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Definition.
A measure on w is a function p : P(w) — [0, 1] such that:

0 u(0)=o0.

@® o is finitely additive, i. e., A, B € P(w) such that AN B =0,
P(AUB) = p(A) + ¢(B).

©® ¢ vanishes at points, i. e., p({n}) =0 for all n € w.

Examples:

® An ultrafilter U defines a two valued measure: &, (A) =1if A€ U and
0u(A)=0if A¢U. Thisis the Dirac delta at U.

® Taking suitable U/-limits gives another measure: for A C w, define
ha(n) = |AN n|/n. Then

dy(A) = U — lim(ha(n) : n € w)

It is easy to see that dj; extends asymptotic density.
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Let 1 be a measure on w. We say that u is a p-measure(AP-measure or has
AP-property), if for any C-decreasing sequence (A, : n € w) C P(w), there is
B € P(w) such that:

® BC*A, forall new.

@ 1(B) = limy00 1(An)-

Examples:
@ Let U be a p-point, then &, is a two valued p-measure.
@ Let U be a p-point, then dj; is a p-measure.
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Question. Does ZFC proves the existence of p-measures?

Theorem(A. Mekler, 1984)

It is consistent that there is no p-measure.

Proof.

@ Make a countable support iteration of length w» such that each step is of the
form G(F¥), where F = {A C w: u(A) =1}, where p is a measure on w,

® Make sure that F,, appears at some step of the iteration for all x which
appears along the iteration.

® Forcing with G(F“) forces the existence of a C-decreasing sequence for which
all pseudointersection has measure 0.

O This property is preserved along the iteration by the w“-bounding property of
the steps(once a p-measure is killed, it does not resurrect).
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Remark. In Mekler's model there is no p-point.

Question. Does the existence of p-measures imply the existence of p-points?

Theorem(J. Grebik, 2019)

If there is an ultrafilter U such that dj; is a p-measure, then there is a p-point. In
fact, there is f : w — w finite to one such that f (i) is a p-point.

Theorem(P. Borodulin-Nadzieja, D. Sobota, 2023)

If there is a p-point in the ground model, then after adding any number of random
reals there is a p-measure.

Remark. The measure in the previous theorem still uses a p-point in its definition,
although not so direct as in the U-limit.



Theorem(P. Borodulin-Nadzieja, C., A. Morawski)

It is consistent that there is a p-measure, there is no p-point, and 2% is arbitrarily
large. Moreover, it is consitent that no p-measure is a Dirac measure neither an
ultrafilter density.
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Three main ingredients in the proof:

Theorem(K. Kunen)

If U is a selective ultrafilter, then after forcing with B, U can not be extended to a
p-point.

Theorem(S. Shelah)

It is consistent that there is only one p-point(up to permutation), which, therefore,
should be a selective ultrafilter.

Theorem(P. Borodulin-Nadzieja, D. Sobota)
If there is a p-point in the ground model, then there is a p-measure after forcing
with B,.

Forcing with Random over Shelah’'s model? That's almost the case, we need a
natural modification of Shelah’s model as in the case of Mekler's model.
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Definition(A. Blass, 1986).

Two filters U, F are said to be nearly coherent if there is a finite to one function
f 1w — w such that f(U) U f(F) generates a filter.

Remarks.
@ If Fo, F1 are nearly coherent ultrafilters via the function f, then
f(Fo) = f(F1).
® If Fo is an ultrafilter an F7 is just a filter, then they are nearly coherent if and
only if there is a finite to one function such that f(F;) C f(Fp).
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Definition(S. Shelah)

Let Fo and Fi be two filters on w. The game G(Fo, F1) between Player | and
Player Il is defined as:

® At stages j = 0(mod 4), Player | plays a set A; € Fo.
® At the next stage, Player |l answers with a; € A;.
© At stages j = 2(mod 4), Player | plays a set B; € Fj.
O At the next stage, Player Il answers with F; € [Bj]<“.
Player Il wins if and only if {a, : n € w} € Fp and |J F, € Fi.
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Lemma(S. Shelah)

If Fo is a selective ultrafiler, F7 is a p-point, and they are not nearly coherent, then
Player | has no winning strategy in the game G(Fo, F1).



Lemma(S. Shelah)

If Fo is a selective ultrafiler, F7 is a p-point, and they are not nearly coherent, then
Player | has no winning strategy in the game G(Fo, F1).

This lemma needs still works if instead of F7 being just p-filter instead of a p-point.
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Theorem(S. Shelah)
Let U be a p-point. There is a forcing SP(U/) having the following properties:

® SP(U) is proper and w*“-bounding.

® If Q is a P(U/)-name for a proper w“-bounding forcing, then SP(Uf) x Q forces
that U can not be extended to a p-point.

© If V is a selective ultrafilter which is not nearly coherent with ¢, then SP(U/)

preserves V as an ultrafilter.

It turns out that in the previous theorem it is enough to require I/ to be a

non-meager p-filter to get properties 1-3.
The proof of 1) and 2) makes use of the p-filter game.
In the proof of 3) we use the previous lemma about the game G(V,U).
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Definition. .
Let B be the random forcing and U/ a B-name for an ultrafilter. For p € B, define
Ulp| ={ACw:plFAcU}.

Lemma _
IfU is a B-name for a p-point, then U[p] is a saturated filter for any p € B.

Recall that a filter is F if the quotient P(w)/F is ccc. Equivalently, if A C F is
such that for any different A, B € A AN B € F*, then A is countable.
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Proof.

@ Assume otherwise U[p] is not saturated and let (Ao €wr) C Ulp] be such
that for any different o, 8 € w1, Ay N Ag € U[p]*.

@ First note that X ¢ U[p] if and only if there is a condition g < p such that
glFw\XelU.

©® So for each a € wy, there is g, < p such that g, IFw\ A, € U.

O Second, note that for a # 3, g, and g are incompatible, since a common
extension would force that A, N Az €U, but pl-w\ (A, N Ag) € U.

@ Therefore, {g, : @ € w1} is an uncountable antichain in the Random forcing,
which is impossible.

This proves that U[p] is saturated. O



@ Let A= (A,: new) CU[p] be a C-decreasing sequence.
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® Let A= (Ap:new)C Z/'{[p] be a C-decreasing sequence.

® Then p forces there is a pseudointersection of Ain U, that is, there is a
function f : w — w such that

UAnﬂf(n)EU

new

© Since B is bounding and ccc, there is an increasing function g : w — w in the
ground model such that pI- f <* g.

@ Then we have that p - U, AN g(n) € U, so U, AnN g(n) € U[p]



Lemma _ _
Let U be a selective ultrafilter and V be a B-name such that B |-V is a p-point.
Then for all p € B, U and V[p] are not nearly coherent.
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coherent, witnessed by h: w — w.
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First note that if F is a filter which is Rudin-Blass above U, witness by f, then
F can not be extended to a p-point after forcing with B: otherwise, if V is a
p-point extending F, then 7()) would be a p-point extending U, which is not
possible by Kunen's theorem.

Now assume otherwise there is py € B such that 2/ and V[po] are nearly
coherent, witnessed by h: w — w.

Then we have that h(V[po]) C h(U).

By 1, we have that for all p € B, h(U) £rs V[p).

Then, for all p < po, there is A, € h(U) such that h=1[A,] ¢ V[p].

By definition of_V[po], for each g < p, there is g < p such that

qlFh A ¢ V.

Then D = {p < po : (3A € h(UU))(p IF h~[A] ¢ V)} is dense below py.
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Let A C D be a maximal antichain below po, and for each p € A, let

A, € h(U) be such that p I h71[A,] & V.

A is countable, so there is X € h(U) such that X C* A, for all p € A.

It follows that p IF h=1[X] ¢ V, for all p € A, otherwise, we would have for
some p € A, there exist g < p such that q IF h™1[A,] € V, which is a
contradiction.

Since A is a maximal antichain below py, it follows that pg IF h=[X] ¢ V.
This means that pg IF w\ h~1[X] € V, so w \ h~1[X] € V.

Thus, we have X € h(U/) and w\ X € h(V[po]), which contradicts our initial
assumption of h(V[po]) C h(U).



Theorem(P. Borodulin-Nadzieja, C., A. Morawski)
If ZFC is consistent, then there is a model such that:
@ There is a p-measure.
® There is no p-point.
© No p-measure is a Dirac measure neither an ultrafilter density.

0O 2% = k for a predetermined regular cardinal k > ws.
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@ Assume V is a model of ZFC 4+ CH + {(S), where S C wy is stationary.
@ Let (A, :a € S) be a {(S)-guessing sequence.
© Let k > wo be an uncountable regular cardinal.
O Let Uy be a selective ultrafilter and U7 a p-point which is not Rudin-Blass
above U.
@ Define a countable support iteration Py, = (Pq, Qa s < wy) as follows:
i) Po=SP(lh).
i) If a ¢S, define Q, to be the trivial forcing. _
i) If a € S, and A, codifies and P,-name for a saturated p-filter F which is not

nearly coherent with Uy, define P, I+ Q, = SP(j'); otherwise, let Q, be the
trivial forcing.

Then define P = P, * B,.. The model is V[G * H], where G % H is P-generic
over V.
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® Since P, is bounding, proper and preserves Uy, Uy remains as a selective
ultrafilter in V[G], so by P. Borodulin-Nadzieja-Sobota theorem, there is a
p-measure in V[G * H].

@® Assume there is a p-point in V[G x H], say F. Then by one of the previous
lemmas F[1p] is a saturated filter forced to be a subfilter of F.
© Then F[l1g] and Uy are not nearly coherent.

® Then there is a club subset C C wy on which f[lB] reflects as a saturated
filter which is not nearly coherent with Uj.

® Since (A, 1 a € S) is a O(S)-guessing sequence, there is a € SN C such that
A, guesses F[1g] at a.

® Then P, IFQ, = SP(A,), and P41 forces that .7'-'[113] can not be extended to
a p-point in further bounding extensions.

@ Then, F can not be a p-point.



Thank you very much!
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