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Definition.
A measure on ω is a function µ : P(ω) → [0, 1] such that:

1 µ(∅) = 0.

2 φ is finitely additive, i. e., A,B ∈ P(ω) such that A ∩ B = ∅,
φ(A ∪ B) = φ(A) + φ(B).

3 φ vanishes at points, i. e., φ({n}) = 0 for all n ∈ ω.

Examples:

1 An ultrafilter U defines a two valued measure: δU (A) = 1 if A ∈ U and
δU (A) = 0 if A /∈ U . This is the Dirac delta at U .

2 Taking suitable U-limits gives another measure: for A ⊆ ω, define
hA(n) = |A ∩ n|/n. Then

dU (A) = U − lim⟨hA(n) : n ∈ ω⟩

It is easy to see that dU extends asymptotic density.
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Definition(A. Mekler, 1984)

Let µ be a measure on ω. We say that µ is a p-measure(AP-measure or has
AP-property), if for any ⊆-decreasing sequence ⟨An : n ∈ ω⟩ ⊆ P(ω), there is
B ∈ P(ω) such that:

1 B ⊆∗ An for all n ∈ ω.

2 µ(B) = limn→∞ µ(An).

Examples:

1 Let U be a p-point, then δU is a two valued p-measure.

2 Let U be a p-point, then dU is a p-measure.

Remark. The existence of p-points implies the existence of p-measures.
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Question. Does ZFC proves the existence of p-measures?

Theorem(A. Mekler, 1984)

It is consistent that there is no p-measure.

Proof.

1 Make a countable support iteration of length ω2 such that each step is of the
form G(Fω), where F = {A ⊆ ω : µ(A) = 1}, where µ is a measure on ω,

2 Make sure that Fµ appears at some step of the iteration for all µ which
appears along the iteration.

3 Forcing with G(Fω) forces the existence of a ⊆-decreasing sequence for which
all pseudointersection has measure 0.

4 This property is preserved along the iteration by the ωω-bounding property of
the steps(once a p-measure is killed, it does not resurrect).
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Remark. In Mekler’s model there is no p-point.

Question. Does the existence of p-measures imply the existence of p-points?

Theorem(J. Greb́ık, 2019)

If there is an ultrafilter U such that dU is a p-measure, then there is a p-point. In
fact, there is f : ω → ω finite to one such that f (U) is a p-point.

Theorem(P. Borodulin-Nadzieja, D. Sobota, 2023)

If there is a p-point in the ground model, then after adding any number of random
reals there is a p-measure.

Remark. The measure in the previous theorem still uses a p-point in its definition,
although not so direct as in the U-limit.
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Theorem(P. Borodulin-Nadzieja, C., A. Morawski)

It is consistent that there is a p-measure, there is no p-point, and 2ℵ0 is arbitrarily
large. Moreover, it is consitent that no p-measure is a Dirac measure neither an
ultrafilter density.



Three main ingredients in the proof:

Theorem(K. Kunen)

If U is a selective ultrafilter, then after forcing with Bκ, U can not be extended to a
p-point.

Theorem(S. Shelah)

It is consistent that there is only one p-point(up to permutation), which, therefore,
should be a selective ultrafilter.

Theorem(P. Borodulin-Nadzieja, D. Sobota)

If there is a p-point in the ground model, then there is a p-measure after forcing
with Bκ.

Forcing with Random over Shelah’s model? That’s almost the case, we need a
natural modification of Shelah’s model as in the case of Mekler’s model.
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Definition(A. Blass, 1986).

Two filters U ,F are said to be nearly coherent if there is a finite to one function
f : ω → ω such that f (U) ∪ f (F) generates a filter.

Remarks.

1 If F0,F1 are nearly coherent ultrafilters via the function f , then
f (F0) = f (F1).

2 If F0 is an ultrafilter an F1 is just a filter, then they are nearly coherent if and
only if there is a finite to one function such that f (F1) ⊆ f (F0).
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Definition(S. Shelah)

Let F0 and F1 be two filters on ω. The game G(F0,F1) between Player I and
Player II is defined as:

1 At stages j ≡ 0(mod 4), Player I plays a set Aj ∈ F0.

2 At the next stage, Player II answers with aj ∈ Aj .

3 At stages j ≡ 2(mod 4), Player I plays a set Bj ∈ F1.

4 At the next stage, Player II answers with Fj ∈ [Bj ]
<ω.

Player II wins if and only if {an : n ∈ ω} ∈ F0 and
⋃

n∈ω Fn ∈ F1.
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This lemma needs still works if instead of F1 being just p-filter instead of a p-point.
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Theorem(S. Shelah)

Let U be a p-point. There is a forcing SP(U) having the following properties:

1 SP(U) is proper and ωω-bounding.

2 If Q̇ is a P(U)-name for a proper ωω-bounding forcing, then SP(U) ∗ Q̇ forces
that U can not be extended to a p-point.

3 If V is a selective ultrafilter which is not nearly coherent with U , then SP(U)
preserves V as an ultrafilter.

It turns out that in the previous theorem it is enough to require U to be a
non-meager p-filter to get properties 1-3.
The proof of 1) and 2) makes use of the p-filter game.
In the proof of 3) we use the previous lemma about the game G(V,U).
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Definition.
Let B be the random forcing and U̇ a B-name for an ultrafilter. For p ∈ B, define
U̇ [p] = {A ⊆ ω : p ⊩ A ∈ U̇}.

Lemma
If U̇ is a B-name for a p-point, then U̇ [p] is a saturated filter for any p ∈ B.

Recall that a filter is F if the quotient P(ω)/F is ccc. Equivalently, if A ⊆ F+ is
such that for any different A,B ∈ A A ∩ B ∈ F∗, then A is countable.
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Proof.

1 Assume otherwise U̇ [p] is not saturated and let ⟨Aα : α ∈ ω1⟩ ⊆ U̇ [p] be such
that for any different α, β ∈ ω1, Aα ∩ Aβ ∈ U̇ [p]∗.

2 First note that X /∈ U̇ [p] if and only if there is a condition q ≤ p such that
q ⊩ ω \ X ∈ U̇ .

3 So for each α ∈ ω1, there is qα ≤ p such that qα ⊩ ω \ Aα ∈ U̇ .
4 Second, note that for α ̸= β, qα and qβ are incompatible, since a common

extension would force that Aα ∩ Aβ ∈ U̇ , but p ⊩ ω \ (Aα ∩ Aβ) ∈ U̇ .
5 Therefore, {qα : α ∈ ω1} is an uncountable antichain in the Random forcing,

which is impossible.

This proves that U̇ [p] is saturated.
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1 Let A⃗ = ⟨An : n ∈ ω⟩ ⊆ U̇ [p] be a ⊆-decreasing sequence.

2 Then p forces there is a pseudointersection of A⃗ in U̇ , that is, there is a
function ḟ : ω → ω such that ⋃

n∈ω
An ∩ ḟ (n) ∈ U̇

3 Since B is bounding and ccc, there is an increasing function g : ω → ω in the
ground model such that p ⊩ ḟ ≤∗ g .

4 Then we have that p ⊩
⋃

n∈ω An ∩ g(n) ∈ U̇ , so
⋃

n∈ω An ∩ g(n) ∈ U̇ [p]
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Lemma
Let U be a selective ultrafilter and V̇ be a B-name such that B ⊩ V̇ is a p-point.
Then for all p ∈ B, U and V̇[p] are not nearly coherent.



Proof.

1 First note that if F is a filter which is Rudin-Blass above U , witness by f , then
F can not be extended to a p-point after forcing with B: otherwise, if V̇ is a
p-point extending F , then f (V) would be a p-point extending U , which is not
possible by Kunen’s theorem.

2 Now assume otherwise there is p0 ∈ B such that U and V̇[p0] are nearly
coherent, witnessed by h : ω → ω.

3 Then we have that h(V̇[p0]) ⊆ h(U).
4 By 1, we have that for all p ∈ B, h(U) ≰RB V̇[p].
5 Then, for all p ≤ p0, there is Ap ∈ h(U) such that h−1[Ap] /∈ V̇[p].
6 By definition of V̇[p0], for each q ≤ p, there is q ≤ p such that
q ⊩ h−1[Ap] /∈ V̇.

7 Then D = {p ≤ p0 : (∃A ∈ h(U))(p ⊩ h−1[A] /∈ V̇)} is dense below p0.
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8 Let A ⊆ D be a maximal antichain below p0, and for each p ∈ A, let
Ap ∈ h(U) be such that p ⊩ h−1[Ap] /∈ V̇.

9 A is countable, so there is X ∈ h(U) such that X ⊆∗ Ap, for all p ∈ A.

10 It follows that p ⊩ h−1[X ] /∈ V̇, for all p ∈ A, otherwise, we would have for
some p ∈ A, there exist q ≤ p such that q ⊩ h−1[Ap] ∈ V̇, which is a
contradiction.

11 Since A is a maximal antichain below p0, it follows that p0 ⊩ h−1[X ] /∈ V̇.
12 This means that p0 ⊩ ω \ h−1[X ] ∈ V̇, so ω \ h−1[X ] ∈ V̇.
13 Thus, we have X ∈ h(U) and ω \ X ∈ h(V̇[p0]), which contradicts our initial

assumption of h(V̇[p0]) ⊆ h(U).
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Theorem(P. Borodulin-Nadzieja, C., A. Morawski)

If ZFC is consistent, then there is a model such that:

1 There is a p-measure.

2 There is no p-point.

3 No p-measure is a Dirac measure neither an ultrafilter density.

4 2ℵ0 = κ for a predetermined regular cardinal κ ≥ ω2.



1 Assume V is a model of ZFC + CH +♢(S), where S ⊆ ω2 is stationary.

2 Let ⟨Aα : α ∈ S⟩ be a ♢(S)-guessing sequence.

3 Let κ ≥ ω2 be an uncountable regular cardinal.

4 Let U0 be a selective ultrafilter and U1 a p-point which is not Rudin-Blass
above U0.

5 Define a countable support iteration Pω2 = ⟨Pα, Q̇α : α < ω2⟩ as follows:

i) P0 = SP(U1).
ii) If α /∈ S , define Q̇α to be the trivial forcing.
iii) If α ∈ S , and Aα codifies and Pα-name for a saturated p-filter Ḟ which is not

nearly coherent with U0, define Pα ⊩ Q̇α = SP(Ḟ); otherwise, let Q̇α be the
trivial forcing.

Then define P = Pω2 ∗ Ḃκ. The model is V [G ∗ H], where G ∗ H is P-generic
over V .
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nearly coherent with U0, define Pα ⊩ Q̇α = SP(Ḟ); otherwise, let Q̇α be the
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Then define P = Pω2 ∗ Ḃκ. The model is V [G ∗ H], where G ∗ H is P-generic
over V .



1 Assume V is a model of ZFC + CH +♢(S), where S ⊆ ω2 is stationary.

2 Let ⟨Aα : α ∈ S⟩ be a ♢(S)-guessing sequence.

3 Let κ ≥ ω2 be an uncountable regular cardinal.

4 Let U0 be a selective ultrafilter and U1 a p-point which is not Rudin-Blass
above U0.

5 Define a countable support iteration Pω2 = ⟨Pα, Q̇α : α < ω2⟩ as follows:
i) P0 = SP(U1).

ii) If α /∈ S , define Q̇α to be the trivial forcing.
iii) If α ∈ S , and Aα codifies and Pα-name for a saturated p-filter Ḟ which is not
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trivial forcing.
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1 Since Pω2 is bounding, proper and preserves U0, U0 remains as a selective
ultrafilter in V [G ], so by P. Borodulin-Nadzieja-Sobota theorem, there is a
p-measure in V [G ∗ H].

2 Assume there is a p-point in V [G ∗ H], say Ḟ . Then by one of the previous
lemmas Ḟ [1B] is a saturated filter forced to be a subfilter of Ḟ .

3 Then Ḟ [1B] and U0 are not nearly coherent.

4 Then there is a club subset C ⊆ ω2 on which Ḟ [1B] reflects as a saturated
filter which is not nearly coherent with U0.

5 Since ⟨Aα : α ∈ S⟩ is a ♢(S)-guessing sequence, there is α ∈ S ∩ C such that
Aα guesses Ḟ [1B] at α.

6 Then Pα ⊩ Q̇α = SP(Aα), and Pα+1 forces that Ḟ [1B] can not be extended to
a p-point in further bounding extensions.

7 Then, Ḟ can not be a p-point.
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filter which is not nearly coherent with U0.

5 Since ⟨Aα : α ∈ S⟩ is a ♢(S)-guessing sequence, there is α ∈ S ∩ C such that
Aα guesses Ḟ [1B] at α.
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Thank you very much!


