 Since \mathcal{A} is a maximal antichain below p_{0}, it follows that $p_{0} \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$.
12 This means that $p_{0} \Vdash \omega \backslash h^{-1}[X] \in \dot{\mathcal{V}}$, so $\omega \backslash h^{-1}[X] \in \dot{\mathcal{V}}$.
13 Thus, we have $X \in h(\mathcal{U})$ and $\omega \backslash X \in h\left(\dot{\mathcal{V}}\left[p_{0}\right]\right)$, which contradicts our initial assumption of $h\left(\mathcal{V}\left[p_{0}\right]\right) \subseteq h(\mathcal{U})$.

Theorem(P. Borodulin-Nadzieja, C., A. Morawski) If ZFC is consistent, then there is a model such that:
(1) There is a p-measure.
(2) There is no p-point.
(3) No p-measure is a Dirac measure neither an ultrafilter density.
(4) $2^{\aleph_{0}}=\kappa$ for a predetermined regular cardinal $\kappa \geq \omega_{2}$.
(1) Assume V is a model of $\mathrm{ZFC}+\mathrm{CH}+\diamond(\mathrm{S})$, where $S \subseteq \omega_{2}$ is stationary.
(1) Assume V is a model of $\mathrm{ZFC}+\mathrm{CH}+\diamond(\mathrm{S})$, where $S \subseteq \omega_{2}$ is stationary. (2) Let $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ be a $\diamond(S)$-guessing sequence.
(1) Assume V is a model of ZFC $+\mathrm{CH}+\diamond(\mathrm{S})$, where $S \subseteq \omega_{2}$ is stationary. (2) Let $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ be a $\diamond(S)$-guessing sequence.
(3) Let $\kappa \geq \omega_{2}$ be an uncountable regular cardinal.
(1) Assume V is a model of $\mathrm{ZFC}+\mathrm{CH}+\diamond(\mathrm{S})$, where $S \subseteq \omega_{2}$ is stationary.
(2) Let $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ be a $\diamond(S)$-guessing sequence.
(3) Let $\kappa \geq \omega_{2}$ be an uncountable regular cardinal.
(4) Let \mathcal{U}_{0} be a selective ultrafilter and \mathcal{U}_{1} a p-point which is not Rudin-Blass above \mathcal{U}_{0}.
(1) Assume V is a model of $\mathrm{ZFC}+\mathrm{CH}+\diamond(\mathrm{S})$, where $S \subseteq \omega_{2}$ is stationary.
(2) Let $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ be a $\diamond(S)$-guessing sequence.
(3) Let $\kappa \geq \omega_{2}$ be an uncountable regular cardinal.
(4) Let \mathcal{U}_{0} be a selective ultrafilter and \mathcal{U}_{1} a p-point which is not Rudin-Blass above \mathcal{U}_{0}.
(5) Define a countable support iteration $\mathbb{P}_{\omega_{2}}=\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\omega_{2}\right\rangle$ as follows:
(1) Assume V is a model of $\mathrm{ZFC}+\mathrm{CH}+\diamond(\mathrm{S})$, where $S \subseteq \omega_{2}$ is stationary.
(2) Let $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ be a $\diamond(S)$-guessing sequence.
(3) Let $\kappa \geq \omega_{2}$ be an uncountable regular cardinal.
(4) Let \mathcal{U}_{0} be a selective ultrafilter and \mathcal{U}_{1} a p-point which is not Rudin-Blass above \mathcal{U}_{0}.
(5) Define a countable support iteration $\mathbb{P}_{\omega_{2}}=\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\omega_{2}\right\rangle$ as follows:
i) $P_{0}=S P\left(\mathcal{U}_{1}\right)$.
(1) Assume V is a model of $\mathrm{ZFC}+\mathrm{CH}+\diamond(S)$, where $S \subseteq \omega_{2}$ is stationary.
(2) Let $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ be a $\diamond(S)$-guessing sequence.
(3) Let $\kappa \geq \omega_{2}$ be an uncountable regular cardinal.
(4) Let \mathcal{U}_{0} be a selective ultrafilter and \mathcal{U}_{1} a p-point which is not Rudin-Blass above \mathcal{U}_{0}.
(5) Define a countable support iteration $\mathbb{P}_{\omega_{2}}=\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\omega_{2}\right\rangle$ as follows:
i) $P_{0}=S P\left(\mathcal{U}_{1}\right)$.
ii) If $\alpha \notin S$, define $\dot{\mathbb{Q}}_{\alpha}$ to be the trivial forcing.
(1) Assume V is a model of $\mathrm{ZFC}+\mathrm{CH}+\diamond(\mathrm{S})$, where $S \subseteq \omega_{2}$ is stationary.
(2) Let $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ be a $\diamond(S)$-guessing sequence.
(3) Let $\kappa \geq \omega_{2}$ be an uncountable regular cardinal.
(4) Let \mathcal{U}_{0} be a selective ultrafilter and \mathcal{U}_{1} a p-point which is not Rudin-Blass above \mathcal{U}_{0}.
(5) Define a countable support iteration $\mathbb{P}_{\omega_{2}}=\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\omega_{2}\right\rangle$ as follows:
i) $P_{0}=S P\left(\mathcal{U}_{1}\right)$.
ii) If $\alpha \notin S$, define $\dot{\mathbb{Q}}_{\alpha}$ to be the trivial forcing.
iii) If $\alpha \in S$, and A_{α} codifies and \mathbb{P}_{α}-name for a saturated p-filter $\dot{\mathcal{F}}$ which is not nearly coherent with \mathcal{U}_{0}, define $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha}=S P(\dot{\mathcal{F}})$; otherwise, let $\dot{\mathbb{Q}}_{\alpha}$ be the trivial forcing.
(1) Assume V is a model of $\mathrm{ZFC}+\mathrm{CH}+\diamond(\mathrm{S})$, where $S \subseteq \omega_{2}$ is stationary.
(2) Let $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ be a $\diamond(S)$-guessing sequence.
(3) Let $\kappa \geq \omega_{2}$ be an uncountable regular cardinal.
(4) Let \mathcal{U}_{0} be a selective ultrafilter and \mathcal{U}_{1} a p-point which is not Rudin-Blass above \mathcal{U}_{0}.
(5) Define a countable support iteration $\mathbb{P}_{\omega_{2}}=\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\omega_{2}\right\rangle$ as follows:
i) $P_{0}=S P\left(\mathcal{U}_{1}\right)$.
ii) If $\alpha \notin S$, define $\dot{\mathbb{Q}}_{\alpha}$ to be the trivial forcing.
iii) If $\alpha \in S$, and A_{α} codifies and \mathbb{P}_{α}-name for a saturated p-filter $\dot{\mathcal{F}}$ which is not nearly coherent with \mathcal{U}_{0}, define $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha}=S P(\dot{\mathcal{F}})$; otherwise, let $\dot{\mathbb{Q}}_{\alpha}$ be the trivial forcing.
(1) Assume V is a model of $\mathrm{ZFC}+\mathrm{CH}+\diamond(\mathrm{S})$, where $S \subseteq \omega_{2}$ is stationary.
(2) Let $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ be a $\diamond(S)$-guessing sequence.
(3) Let $\kappa \geq \omega_{2}$ be an uncountable regular cardinal.
(4) Let \mathcal{U}_{0} be a selective ultrafilter and \mathcal{U}_{1} a p-point which is not Rudin-Blass above \mathcal{U}_{0}.
(5) Define a countable support iteration $\mathbb{P}_{\omega_{2}}=\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha}: \alpha<\omega_{2}\right\rangle$ as follows:
i) $P_{0}=S P\left(\mathcal{U}_{1}\right)$.
ii) If $\alpha \notin S$, define $\dot{\mathbb{Q}}_{\alpha}$ to be the trivial forcing.
iii) If $\alpha \in S$, and A_{α} codifies and \mathbb{P}_{α}-name for a saturated p-filter $\dot{\mathcal{F}}$ which is not nearly coherent with \mathcal{U}_{0}, define $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha}=S P(\dot{\mathcal{F}})$; otherwise, let $\dot{\mathbb{Q}}_{\alpha}$ be the trivial forcing.

Then define $\mathbb{P}=\mathbb{P}_{\omega_{2}} * \dot{\mathbb{B}}_{\kappa}$. The model is $V[G * H]$, where $G * H$ is \mathbb{P}-generic over V.
(1) Since $\mathbb{P}_{\omega_{2}}$ is bounding, proper and preserves $\mathcal{U}_{0}, \mathcal{U}_{0}$ remains as a selective ultrafilter in $V[G]$, so by P. Borodulin-Nadzieja-Sobota theorem, there is a p-measure in $V[G * H]$.
(1) Since $\mathbb{P}_{\omega_{2}}$ is bounding, proper and preserves $\mathcal{U}_{0}, \mathcal{U}_{0}$ remains as a selective ultrafilter in $V[G]$, so by P. Borodulin-Nadzieja-Sobota theorem, there is a p-measure in $V[G * H]$.
(2) Assume there is a p-point in $V[G * H]$, say $\dot{\mathcal{F}}$. Then by one of the previous lemmas $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ is a saturated filter forced to be a subfilter of $\dot{\mathcal{F}}$.
(1) Since $\mathbb{P}_{\omega_{2}}$ is bounding, proper and preserves $\mathcal{U}_{0}, \mathcal{U}_{0}$ remains as a selective ultrafilter in $V[G]$, so by P. Borodulin-Nadzieja-Sobota theorem, there is a p-measure in $V[G * H]$.
(2) Assume there is a p-point in $V[G * H]$, say $\dot{\mathcal{F}}$. Then by one of the previous lemmas $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ is a saturated filter forced to be a subfilter of $\dot{\mathcal{F}}$.
(3) Then $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ and \mathcal{U}_{0} are not nearly coherent.
(1) Since $\mathbb{P}_{\omega_{2}}$ is bounding, proper and preserves $\mathcal{U}_{0}, \mathcal{U}_{0}$ remains as a selective ultrafilter in $V[G]$, so by P. Borodulin-Nadzieja-Sobota theorem, there is a p-measure in $V[G * H]$.
(2) Assume there is a p-point in $V[G * H]$, say $\dot{\mathcal{F}}$. Then by one of the previous lemmas $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ is a saturated filter forced to be a subfilter of $\dot{\mathcal{F}}$.
(3) Then $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ and \mathcal{U}_{0} are not nearly coherent.
(4) Then there is a club subset $C \subseteq \omega_{2}$ on which $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ reflects as a saturated filter which is not nearly coherent with \mathcal{U}_{0}.
(1) Since $\mathbb{P}_{\omega_{2}}$ is bounding, proper and preserves $\mathcal{U}_{0}, \mathcal{U}_{0}$ remains as a selective ultrafilter in $V[G]$, so by P. Borodulin-Nadzieja-Sobota theorem, there is a p-measure in $V[G * H]$.
(2) Assume there is a p-point in $V[G * H]$, say $\dot{\mathcal{F}}$. Then by one of the previous lemmas $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ is a saturated filter forced to be a subfilter of $\dot{\mathcal{F}}$.
(3) Then $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ and \mathcal{U}_{0} are not nearly coherent.
(4) Then there is a club subset $C \subseteq \omega_{2}$ on which $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ reflects as a saturated filter which is not nearly coherent with \mathcal{U}_{0}.
(5) Since $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ is a $\diamond(S)$-guessing sequence, there is $\alpha \in S \cap C$ such that A_{α} guesses $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ at α.
(1) Since $\mathbb{P}_{\omega_{2}}$ is bounding, proper and preserves $\mathcal{U}_{0}, \mathcal{U}_{0}$ remains as a selective ultrafilter in $V[G]$, so by P. Borodulin-Nadzieja-Sobota theorem, there is a p-measure in $V[G * H]$.
(2) Assume there is a p-point in $V[G * H]$, say $\dot{\mathcal{F}}$. Then by one of the previous lemmas $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ is a saturated filter forced to be a subfilter of $\dot{\mathcal{F}}$.
(3) Then $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ and \mathcal{U}_{0} are not nearly coherent.
(4) Then there is a club subset $C \subseteq \omega_{2}$ on which $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ reflects as a saturated filter which is not nearly coherent with \mathcal{U}_{0}.
(5) Since $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ is a $\diamond(S)$-guessing sequence, there is $\alpha \in S \cap C$ such that A_{α} guesses $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ at α.
(6 Then $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha}=S P\left(A_{\alpha}\right)$, and $\mathbb{P}_{\alpha+1}$ forces that $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ can not be extended to a p-point in further bounding extensions.
(1) Since $\mathbb{P}_{\omega_{2}}$ is bounding, proper and preserves $\mathcal{U}_{0}, \mathcal{U}_{0}$ remains as a selective ultrafilter in $V[G]$, so by P. Borodulin-Nadzieja-Sobota theorem, there is a p-measure in $V[G * H]$.
(2) Assume there is a p-point in $V[G * H]$, say $\dot{\mathcal{F}}$. Then by one of the previous lemmas $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ is a saturated filter forced to be a subfilter of $\dot{\mathcal{F}}$.
(3) Then $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ and \mathcal{U}_{0} are not nearly coherent.
(4) Then there is a club subset $C \subseteq \omega_{2}$ on which $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ reflects as a saturated filter which is not nearly coherent with \mathcal{U}_{0}.
(5) Since $\left\langle A_{\alpha}: \alpha \in S\right\rangle$ is a $\diamond(S)$-guessing sequence, there is $\alpha \in S \cap C$ such that A_{α} guesses $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ at α.
(6 Then $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha}=S P\left(A_{\alpha}\right)$, and $\mathbb{P}_{\alpha+1}$ forces that $\dot{\mathcal{F}}\left[1_{\mathbb{B}}\right]$ can not be extended to a p-point in further bounding extensions.
(7) Then, $\dot{\mathcal{F}}$ can not be a p-point.

Thank you very much!

