A model with *p*-measures and no *p*-point

Jonathan Cancino-Manríquez Joint work with P. Borodulin-Nadzieja and A. Morawski

Institute of Mathematics of the Czech Academy of Sciences cancino@math.cas.cz

January 30, 2024 Hejnice, Czech Republic

A measure on ω is a function $\mu : \mathcal{P}(\omega) \rightarrow [0,1]$ such that:

 $(\emptyset) = 0.$

A measure on ω is a function $\mu : \mathcal{P}(\omega) \to [0, 1]$ such that:

 $(\emptyset) = 0.$

2 φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B = \emptyset$, $\varphi(A \cup B) = \varphi(A) + \varphi(B)$.

A measure on ω is a function $\mu : \mathcal{P}(\omega) \to [0, 1]$ such that:

1 $\mu(\emptyset) = 0.$

2 φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B = \emptyset$, $\varphi(A \cup B) = \varphi(A) + \varphi(B)$.

3 φ vanishes at points, i. e., $\varphi(\{n\}) = 0$ for all $n \in \omega$.

A measure on ω is a function $\mu : \mathcal{P}(\omega) \to [0, 1]$ such that:

1 $\mu(\emptyset) = 0.$

2 φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B = \emptyset$, $\varphi(A \cup B) = \varphi(A) + \varphi(B)$.

3 φ vanishes at points, i. e., $\varphi(\{n\}) = 0$ for all $n \in \omega$.

A measure on ω is a function $\mu : \mathcal{P}(\omega) \to [0, 1]$ such that:

1 $\mu(\emptyset) = 0.$

- 2 φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B = \emptyset$, $\varphi(A \cup B) = \varphi(A) + \varphi(B)$.
- **3** φ vanishes at points, i. e., $\varphi(\{n\}) = 0$ for all $n \in \omega$.

Examples:

1 An ultrafilter \mathcal{U} defines a two valued measure: $\delta_{\mathcal{U}}(A) = 1$ if $A \in \mathcal{U}$ and $\delta_{\mathcal{U}}(A) = 0$ if $A \notin \mathcal{U}$. This is the Dirac delta at \mathcal{U} .

A measure on ω is a function $\mu : \mathcal{P}(\omega) \to [0, 1]$ such that:

1 $\mu(\emptyset) = 0.$

- 2 φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B = \emptyset$, $\varphi(A \cup B) = \varphi(A) + \varphi(B)$.
- **3** φ vanishes at points, i. e., $\varphi(\{n\}) = 0$ for all $n \in \omega$.

Examples:

1 An ultrafilter \mathcal{U} defines a two valued measure: $\delta_{\mathcal{U}}(A) = 1$ if $A \in \mathcal{U}$ and $\delta_{\mathcal{U}}(A) = 0$ if $A \notin \mathcal{U}$. This is the Dirac delta at \mathcal{U} .

2 Taking suitable U-limits gives another measure: for $A \subseteq \omega$, define $h_A(n) = |A \cap n|/n$. Then

$$d_{\mathcal{U}}(A) = \mathcal{U} - \lim \langle h_A(n) : n \in \omega \rangle$$

A measure on ω is a function $\mu : \mathcal{P}(\omega) \to [0, 1]$ such that:

1 $\mu(\emptyset) = 0.$

- 2 φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B = \emptyset$, $\varphi(A \cup B) = \varphi(A) + \varphi(B)$.
- **3** φ vanishes at points, i. e., $\varphi(\{n\}) = 0$ for all $n \in \omega$.

Examples:

1 An ultrafilter \mathcal{U} defines a two valued measure: $\delta_{\mathcal{U}}(A) = 1$ if $A \in \mathcal{U}$ and $\delta_{\mathcal{U}}(A) = 0$ if $A \notin \mathcal{U}$. This is the Dirac delta at \mathcal{U} .

2 Taking suitable U-limits gives another measure: for $A \subseteq \omega$, define $h_A(n) = |A \cap n|/n$. Then

$$d_{\mathcal{U}}(A) = \mathcal{U} - \lim \langle h_A(n) : n \in \omega \rangle$$

A measure on ω is a function $\mu : \mathcal{P}(\omega) \to [0, 1]$ such that:

1 $\mu(\emptyset) = 0.$

- 2 φ is finitely additive, i. e., $A, B \in \mathbb{P}(\omega)$ such that $A \cap B = \emptyset$, $\varphi(A \cup B) = \varphi(A) + \varphi(B)$.
- **3** φ vanishes at points, i. e., $\varphi(\{n\}) = 0$ for all $n \in \omega$.

Examples:

1 An ultrafilter \mathcal{U} defines a two valued measure: $\delta_{\mathcal{U}}(A) = 1$ if $A \in \mathcal{U}$ and $\delta_{\mathcal{U}}(A) = 0$ if $A \notin \mathcal{U}$. This is the Dirac delta at \mathcal{U} .

2 Taking suitable U-limits gives another measure: for $A \subseteq \omega$, define $h_A(n) = |A \cap n|/n$. Then

$$d_{\mathcal{U}}(A) = \mathcal{U} - \lim \langle h_A(n) : n \in \omega \rangle$$

It is easy to see that $d_{\mathcal{U}}$ extends asymptotic density.

Let μ be a measure on ω . We say that μ is a *p*-measure(*AP*-measure or has *AP*-property), if for any \subseteq -decreasing sequence $\langle A_n : n \in \omega \rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let μ be a measure on ω . We say that μ is a *p*-measure(*AP*-measure or has *AP*-property), if for any \subseteq -decreasing sequence $\langle A_n : n \in \omega \rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:

1 $B \subseteq^* A_n$ for all $n \in \omega$.

Let μ be a measure on ω . We say that μ is a *p*-measure(*AP*-measure or has *AP*-property), if for any \subseteq -decreasing sequence $\langle A_n : n \in \omega \rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- **1** $B \subseteq^* A_n$ for all $n \in \omega$.
- $(a) = \lim_{n \to \infty} \mu(A_n).$

Let μ be a measure on ω . We say that μ is a *p*-measure(*AP*-measure or has *AP*-property), if for any \subseteq -decreasing sequence $\langle A_n : n \in \omega \rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- **1** $B \subseteq^* A_n$ for all $n \in \omega$.
- $(a) = \lim_{n \to \infty} \mu(A_n).$

Let μ be a measure on ω . We say that μ is a *p*-measure(*AP*-measure or has *AP*-property), if for any \subseteq -decreasing sequence $\langle A_n : n \in \omega \rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

1 $B \subseteq^* A_n$ for all $n \in \omega$. **2** $\mu(B) = \lim_{n \to \infty} \mu(A_n)$.

Examples:

1 Let \mathcal{U} be a *p*-point, then $\delta_{\mathcal{U}}$ is a two valued *p*-measure.

Let μ be a measure on ω . We say that μ is a *p*-measure(*AP*-measure or has *AP*-property), if for any \subseteq -decreasing sequence $\langle A_n : n \in \omega \rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

1 $B \subseteq^* A_n$ for all $n \in \omega$. **2** $\mu(B) = \lim_{n \to \infty} \mu(A_n)$.

Examples:

- **1** Let \mathcal{U} be a *p*-point, then $\delta_{\mathcal{U}}$ is a two valued *p*-measure.
- **2** Let \mathcal{U} be a *p*-point, then $d_{\mathcal{U}}$ is a *p*-measure.

Let μ be a measure on ω . We say that μ is a *p*-measure(*AP*-measure or has *AP*-property), if for any \subseteq -decreasing sequence $\langle A_n : n \in \omega \rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

1 $B \subseteq^* A_n$ for all $n \in \omega$. **2** $\mu(B) = \lim_{n \to \infty} \mu(A_n)$.

Examples:

- **1** Let \mathcal{U} be a *p*-point, then $\delta_{\mathcal{U}}$ is a two valued *p*-measure.
- **2** Let \mathcal{U} be a *p*-point, then $d_{\mathcal{U}}$ is a *p*-measure.

Let μ be a measure on ω . We say that μ is a *p*-measure(*AP*-measure or has *AP*-property), if for any \subseteq -decreasing sequence $\langle A_n : n \in \omega \rangle \subseteq \mathcal{P}(\omega)$, there is $B \in \mathcal{P}(\omega)$ such that:

1 $B \subseteq^* A_n$ for all $n \in \omega$. **2** $\mu(B) = \lim_{n \to \infty} \mu(A_n)$.

Examples:

- **1** Let \mathcal{U} be a *p*-point, then $\delta_{\mathcal{U}}$ is a two valued *p*-measure.
- **2** Let \mathcal{U} be a *p*-point, then $d_{\mathcal{U}}$ is a *p*-measure.

Remark. The existence of *p*-points implies the existence of *p*-measures.

Theorem(A. Mekler, 1984)

It is consistent that there is no *p*-measure.

Theorem(A. Mekler, 1984)

It is consistent that there is no *p*-measure.

Proof.

Theorem(A. Mekler, 1984)

It is consistent that there is no *p*-measure.

Proof.

1 Make a countable support iteration of length ω_2 such that each step is of the form $\mathcal{G}(\mathcal{F}^{\omega})$, where $\mathcal{F} = \{A \subseteq \omega : \mu(A) = 1\}$, where μ is a measure on ω ,

Theorem(A. Mekler, 1984)

It is consistent that there is no *p*-measure.

Proof.

1 Make a countable support iteration of length ω_2 such that each step is of the form $\mathcal{G}(\mathcal{F}^{\omega})$, where $\mathcal{F} = \{A \subseteq \omega : \mu(A) = 1\}$, where μ is a measure on ω ,

2 Make sure that \mathcal{F}_{μ} appears at some step of the iteration for all μ which appears along the iteration.

Theorem(A. Mekler, 1984)

It is consistent that there is no *p*-measure.

Proof.

- **1** Make a countable support iteration of length ω_2 such that each step is of the form $\mathcal{G}(\mathcal{F}^{\omega})$, where $\mathcal{F} = \{A \subseteq \omega : \mu(A) = 1\}$, where μ is a measure on ω ,
- 2 Make sure that \mathcal{F}_{μ} appears at some step of the iteration for all μ which appears along the iteration.
- **3** Forcing with $\mathcal{G}(\mathcal{F}^{\omega})$ forces the existence of a \subseteq -decreasing sequence for which all pseudointersection has measure 0.

Theorem(A. Mekler, 1984)

It is consistent that there is no *p*-measure.

Proof.

- **1** Make a countable support iteration of length ω_2 such that each step is of the form $\mathcal{G}(\mathcal{F}^{\omega})$, where $\mathcal{F} = \{A \subseteq \omega : \mu(A) = 1\}$, where μ is a measure on ω ,
- 2 Make sure that \mathcal{F}_{μ} appears at some step of the iteration for all μ which appears along the iteration.
- **3** Forcing with $\mathcal{G}(\mathcal{F}^{\omega})$ forces the existence of a \subseteq -decreasing sequence for which all pseudointersection has measure 0.
- **4** This property is preserved along the iteration by the ω^{ω} -bounding property of the steps(once a *p*-measure is killed, it does not resurrect).

Question. Does the existence of *p*-measures imply the existence of *p*-points?

Question. Does the existence of *p*-measures imply the existence of *p*-points?

Theorem(J. Grebík, 2019)

If there is an ultrafilter \mathcal{U} such that $d_{\mathcal{U}}$ is a *p*-measure, then there is a *p*-point. In fact, there is $f : \omega \to \omega$ finite to one such that $f(\mathcal{U})$ is a *p*-point.

Question. Does the existence of *p*-measures imply the existence of *p*-points?

Theorem(J. Grebík, 2019)

If there is an ultrafilter \mathcal{U} such that $d_{\mathcal{U}}$ is a *p*-measure, then there is a *p*-point. In fact, there is $f : \omega \to \omega$ finite to one such that $f(\mathcal{U})$ is a *p*-point.

Theorem(P. Borodulin-Nadzieja, D. Sobota, 2023)

If there is a p-point in the ground model, then after adding any number of random reals there is a p-measure.

Question. Does the existence of *p*-measures imply the existence of *p*-points?

Theorem(J. Grebík, 2019)

If there is an ultrafilter \mathcal{U} such that $d_{\mathcal{U}}$ is a *p*-measure, then there is a *p*-point. In fact, there is $f : \omega \to \omega$ finite to one such that $f(\mathcal{U})$ is a *p*-point.

Theorem(P. Borodulin-Nadzieja, D. Sobota, 2023)

If there is a p-point in the ground model, then after adding any number of random reals there is a p-measure.

Remark. The measure in the previous theorem still uses a p-point in its definition, although not so direct as in the U-limit.

Theorem(P. Borodulin-Nadzieja, C., A. Morawski)

It is consistent that there is a *p*-measure, there is no *p*-point, and 2^{\aleph_0} is arbitrarily large. Moreover, it is consistent that no *p*-measure is a Dirac measure neither an ultrafilter density.

・ロト・日本・ヨト・ヨト・日・ショウ

Theorem(K. Kunen)

If \mathcal{U} is a selective ultrafilter, then after forcing with \mathbb{B}_{κ} , \mathcal{U} can not be extended to a *p*-point.

Theorem(K. Kunen)

If \mathcal{U} is a selective ultrafilter, then after forcing with \mathbb{B}_{κ} , \mathcal{U} can not be extended to a *p*-point.

Theorem(S. Shelah)

It is consistent that there is only one p-point(up to permutation), which, therefore, should be a selective ultrafilter.

Theorem(K. Kunen)

If \mathcal{U} is a selective ultrafilter, then after forcing with \mathbb{B}_{κ} , \mathcal{U} can not be extended to a *p*-point.

Theorem(S. Shelah)

It is consistent that there is only one p-point(up to permutation), which, therefore, should be a selective ultrafilter.

Theorem(P. Borodulin-Nadzieja, D. Sobota)

If there is a *p*-point in the ground model, then there is a *p*-measure after forcing with \mathbb{B}_{κ} .

Theorem(K. Kunen)

If \mathcal{U} is a selective ultrafilter, then after forcing with \mathbb{B}_{κ} , \mathcal{U} can not be extended to a *p*-point.

Theorem(S. Shelah)

It is consistent that there is only one p-point(up to permutation), which, therefore, should be a selective ultrafilter.

Theorem(P. Borodulin-Nadzieja, D. Sobota)

If there is a *p*-point in the ground model, then there is a *p*-measure after forcing with \mathbb{B}_{κ} .

Forcing with Random over Shelah's model?

Theorem(K. Kunen)

If \mathcal{U} is a selective ultrafilter, then after forcing with \mathbb{B}_{κ} , \mathcal{U} can not be extended to a *p*-point.

Theorem(S. Shelah)

It is consistent that there is only one p-point(up to permutation), which, therefore, should be a selective ultrafilter.

Theorem(P. Borodulin-Nadzieja, D. Sobota)

If there is a *p*-point in the ground model, then there is a *p*-measure after forcing with \mathbb{B}_{κ} .

Forcing with Random over Shelah's model? That's almost the case, we need a natural modification of Shelah's model as in the case of Mekler's model.
Two filters \mathcal{U}, \mathcal{F} are said to be nearly coherent if there is a finite to one function $f : \omega \to \omega$ such that $f(\mathcal{U}) \cup f(\mathcal{F})$ generates a filter.

Two filters \mathcal{U}, \mathcal{F} are said to be nearly coherent if there is a finite to one function $f : \omega \to \omega$ such that $f(\mathcal{U}) \cup f(\mathcal{F})$ generates a filter.

Remarks.

Two filters \mathcal{U}, \mathcal{F} are said to be nearly coherent if there is a finite to one function $f : \omega \to \omega$ such that $f(\mathcal{U}) \cup f(\mathcal{F})$ generates a filter.

Remarks.

1 If $\mathcal{F}_0, \mathcal{F}_1$ are nearly coherent ultrafilters via the function f, then $f(\mathcal{F}_0) = f(\mathcal{F}_1)$.

Two filters \mathcal{U}, \mathcal{F} are said to be nearly coherent if there is a finite to one function $f : \omega \to \omega$ such that $f(\mathcal{U}) \cup f(\mathcal{F})$ generates a filter.

Remarks.

- **1** If $\mathcal{F}_0, \mathcal{F}_1$ are nearly coherent ultrafilters via the function f, then $f(\mathcal{F}_0) = f(\mathcal{F}_1)$.
- 2 If \mathcal{F}_0 is an ultrafilter an \mathcal{F}_1 is just a filter, then they are nearly coherent if and only if there is a finite to one function such that $f(\mathcal{F}_1) \subseteq f(\mathcal{F}_0)$.

Let \mathcal{F}_0 and \mathcal{F}_1 be two filters on ω . The game $\mathcal{G}(\mathcal{F}_0, \mathcal{F}_1)$ between Player I and Player II is defined as:

1 At stages $j \equiv 0 \pmod{4}$, Player I plays a set $A_j \in \mathcal{F}_0$.

Let \mathcal{F}_0 and \mathcal{F}_1 be two filters on ω . The game $\mathcal{G}(\mathcal{F}_0, \mathcal{F}_1)$ between Player I and Player II is defined as:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- 1 At stages $j \equiv 0 \pmod{4}$, Player I plays a set $A_j \in \mathcal{F}_0$.
- **2** At the next stage, Player II answers with $a_j \in A_j$.

Let \mathcal{F}_0 and \mathcal{F}_1 be two filters on ω . The game $\mathcal{G}(\mathcal{F}_0, \mathcal{F}_1)$ between Player I and Player II is defined as:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

1 At stages $j \equiv 0 \pmod{4}$, Player I plays a set $A_j \in \mathcal{F}_0$.

2 At the next stage, Player II answers with $a_i \in A_j$.

3 At stages $j \equiv 2 \pmod{4}$, Player I plays a set $B_j \in \mathcal{F}_1$.

Let \mathcal{F}_0 and \mathcal{F}_1 be two filters on ω . The game $\mathcal{G}(\mathcal{F}_0, \mathcal{F}_1)$ between Player I and Player II is defined as:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

1 At stages $j \equiv 0 \pmod{4}$, Player I plays a set $A_j \in \mathcal{F}_0$.

2 At the next stage, Player II answers with $a_j \in A_j$.

- 3 At stages $j \equiv 2 \pmod{4}$, Player I plays a set $B_j \in \mathcal{F}_1$.
- **4** At the next stage, Player II answers with $F_j \in [B_j]^{<\omega}$.

Let \mathcal{F}_0 and \mathcal{F}_1 be two filters on ω . The game $\mathcal{G}(\mathcal{F}_0, \mathcal{F}_1)$ between Player I and Player II is defined as:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

1 At stages $j \equiv 0 \pmod{4}$, Player I plays a set $A_j \in \mathcal{F}_0$.

2 At the next stage, Player II answers with $a_j \in A_j$.

- 3 At stages $j \equiv 2 \pmod{4}$, Player I plays a set $B_j \in \mathcal{F}_1$.
- **4** At the next stage, Player II answers with $F_j \in [B_j]^{<\omega}$.

Let \mathcal{F}_0 and \mathcal{F}_1 be two filters on ω . The game $\mathcal{G}(\mathcal{F}_0, \mathcal{F}_1)$ between Player I and Player II is defined as:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

1 At stages $j \equiv 0 \pmod{4}$, Player I plays a set $A_j \in \mathcal{F}_0$.

2 At the next stage, Player II answers with $a_j \in A_j$.

- **3** At stages $j \equiv 2 \pmod{4}$, Player I plays a set $B_j \in \mathcal{F}_1$.
- 4 At the next stage, Player II answers with $F_j \in [B_j]^{<\omega}$.

Player II wins if and only if $\{a_n : n \in \omega\} \in \mathcal{F}_0$ and $\bigcup_{n \in \omega} F_n \in \mathcal{F}_1$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ ■ ● ●

Lemma(S. Shelah)

If \mathcal{F}_0 is a selective ultrafiler, \mathcal{F}_1 is a *p*-point, and they are not nearly coherent, then Player I has no winning strategy in the game $\mathcal{G}(\mathcal{F}_0, \mathcal{F}_1)$.

Lemma(S. Shelah)

If \mathcal{F}_0 is a selective ultrafiler, \mathcal{F}_1 is a *p*-point, and they are not nearly coherent, then Player I has no winning strategy in the game $\mathcal{G}(\mathcal{F}_0, \mathcal{F}_1)$.

This lemma needs still works if instead of \mathcal{F}_1 being just *p*-filter instead of a *p*-point.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Let \mathcal{U} be a *p*-point. There is a forcing $SP(\mathcal{U})$ having the following properties:

Let \mathcal{U} be a *p*-point. There is a forcing $SP(\mathcal{U})$ having the following properties:

1 $SP(\mathcal{U})$ is proper and ω^{ω} -bounding.

Let \mathcal{U} be a *p*-point. There is a forcing $SP(\mathcal{U})$ having the following properties:

- **1** $SP(\mathcal{U})$ is proper and ω^{ω} -bounding.
- 2 If Q is a ℙ(U)-name for a proper ω^ω-bounding forcing, then SP(U) * Q forces that U can not be extended to a p-point.

Let \mathcal{U} be a *p*-point. There is a forcing $SP(\mathcal{U})$ having the following properties:

- **1** $SP(\mathcal{U})$ is proper and ω^{ω} -bounding.
- 2 If Q is a P(U)-name for a proper ω^ω-bounding forcing, then SP(U) * Q forces that U can not be extended to a p-point.
- **3** If \mathcal{V} is a selective ultrafilter which is not nearly coherent with \mathcal{U} , then $SP(\mathcal{U})$ preserves \mathcal{V} as an ultrafilter.

Let \mathcal{U} be a *p*-point. There is a forcing $SP(\mathcal{U})$ having the following properties:

- **1** $SP(\mathcal{U})$ is proper and ω^{ω} -bounding.
- 2 If Q is a P(U)-name for a proper ω^ω-bounding forcing, then SP(U) * Q forces that U can not be extended to a p-point.
- **3** If \mathcal{V} is a selective ultrafilter which is not nearly coherent with \mathcal{U} , then $SP(\mathcal{U})$ preserves \mathcal{V} as an ultrafilter.

Let \mathcal{U} be a *p*-point. There is a forcing $SP(\mathcal{U})$ having the following properties:

- **1** $SP(\mathcal{U})$ is proper and ω^{ω} -bounding.
- 2 If Q is a P(U)-name for a proper ω^ω-bounding forcing, then SP(U) * Q forces that U can not be extended to a p-point.
- **3** If \mathcal{V} is a selective ultrafilter which is not nearly coherent with \mathcal{U} , then $SP(\mathcal{U})$ preserves \mathcal{V} as an ultrafilter.

It turns out that in the previous theorem it is enough to require \mathcal{U} to be a non-meager *p*-filter to get properties 1-3.

Let \mathcal{U} be a *p*-point. There is a forcing $SP(\mathcal{U})$ having the following properties:

- **1** $SP(\mathcal{U})$ is proper and ω^{ω} -bounding.
- 2 If Q is a ℙ(U)-name for a proper ω^ω-bounding forcing, then SP(U) * Q forces that U can not be extended to a p-point.
- **3** If \mathcal{V} is a selective ultrafilter which is not nearly coherent with \mathcal{U} , then $SP(\mathcal{U})$ preserves \mathcal{V} as an ultrafilter.

It turns out that in the previous theorem it is enough to require \mathcal{U} to be a non-meager *p*-filter to get properties 1-3. The proof of 1) and 2) makes use of the *p*-filter game.

Let \mathcal{U} be a *p*-point. There is a forcing $SP(\mathcal{U})$ having the following properties:

- **1** $SP(\mathcal{U})$ is proper and ω^{ω} -bounding.
- 2 If Q is a ℙ(U)-name for a proper ω^ω-bounding forcing, then SP(U) * Q forces that U can not be extended to a p-point.
- **3** If \mathcal{V} is a selective ultrafilter which is not nearly coherent with \mathcal{U} , then $SP(\mathcal{U})$ preserves \mathcal{V} as an ultrafilter.

It turns out that in the previous theorem it is enough to require \mathcal{U} to be a non-meager *p*-filter to get properties 1-3.

The proof of 1) and 2) makes use of the p-filter game.

In the proof of 3) we use the previous lemma about the game $\mathcal{G}(\mathcal{V},\mathcal{U})$.

Definition.

Let \mathbb{B} be the random forcing and $\dot{\mathcal{U}}$ a \mathbb{B} -name for an ultrafilter. For $p \in \mathbb{B}$, define $\dot{\mathcal{U}}[p] = \{A \subseteq \omega : p \Vdash A \in \dot{\mathcal{U}}\}.$

<ロト < 団ト < 団ト < 団ト < 団ト 三 のへで</p>

Definition.

Let \mathbb{B} be the random forcing and $\dot{\mathcal{U}}$ a \mathbb{B} -name for an ultrafilter. For $p \in \mathbb{B}$, define $\dot{\mathcal{U}}[p] = \{A \subseteq \omega : p \Vdash A \in \dot{\mathcal{U}}\}.$

Lemma

If $\dot{\mathcal{U}}$ is a \mathbb{B} -name for a p-point, then $\dot{\mathcal{U}}[p]$ is a saturated filter for any $p \in \mathcal{B}$.

Definition.

Let \mathbb{B} be the random forcing and $\dot{\mathcal{U}}$ a \mathbb{B} -name for an ultrafilter. For $p \in \mathbb{B}$, define $\dot{\mathcal{U}}[p] = \{A \subseteq \omega : p \Vdash A \in \dot{\mathcal{U}}\}.$

Lemma

If $\dot{\mathcal{U}}$ is a \mathbb{B} -name for a *p*-point, then $\dot{\mathcal{U}}[p]$ is a saturated filter for any $p \in \mathcal{B}$.

Recall that a filter is \mathcal{F} if the quotient $\mathcal{P}(\omega)/\mathcal{F}$ is ccc. Equivalently, if $\mathcal{A} \subseteq \mathcal{F}^+$ is such that for any different $A, B \in \mathcal{A} \land A \cap B \in \mathcal{F}^*$, then \mathcal{A} is countable.

1 Assume otherwise $\dot{\mathcal{U}}[p]$ is not saturated and let $\langle \mathcal{A}_{\alpha} : \alpha \in \omega_1 \rangle \subseteq \dot{\mathcal{U}}[p]$ be such that for any different $\alpha, \beta \in \omega_1, \mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta} \in \dot{\mathcal{U}}[p]^*$.

- **1** Assume otherwise $\dot{\mathcal{U}}[p]$ is not saturated and let $\langle \mathcal{A}_{\alpha} : \alpha \in \omega_1 \rangle \subseteq \dot{\mathcal{U}}[p]$ be such that for any different $\alpha, \beta \in \omega_1, \mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta} \in \dot{\mathcal{U}}[p]^*$.
- **2** First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \setminus X \in \dot{\mathcal{U}}$.

- **1** Assume otherwise $\dot{\mathcal{U}}[p]$ is not saturated and let $\langle \mathcal{A}_{\alpha} : \alpha \in \omega_1 \rangle \subseteq \dot{\mathcal{U}}[p]$ be such that for any different $\alpha, \beta \in \omega_1, \mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta} \in \dot{\mathcal{U}}[p]^*$.
- **2** First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \setminus X \in \dot{\mathcal{U}}$.

3 So for each $\alpha \in \omega_1$, there is $q_\alpha \leq p$ such that $q_\alpha \Vdash \omega \setminus A_\alpha \in \dot{\mathcal{U}}$.

- **1** Assume otherwise $\mathcal{U}[p]$ is not saturated and let $\langle \mathcal{A}_{\alpha} : \alpha \in \omega_1 \rangle \subseteq \mathcal{U}[p]$ be such that for any different $\alpha, \beta \in \omega_1, \mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta} \in \mathcal{U}[p]^*$.
- **2** First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \setminus X \in \dot{\mathcal{U}}$.
- **3** So for each $\alpha \in \omega_1$, there is $q_\alpha \leq p$ such that $q_\alpha \Vdash \omega \setminus A_\alpha \in \dot{\mathcal{U}}$.
- ④ Second, note that for $\alpha \neq \beta$, q_{α} and q_{β} are incompatible, since a common extension would force that $A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}$, but $p \Vdash \omega \setminus (A_{\alpha} \cap A_{\beta}) \in \dot{\mathcal{U}}$.

- **1** Assume otherwise $\mathcal{U}[p]$ is not saturated and let $\langle \mathcal{A}_{\alpha} : \alpha \in \omega_1 \rangle \subseteq \mathcal{U}[p]$ be such that for any different $\alpha, \beta \in \omega_1, \mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta} \in \mathcal{U}[p]^*$.
- **2** First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \setminus X \in \dot{\mathcal{U}}$.
- **3** So for each $\alpha \in \omega_1$, there is $q_\alpha \leq p$ such that $q_\alpha \Vdash \omega \setminus A_\alpha \in \mathcal{U}$.
- **④** Second, note that for $\alpha \neq \beta$, q_{α} and q_{β} are incompatible, since a common extension would force that $A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}$, but $p \Vdash \omega \setminus (A_{\alpha} \cap A_{\beta}) \in \dot{\mathcal{U}}$.
- **5** Therefore, $\{q_{\alpha} : \alpha \in \omega_1\}$ is an uncountable antichain in the Random forcing, which is impossible.

- **1** Assume otherwise $\mathcal{U}[p]$ is not saturated and let $\langle \mathcal{A}_{\alpha} : \alpha \in \omega_1 \rangle \subseteq \mathcal{U}[p]$ be such that for any different $\alpha, \beta \in \omega_1, \mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta} \in \mathcal{U}[p]^*$.
- **2** First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \setminus X \in \dot{\mathcal{U}}$.
- **3** So for each $\alpha \in \omega_1$, there is $q_\alpha \leq p$ such that $q_\alpha \Vdash \omega \setminus A_\alpha \in \mathcal{U}$.
- **④** Second, note that for $\alpha \neq \beta$, q_{α} and q_{β} are incompatible, since a common extension would force that $A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}$, but $p \Vdash \omega \setminus (A_{\alpha} \cap A_{\beta}) \in \dot{\mathcal{U}}$.
- **5** Therefore, $\{q_{\alpha} : \alpha \in \omega_1\}$ is an uncountable antichain in the Random forcing, which is impossible.

- **1** Assume otherwise $\mathcal{U}[p]$ is not saturated and let $\langle \mathcal{A}_{\alpha} : \alpha \in \omega_1 \rangle \subseteq \mathcal{U}[p]$ be such that for any different $\alpha, \beta \in \omega_1, \mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta} \in \mathcal{U}[p]^*$.
- **2** First note that $X \notin \dot{\mathcal{U}}[p]$ if and only if there is a condition $q \leq p$ such that $q \Vdash \omega \setminus X \in \dot{\mathcal{U}}$.
- **3** So for each $\alpha \in \omega_1$, there is $q_\alpha \leq p$ such that $q_\alpha \Vdash \omega \setminus A_\alpha \in \mathcal{U}$.
- **4** Second, note that for $\alpha \neq \beta$, q_{α} and q_{β} are incompatible, since a common extension would force that $A_{\alpha} \cap A_{\beta} \in \dot{\mathcal{U}}$, but $p \Vdash \omega \setminus (A_{\alpha} \cap A_{\beta}) \in \dot{\mathcal{U}}$.
- **5** Therefore, $\{q_{\alpha} : \alpha \in \omega_1\}$ is an uncountable antichain in the Random forcing, which is impossible.

This proves that $\dot{\mathcal{U}}[p]$ is saturated.

1 Let
$$\vec{A} = \langle A_n : n \in \omega \rangle \subseteq \dot{\mathcal{U}}[p]$$
 be a \subseteq -decreasing sequence.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

- **1** Let $\vec{A} = \langle A_n : n \in \omega \rangle \subseteq \dot{\mathcal{U}}[p]$ be a \subseteq -decreasing sequence.
- 2 Then *p* forces there is a pseudointersection of \vec{A} in \dot{U} , that is, there is a function $\dot{f}: \omega \to \omega$ such that

$$\bigcup_{n\in\omega}A_n\cap\dot{f}(n)\in\dot{\mathcal{U}}$$

- 1 Let $\vec{A} = \langle A_n : n \in \omega \rangle \subseteq \dot{\mathcal{U}}[p]$ be a \subseteq -decreasing sequence.
- 2 Then *p* forces there is a pseudointersection of \vec{A} in \dot{U} , that is, there is a function $\dot{f}: \omega \to \omega$ such that

$$\bigcup_{n\in\omega}A_n\cap\dot{f}(n)\in\dot{\mathcal{U}}$$

3 Since \mathcal{B} is bounding and ccc, there is an increasing function $g: \omega \to \omega$ in the ground model such that $p \Vdash \dot{f} \leq^* g$.

- 1 Let $\vec{A} = \langle A_n : n \in \omega \rangle \subseteq \dot{\mathcal{U}}[p]$ be a \subseteq -decreasing sequence.
- 2 Then *p* forces there is a pseudointersection of \vec{A} in \dot{U} , that is, there is a function $\dot{f}: \omega \to \omega$ such that

$$\bigcup_{n\in\omega}A_n\cap\dot{f}(n)\in\dot{\mathcal{U}}$$

- **3** Since \mathcal{B} is bounding and ccc, there is an increasing function $g: \omega \to \omega$ in the ground model such that $p \Vdash \dot{f} \leq^* g$.
- $\textbf{ 4 Then we have that } p \Vdash \bigcup_{n \in \omega} A_n \cap g(n) \in \dot{\mathcal{U}}, \text{ so } \bigcup_{n \in \omega} A_n \cap g(n) \in \dot{\mathcal{U}}[p]$

Lemma

Let \mathcal{U} be a selective ultrafilter and $\dot{\mathcal{V}}$ be a \mathbb{B} -name such that $\mathbb{B} \Vdash \dot{\mathcal{V}}$ is a p-point. Then for all $p \in \mathbb{B}$, \mathcal{U} and $\dot{\mathcal{V}}[p]$ are not nearly coherent.
1 First note that if \mathcal{F} is a filter which is Rudin-Blass above \mathcal{U} , witness by f, then \mathcal{F} can not be extended to a p-point after forcing with \mathbb{B} : otherwise, if $\dot{\mathcal{V}}$ is a p-point extending \mathcal{F} , then $f(\mathcal{V})$ would be a p-point extending \mathcal{U} , which is not possible by Kunen's theorem.

1 First note that if \mathcal{F} is a filter which is Rudin-Blass above \mathcal{U} , witness by f, then \mathcal{F} can not be extended to a p-point after forcing with \mathbb{B} : otherwise, if $\dot{\mathcal{V}}$ is a p-point extending \mathcal{F} , then $f(\mathcal{V})$ would be a p-point extending \mathcal{U} , which is not possible by Kunen's theorem.

2 Now assume otherwise there is $p_0 \in \mathbb{B}$ such that \mathcal{U} and $\dot{\mathcal{V}}[p_0]$ are nearly coherent, witnessed by $h : \omega \to \omega$.

1 First note that if F is a filter which is Rudin-Blass above U, witness by f, then F can not be extended to a p-point after forcing with B: otherwise, if V is a p-point extending F, then f(V) would be a p-point extending U, which is not possible by Kunen's theorem.

- 2 Now assume otherwise there is $p_0 \in \mathbb{B}$ such that \mathcal{U} and $\mathcal{V}[p_0]$ are nearly coherent, witnessed by $h : \omega \to \omega$.
- 3 Then we have that $h(\dot{\mathcal{V}}[p_0]) \subseteq h(\mathcal{U})$.

1 First note that if F is a filter which is Rudin-Blass above U, witness by f, then F can not be extended to a p-point after forcing with B: otherwise, if V is a p-point extending F, then f(V) would be a p-point extending U, which is not possible by Kunen's theorem.

- 2 Now assume otherwise there is $p_0 \in \mathbb{B}$ such that \mathcal{U} and $\mathcal{V}[p_0]$ are nearly coherent, witnessed by $h : \omega \to \omega$.
- 3 Then we have that $h(\dot{\mathcal{V}}[p_0]) \subseteq h(\mathcal{U}).$
- 4 By 1, we have that for all $p \in \mathbb{B}$, $h(\mathcal{U}) \nleq_{RB} \dot{\mathcal{V}}[p]$.

1 First note that if F is a filter which is Rudin-Blass above U, witness by f, then F can not be extended to a p-point after forcing with B: otherwise, if V is a p-point extending F, then f(V) would be a p-point extending U, which is not possible by Kunen's theorem.

- 2 Now assume otherwise there is $p_0 \in \mathbb{B}$ such that \mathcal{U} and $\dot{\mathcal{V}}[p_0]$ are nearly coherent, witnessed by $h : \omega \to \omega$.
- 3 Then we have that $h(\dot{\mathcal{V}}[p_0]) \subseteq h(\mathcal{U})$.
- 4 By 1, we have that for all $p \in \mathbb{B}$, $h(\mathcal{U}) \nleq_{RB} \dot{\mathcal{V}}[p]$.
- 5 Then, for all $p \leq p_0$, there is $A_p \in h(\mathcal{U})$ such that $h^{-1}[A_p] \notin \dot{\mathcal{V}}[p]$.

1 First note that if F is a filter which is Rudin-Blass above U, witness by f, then F can not be extended to a p-point after forcing with B: otherwise, if V is a p-point extending F, then f(V) would be a p-point extending U, which is not possible by Kunen's theorem.

- 2 Now assume otherwise there is $p_0 \in \mathbb{B}$ such that \mathcal{U} and $\mathcal{V}[p_0]$ are nearly coherent, witnessed by $h : \omega \to \omega$.
- 3 Then we have that $h(\dot{\mathcal{V}}[p_0]) \subseteq h(\mathcal{U}).$
- 4 By 1, we have that for all $p \in \mathbb{B}$, $h(\mathcal{U}) \nleq_{RB} \dot{\mathcal{V}}[p]$.
- 5 Then, for all $p \leq p_0$, there is $A_p \in h(\mathcal{U})$ such that $h^{-1}[A_p] \notin \dot{\mathcal{V}}[p]$.
- 6 By definition of $\dot{\mathcal{V}}[p_0]$, for each $q \leq p$, there is $q \leq p$ such that $q \Vdash h^{-1}[A_p] \notin \dot{\mathcal{V}}$.

- 1 First note that if F is a filter which is Rudin-Blass above U, witness by f, then F can not be extended to a p-point after forcing with B: otherwise, if V is a p-point extending F, then f(V) would be a p-point extending U, which is not possible by Kunen's theorem.
- 2 Now assume otherwise there is $p_0 \in \mathbb{B}$ such that \mathcal{U} and $\mathcal{V}[p_0]$ are nearly coherent, witnessed by $h : \omega \to \omega$.
- 3 Then we have that $h(\dot{\mathcal{V}}[p_0]) \subseteq h(\mathcal{U}).$
- 4 By 1, we have that for all $p \in \mathbb{B}$, $h(\mathcal{U}) \nleq_{RB} \dot{\mathcal{V}}[p]$.
- 5 Then, for all $p \leq p_0$, there is $A_p \in h(\mathcal{U})$ such that $h^{-1}[A_p] \notin \dot{\mathcal{V}}[p]$.
- 6 By definition of $\dot{\mathcal{V}}[p_0]$, for each $q \leq p$, there is $q \leq p$ such that $q \Vdash h^{-1}[A_p] \notin \dot{\mathcal{V}}$.
- 7 Then $D = \{p \leq p_0 : (\exists A \in h(\mathcal{U}))(p \Vdash h^{-1}[A] \notin \dot{\mathcal{V}})\}$ is dense below p_0 .

8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_0 , and for each $p \in \mathcal{A}$, let $A_p \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}[A_p] \notin \dot{\mathcal{V}}$.

8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_0 , and for each $p \in \mathcal{A}$, let $A_p \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}[A_p] \notin \dot{\mathcal{V}}$.

9 \mathcal{A} is countable, so there is $X \in h(\mathcal{U})$ such that $X \subseteq^* A_p$, for all $p \in \mathcal{A}$.

- 8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_0 , and for each $p \in \mathcal{A}$, let $A_p \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}[A_p] \notin \dot{\mathcal{V}}$.
- 9 \mathcal{A} is countable, so there is $X \in h(\mathcal{U})$ such that $X \subseteq^* A_p$, for all $p \in \mathcal{A}$.
- 10 It follows that $p \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$, for all $p \in \mathcal{A}$, otherwise, we would have for some $p \in \mathcal{A}$, there exist $q \leq p$ such that $q \Vdash h^{-1}[\mathcal{A}_p] \in \dot{\mathcal{V}}$, which is a contradiction.

- 8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_0 , and for each $p \in \mathcal{A}$, let $A_p \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}[A_p] \notin \dot{\mathcal{V}}$.
- 9 \mathcal{A} is countable, so there is $X \in h(\mathcal{U})$ such that $X \subseteq^* A_p$, for all $p \in \mathcal{A}$.
- 10 It follows that $p \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$, for all $p \in \mathcal{A}$, otherwise, we would have for some $p \in \mathcal{A}$, there exist $q \leq p$ such that $q \Vdash h^{-1}[\mathcal{A}_p] \in \dot{\mathcal{V}}$, which is a contradiction.
- 11 Since \mathcal{A} is a maximal antichain below p_0 , it follows that $p_0 \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- 8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_0 , and for each $p \in \mathcal{A}$, let $A_p \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}[A_p] \notin \dot{\mathcal{V}}$.
- 9 \mathcal{A} is countable, so there is $X \in h(\mathcal{U})$ such that $X \subseteq^* A_p$, for all $p \in \mathcal{A}$.
- 10 It follows that $p \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$, for all $p \in \mathcal{A}$, otherwise, we would have for some $p \in \mathcal{A}$, there exist $q \leq p$ such that $q \Vdash h^{-1}[\mathcal{A}_p] \in \dot{\mathcal{V}}$, which is a contradiction.
- 11 Since \mathcal{A} is a maximal antichain below p_0 , it follows that $p_0 \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$. 12 This means that $p_0 \Vdash \omega \setminus h^{-1}[X] \in \dot{\mathcal{V}}$, so $\omega \setminus h^{-1}[X] \in \dot{\mathcal{V}}$.

- 8 Let $\mathcal{A} \subseteq D$ be a maximal antichain below p_0 , and for each $p \in \mathcal{A}$, let $A_p \in h(\mathcal{U})$ be such that $p \Vdash h^{-1}[A_p] \notin \dot{\mathcal{V}}$.
- 9 \mathcal{A} is countable, so there is $X \in h(\mathcal{U})$ such that $X \subseteq^* A_p$, for all $p \in \mathcal{A}$.
- 10 It follows that p ⊨ h⁻¹[X] ∉ V, for all p ∈ A, otherwise, we would have for some p ∈ A, there exist q ≤ p such that q ⊨ h⁻¹[A_p] ∈ V, which is a contradiction.
- 11 Since \mathcal{A} is a maximal antichain below p_0 , it follows that $p_0 \Vdash h^{-1}[X] \notin \dot{\mathcal{V}}$.
- 12 This means that $p_0 \Vdash \omega \setminus h^{-1}[X] \in \dot{\mathcal{V}}$, so $\omega \setminus h^{-1}[X] \in \dot{\mathcal{V}}$.
- 13 Thus, we have $X \in h(\mathcal{U})$ and $\omega \setminus X \in h(\dot{\mathcal{V}}[p_0])$, which contradicts our initial assumption of $h(\dot{\mathcal{V}}[p_0]) \subseteq h(\mathcal{U})$.

Theorem(P. Borodulin-Nadzieja, C., A. Morawski) If ZFC is consistent, then there is a model such that:

- **1** There is a *p*-measure.
- **2** There is no *p*-point.
- **3** No *p*-measure is a Dirac measure neither an ultrafilter density.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

4 $2^{\aleph_0} = \kappa$ for a predetermined regular cardinal $\kappa \geq \omega_2$.

1 Assume V is a model of ZFC + CH + \Diamond (S), where $S \subseteq \omega_2$ is stationary.

Assume V is a model of ZFC + CH + ◊(S), where S ⊆ ω₂ is stationary.
Let ⟨A_α : α ∈ S⟩ be a ◊(S)-guessing sequence.

Assume V is a model of ZFC + CH + ◊(S), where S ⊆ ω₂ is stationary.
Let ⟨A_α : α ∈ S⟩ be a ◊(S)-guessing sequence.

3 Let $\kappa \geq \omega_2$ be an uncountable regular cardinal.

- **1** Assume V is a model of ZFC + CH + \Diamond (S), where $S \subseteq \omega_2$ is stationary.
- **2** Let $\langle A_{\alpha} : \alpha \in S \rangle$ be a $\Diamond(S)$ -guessing sequence.
- **3** Let $\kappa \geq \omega_2$ be an uncountable regular cardinal.
- **4** Let \mathcal{U}_0 be a selective ultrafilter and \mathcal{U}_1 a *p*-point which is not Rudin-Blass above \mathcal{U}_0 .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- **1** Assume V is a model of ZFC + CH + \Diamond (S), where $S \subseteq \omega_2$ is stationary.
- **2** Let $\langle A_{\alpha} : \alpha \in S \rangle$ be a $\Diamond(S)$ -guessing sequence.
- **3** Let $\kappa \geq \omega_2$ be an uncountable regular cardinal.
- ④ Let U₀ be a selective ultrafilter and U₁ a p-point which is not Rudin-Blass above U₀.
- **5** Define a countable support iteration $\mathbb{P}_{\omega_2} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ as follows:

- **1** Assume V is a model of ZFC + CH + \Diamond (S), where $S \subseteq \omega_2$ is stationary.
- **2** Let $\langle A_{\alpha} : \alpha \in S \rangle$ be a $\Diamond(S)$ -guessing sequence.
- **3** Let $\kappa \geq \omega_2$ be an uncountable regular cardinal.
- ④ Let U₀ be a selective ultrafilter and U₁ a p-point which is not Rudin-Blass above U₀.
- **6** Define a countable support iteration $\mathbb{P}_{\omega_2} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ as follows: i) $P_0 = SP(\mathcal{U}_1)$.

- **1** Assume V is a model of ZFC + CH + \Diamond (S), where $S \subseteq \omega_2$ is stationary.
- **2** Let $\langle A_{\alpha} : \alpha \in S \rangle$ be a $\Diamond(S)$ -guessing sequence.
- **3** Let $\kappa \geq \omega_2$ be an uncountable regular cardinal.
- ④ Let U₀ be a selective ultrafilter and U₁ a p-point which is not Rudin-Blass above U₀.
- **5** Define a countable support iteration $\mathbb{P}_{\omega_2} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ as follows:

i)
$$P_0 = SP(\mathcal{U}_1)$$
.

ii) If $\alpha \notin S$, define $\hat{\mathbb{Q}}_{\alpha}$ to be the trivial forcing.

- **1** Assume V is a model of ZFC + CH + \Diamond (S), where $S \subseteq \omega_2$ is stationary.
- **2** Let $\langle A_{\alpha} : \alpha \in S \rangle$ be a $\Diamond(S)$ -guessing sequence.
- **3** Let $\kappa \geq \omega_2$ be an uncountable regular cardinal.
- ④ Let U₀ be a selective ultrafilter and U₁ a p-point which is not Rudin-Blass above U₀.
- **5** Define a countable support iteration $\mathbb{P}_{\omega_2} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ as follows:
 - i) $P_0 = SP(\mathcal{U}_1)$.
 - ii) If $\alpha \notin S$, define $\hat{\mathbb{Q}}_{\alpha}$ to be the trivial forcing.
 - iii) If $\alpha \in S$, and A_{α} codifies and \mathbb{P}_{α} -name for a saturated *p*-filter $\dot{\mathcal{F}}$ which is not nearly coherent with \mathcal{U}_0 , define $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha} = SP(\dot{\mathcal{F}})$; otherwise, let $\dot{\mathbb{Q}}_{\alpha}$ be the trivial forcing.

- **1** Assume V is a model of ZFC + CH + \Diamond (S), where $S \subseteq \omega_2$ is stationary.
- **2** Let $\langle A_{\alpha} : \alpha \in S \rangle$ be a $\Diamond(S)$ -guessing sequence.
- **3** Let $\kappa \geq \omega_2$ be an uncountable regular cardinal.
- ④ Let U₀ be a selective ultrafilter and U₁ a p-point which is not Rudin-Blass above U₀.
- **5** Define a countable support iteration $\mathbb{P}_{\omega_2} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ as follows:
 - i) $P_0 = SP(\mathcal{U}_1)$.
 - ii) If $\alpha \notin S$, define $\hat{\mathbb{Q}}_{\alpha}$ to be the trivial forcing.
 - iii) If $\alpha \in S$, and A_{α} codifies and \mathbb{P}_{α} -name for a saturated *p*-filter $\dot{\mathcal{F}}$ which is not nearly coherent with \mathcal{U}_0 , define $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha} = SP(\dot{\mathcal{F}})$; otherwise, let $\dot{\mathbb{Q}}_{\alpha}$ be the trivial forcing.

- **1** Assume V is a model of ZFC + CH + \Diamond (S), where $S \subseteq \omega_2$ is stationary.
- **2** Let $\langle A_{\alpha} : \alpha \in S \rangle$ be a $\Diamond(S)$ -guessing sequence.
- **3** Let $\kappa \geq \omega_2$ be an uncountable regular cardinal.
- ④ Let U₀ be a selective ultrafilter and U₁ a p-point which is not Rudin-Blass above U₀.
- **5** Define a countable support iteration $\mathbb{P}_{\omega_2} = \langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ as follows:
 - i) $P_0 = SP(\mathcal{U}_1)$.
 - ii) If $\alpha \notin S$, define $\hat{\mathbb{Q}}_{\alpha}$ to be the trivial forcing.
 - iii) If $\alpha \in S$, and A_{α} codifies and \mathbb{P}_{α} -name for a saturated *p*-filter $\dot{\mathcal{F}}$ which is not nearly coherent with \mathcal{U}_0 , define $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha} = SP(\dot{\mathcal{F}})$; otherwise, let $\dot{\mathbb{Q}}_{\alpha}$ be the trivial forcing.

Then define $\mathbb{P} = \mathbb{P}_{\omega_2} * \dot{\mathbb{B}}_{\kappa}$. The model is V[G * H], where G * H is \mathbb{P} -generic over V.

Since P_{ω2} is bounding, proper and preserves U₀, U₀ remains as a selective ultrafilter in V[G], so by P. Borodulin-Nadzieja-Sobota theorem, there is a *p*-measure in V[G ∗ H].

- Since P_{ω2} is bounding, proper and preserves U₀, U₀ remains as a selective ultrafilter in V[G], so by P. Borodulin-Nadzieja-Sobota theorem, there is a *p*-measure in V[G ∗ H].
- 2 Assume there is a *p*-point in V[G * H], say $\dot{\mathcal{F}}$. Then by one of the previous lemmas $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ is a saturated filter forced to be a subfilter of $\dot{\mathcal{F}}$.

- Since P_{ω2} is bounding, proper and preserves U₀, U₀ remains as a selective ultrafilter in V[G], so by P. Borodulin-Nadzieja-Sobota theorem, there is a *p*-measure in V[G ∗ H].
- 2 Assume there is a *p*-point in V[G ∗ H], say F. Then by one of the previous lemmas F[1_B] is a saturated filter forced to be a subfilter of F.

3 Then $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ and \mathcal{U}_0 are not nearly coherent.

- Since P_{ω2} is bounding, proper and preserves U₀, U₀ remains as a selective ultrafilter in V[G], so by P. Borodulin-Nadzieja-Sobota theorem, there is a *p*-measure in V[G ∗ H].
- 2 Assume there is a *p*-point in V[G ∗ H], say F. Then by one of the previous lemmas F[1_B] is a saturated filter forced to be a subfilter of F.
- 3 Then $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ and \mathcal{U}_0 are not nearly coherent.
- **4** Then there is a club subset $C \subseteq \omega_2$ on which $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ reflects as a saturated filter which is not nearly coherent with \mathcal{U}_0 .

- Since P_{ω2} is bounding, proper and preserves U₀, U₀ remains as a selective ultrafilter in V[G], so by P. Borodulin-Nadzieja-Sobota theorem, there is a *p*-measure in V[G ∗ H].
- 2 Assume there is a *p*-point in V[G ∗ H], say *F*. Then by one of the previous lemmas *F*[1_B] is a saturated filter forced to be a subfilter of *F*.
- 3 Then $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ and \mathcal{U}_0 are not nearly coherent.
- **④** Then there is a club subset $C \subseteq \omega_2$ on which $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ reflects as a saturated filter which is not nearly coherent with \mathcal{U}_0 .
- **5** Since $\langle A_{\alpha} : \alpha \in S \rangle$ is a $\Diamond(S)$ -guessing sequence, there is $\alpha \in S \cap C$ such that A_{α} guesses $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ at α .

- Since P_{ω2} is bounding, proper and preserves U₀, U₀ remains as a selective ultrafilter in V[G], so by P. Borodulin-Nadzieja-Sobota theorem, there is a *p*-measure in V[G ∗ H].
- 2 Assume there is a *p*-point in V[G ∗ H], say F. Then by one of the previous lemmas F[1_B] is a saturated filter forced to be a subfilter of F.
- **3** Then $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ and \mathcal{U}_0 are not nearly coherent.
- General Then there is a club subset C ⊆ ω_2 on which $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ reflects as a saturated filter which is not nearly coherent with \mathcal{U}_0 .
- **5** Since $\langle A_{\alpha} : \alpha \in S \rangle$ is a $\Diamond(S)$ -guessing sequence, there is $\alpha \in S \cap C$ such that A_{α} guesses $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ at α .
- 6 Then $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha} = SP(A_{\alpha})$, and $\mathbb{P}_{\alpha+1}$ forces that $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ can not be extended to a *p*-point in further bounding extensions.

- Since P_{ω2} is bounding, proper and preserves U₀, U₀ remains as a selective ultrafilter in V[G], so by P. Borodulin-Nadzieja-Sobota theorem, there is a *p*-measure in V[G ∗ H].
- 2 Assume there is a *p*-point in V[G * H], say $\dot{\mathcal{F}}$. Then by one of the previous lemmas $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ is a saturated filter forced to be a subfilter of $\dot{\mathcal{F}}$.
- **3** Then $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ and \mathcal{U}_0 are not nearly coherent.
- General Then there is a club subset C ⊆ ω_2 on which $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ reflects as a saturated filter which is not nearly coherent with \mathcal{U}_0 .
- **5** Since $\langle A_{\alpha} : \alpha \in S \rangle$ is a $\Diamond(S)$ -guessing sequence, there is $\alpha \in S \cap C$ such that A_{α} guesses $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ at α .
- 6 Then $\mathbb{P}_{\alpha} \Vdash \dot{\mathbb{Q}}_{\alpha} = SP(A_{\alpha})$, and $\mathbb{P}_{\alpha+1}$ forces that $\dot{\mathcal{F}}[1_{\mathbb{B}}]$ can not be extended to a *p*-point in further bounding extensions.
- 7 Then, $\dot{\mathcal{F}}$ can not be a *p*-point.

Thank you very much!

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>