Auerbach systems and Lusin sets

Kamil Ryduchowski under supervision of Piotr Koszmider

Institute of Mathematics of the Polish Academy of Sciences Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

Winter School in Abstract Analysis 2024

Auerbach systems

Definition

An Auerbach system of size κ in a Banach space X is a sequence $\left(u_{\alpha}, g_{\alpha}\right)_{\alpha<\kappa}$ such that:

- $u_{\alpha} \in X,\left\|u_{\alpha}\right\|=1$ for every $\alpha<\kappa$
- $g_{\alpha} \in X^{*},\left\|g_{\alpha}\right\|=1$ for every $\alpha<\kappa$

Auerbach systems

Definition

An Auerbach system of size κ in a Banach space X is a sequence $\left(u_{\alpha}, g_{\alpha}\right)_{\alpha<\kappa}$ such that:

- $u_{\alpha} \in X,\left\|u_{\alpha}\right\|=1$ for every $\alpha<\kappa$
- $g_{\alpha} \in X^{*},\left\|g_{\alpha}\right\|=1$ for every $\alpha<\kappa$
- $g_{\alpha}\left(u_{\beta}\right)=\delta_{\alpha, \beta}$ for all $\alpha, \beta<\kappa$

Motivation

Theorem (Hájek, Kania, Russo)
Assume CH . Then there is an equivalent renorming of $c_{0}\left(\omega_{1}\right)$ without uncountable Auerbach systems.

Motivation

Theorem (Hájek, Kania, Russo)
Assume $C H$. Then there is an equivalent renorming of $c_{0}\left(\omega_{1}\right)$ without uncountable Auerbach systems.

Is it true in ZFC or is the negation consistent?

Motivation

Theorem (Hájek, Kania, Russo)

Assume $C H$. Then there is an equivalent renorming of $c_{0}\left(\omega_{1}\right)$ without uncountable Auerbach systems.

Is it true in ZFC or is the negation consistent?
We will show that the statement is true provided that either of the following holds:

- $c f\left(2^{\omega}\right)=\omega_{1}$

Motivation

Theorem (Hájek, Kania, Russo)

Assume CH . Then there is an equivalent renorming of $c_{0}\left(\omega_{1}\right)$ without uncountable Auerbach systems.

Is it true in ZFC or is the negation consistent?
We will show that the statement is true provided that either of the following holds:

- $c f\left(2^{\omega}\right)=\omega_{1}$
- There is a strongly Lusin set, i.e. an uncountable set $L \subseteq \mathbb{R}$ such that for any sequence $\left(\lambda_{1}^{\alpha}, \ldots, \lambda_{n}^{\alpha}\right)_{\alpha<\omega_{1}}$ of pairwise disjoint n-tuples of elements of L (without repetitions) and any meager set $M \subseteq \mathbb{R}^{n}$ the intersection

$$
M \cap\left\{\left(\lambda_{1}^{\alpha}, \ldots, \lambda_{n}^{\alpha}\right): \alpha<\omega_{1}\right\}
$$

is countable.

Construction of the norm

For $x \in c_{0}\left(\omega_{1}\right)$ we will put

$$
\|x\|=\sup _{\alpha<\omega_{1}}\left|\varphi_{\alpha}(x)\right| .
$$

Construction of the norm

For $x \in c_{0}\left(\omega_{1}\right)$ we will put

$$
\|x\|=\sup _{\alpha<\omega_{1}}\left|\varphi_{\alpha}(x)\right| .
$$

For $\alpha<\omega_{1}$ fix an injection $e_{\alpha}: \alpha+1 \rightarrow \omega$ so that $e_{\alpha}(\alpha)=0$ and $e_{\alpha}=\left.{ }^{*} e_{\beta}\right|_{\alpha+1}$ for $\alpha<\beta<\omega_{1}$.

Construction of the norm

For $x \in c_{0}\left(\omega_{1}\right)$ we will put

$$
\|x\|=\sup _{\alpha<\omega_{1}}\left|\varphi_{\alpha}(x)\right|
$$

For $\alpha<\omega_{1}$ fix an injection $e_{\alpha}: \alpha+1 \rightarrow \omega$ so that $e_{\alpha}(\alpha)=0$ and $e_{\alpha}=\left.{ }^{*} e_{\beta}\right|_{\alpha+1}$ for $\alpha<\beta<\omega_{1}$.
Fix ω_{1} pairwise distinct real numbers $\left(\lambda_{\alpha}\right)_{\alpha<\omega_{1}}$ from some small interval $(0, \varepsilon)$.

Construction of the norm

For $x \in c_{0}\left(\omega_{1}\right)$ we will put

$$
\|x\|=\sup _{\alpha<\omega_{1}}\left|\varphi_{\alpha}(x)\right|
$$

For $\alpha<\omega_{1}$ fix an injection $e_{\alpha}: \alpha+1 \rightarrow \omega$ so that $e_{\alpha}(\alpha)=0$ and $e_{\alpha}=\left.{ }^{*} e_{\beta}\right|_{\alpha+1}$ for $\alpha<\beta<\omega_{1}$.
Fix ω_{1} pairwise distinct real numbers $\left(\lambda_{\alpha}\right)_{\alpha<\omega_{1}}$ from some small interval $(0, \varepsilon)$.
We define φ_{α} by its ℓ_{1}-representation

$$
\begin{gathered}
\varphi_{\alpha}(\xi)=\lambda_{\alpha}^{e_{\alpha}(\xi)} \text { for } \xi \leq \alpha \\
\varphi_{\alpha}(\xi)=0 \text { for } \alpha<\xi<\omega_{1}
\end{gathered}
$$

Hájek-Kania-Russo results

Assume that there is an Auerbach system $\left(u_{\alpha}, g_{\alpha}\right)_{\alpha<\omega_{1}}$ in the space $\left(c_{0}\left(\omega_{1}\right),\|\cdot\|\right)$. Then g_{α} is a finite linear combinations of $\left(\varphi_{\alpha}\right)_{\alpha<\omega_{1}}$, say

$$
g_{\alpha}=\sum_{i=1}^{N} c_{i}^{\alpha} \varphi_{\beta_{i}^{\alpha}} .
$$

Hájek-Kania-Russo results

Assume that there is an Auerbach system $\left(u_{\alpha}, g_{\alpha}\right)_{\alpha<\omega_{1}}$ in the space $\left(c_{0}\left(\omega_{1}\right),\|\cdot\|\right)$. Then g_{α} is a finite linear combinations of $\left(\varphi_{\alpha}\right)_{\alpha<\omega_{1}}$, say

$$
g_{\alpha}=\sum_{i=1}^{N} c_{i}^{\alpha} \varphi_{\beta_{i}^{\alpha}} .
$$

Furthermore, we may assume that either:
(1): $\left\{\beta_{1}^{\alpha}, \ldots, \beta_{N}^{\alpha}\right\}<\left\{\beta_{1}^{\gamma}, \ldots, \beta_{N}^{\gamma}\right\}$ for $\alpha<\gamma<\omega_{1}$

Hájek-Kania-Russo results

Assume that there is an Auerbach system $\left(u_{\alpha}, g_{\alpha}\right)_{\alpha<\omega_{1}}$ in the space $\left(c_{0}\left(\omega_{1}\right),\|\cdot\|\right)$. Then g_{α} is a finite linear combinations of $\left(\varphi_{\alpha}\right)_{\alpha<\omega_{1}}$, say

$$
g_{\alpha}=\sum_{i=1}^{N} c_{i}^{\alpha} \varphi_{\beta_{i}^{\alpha}} .
$$

Furthermore, we may assume that either:
(1): $\left\{\beta_{1}^{\alpha}, \ldots, \beta_{N}^{\alpha}\right\}<\left\{\beta_{1}^{\gamma}, \ldots, \beta_{N}^{\gamma}\right\}$ for $\alpha<\gamma<\omega_{1}$
or
(2): $\beta_{1}^{\alpha}=\delta$ for every $\alpha<\omega_{1}$ and $\left\{\beta_{2}^{\alpha}, \ldots, \beta_{N}^{\alpha}\right\}<\left\{\beta_{2}^{\gamma}, \ldots, \beta_{N}^{\gamma}\right\}$ for $\alpha<\gamma<\omega_{1}$.

Hájek-Kania-Russo results

Assume that there is an Auerbach system $\left(u_{\alpha}, g_{\alpha}\right)_{\alpha<\omega_{1}}$ in the space $\left(c_{0}\left(\omega_{1}\right),\|\cdot\|\right)$. Then g_{α} is a finite linear combinations of $\left(\varphi_{\alpha}\right)_{\alpha<\omega_{1}}$, say

$$
g_{\alpha}=\sum_{i=1}^{N} c_{i}^{\alpha} \varphi_{\beta_{i}^{\alpha}} .
$$

Furthermore, we may assume that either:
(1): $\left\{\beta_{1}^{\alpha}, \ldots, \beta_{N}^{\alpha}\right\}<\left\{\beta_{1}^{\gamma}, \ldots, \beta_{N}^{\gamma}\right\}$ for $\alpha<\gamma<\omega_{1}$
or
(2): $\beta_{1}^{\alpha}=\delta$ for every $\alpha<\omega_{1}$ and $\left\{\beta_{2}^{\alpha}, \ldots, \beta_{N}^{\alpha}\right\}<\left\{\beta_{2}^{\gamma}, \ldots, \beta_{N}^{\gamma}\right\}$ for $\alpha<\gamma<\omega_{1}$.
For our discussion today, focus on (1).

Basic idea

The very general idea is as follows: For every $\alpha \in\left(0, \omega_{1}\right)$ we have

$$
g_{\alpha}\left(u_{0}\right)=0
$$

Basic idea

The very general idea is as follows: For every $\alpha \in\left(0, \omega_{1}\right)$ we have

$$
g_{\alpha}\left(u_{0}\right)=0
$$

But that means that for uncountably many α s

$$
\sum_{i=1}^{N} c_{i}^{\alpha}\left(\sum_{\xi<\alpha} \lambda_{\beta_{i}^{\alpha}}^{e_{\beta_{i}^{\alpha}}^{(\xi)}} u_{0}(\xi)\right)=0
$$

Basic idea

The very general idea is as follows: For every $\alpha \in\left(0, \omega_{1}\right)$ we have

$$
g_{\alpha}\left(u_{0}\right)=0
$$

But that means that for uncountably many α s

$$
\sum_{i=1}^{N} c_{i}^{\alpha}\left(\sum_{\xi<\alpha} \lambda_{\beta_{i}^{\alpha}}^{e_{\beta_{i}^{\alpha}}(\xi)} u_{0}(\xi)\right)=0
$$

But surely we may pick uncountably many numbers λ_{α} in a way so that some of them don't satisfy that equation. Right?

The devil is in the details

In fact we work with N equations,

$$
g_{\alpha}\left(u_{1}\right)=g_{\alpha}\left(u_{2}\right)=\ldots=g_{\alpha}\left(u_{N}\right)=0
$$

The devil is in the details

In fact we work with N equations,

$$
g_{\alpha}\left(u_{1}\right)=g_{\alpha}\left(u_{2}\right)=\ldots=g_{\alpha}\left(u_{N}\right)=0
$$

Let $A=\operatorname{supp}\left(u_{1}\right) \cup \ldots \cup \operatorname{supp}\left(u_{N}\right)$ and find $f_{i}: A \rightarrow \mathbb{N}$ such that $\left.e_{\beta_{i}^{\alpha}}\right|_{A}=f_{i}$ for uncountably many $\alpha \mathrm{s}$.

The devil is in the details

In fact we work with N equations,

$$
g_{\alpha}\left(u_{1}\right)=g_{\alpha}\left(u_{2}\right)=\ldots=g_{\alpha}\left(u_{N}\right)=0
$$

Let $A=\operatorname{supp}\left(u_{1}\right) \cup \ldots \cup \operatorname{supp}\left(u_{N}\right)$ and find $f_{i}: A \rightarrow \mathbb{N}$ such that $\left.e_{\beta_{i}^{\alpha}}\right|_{A}=f_{i}$ for uncountably many $\alpha \mathrm{s}$.
Write those equations as

$$
\begin{gathered}
{\left[\begin{array}{cccc}
\sum_{\xi \in A} \lambda_{\beta_{1}^{\alpha}}^{f_{1}(\xi)} u_{1}(\xi) & \sum_{\xi \in A} \lambda_{\beta_{2}^{\alpha}}^{f_{2}(\xi)} u_{1}(\xi) & \ldots & \sum_{\xi \in A} \lambda_{\beta_{N}^{\alpha}}^{f_{N}(\xi)} u_{1}(\xi) \\
\sum_{\xi \in A} \lambda_{\beta_{1}^{\alpha}}^{f_{1}^{(\xi)}} u_{2}(\xi) & \sum_{\xi \in A} \lambda_{\beta_{2}^{\alpha}}^{f_{2}^{\alpha}(\xi)} u_{2}(\xi) & \ldots & \sum_{\xi \in A} \lambda_{\beta_{N}^{\alpha}(\xi)}^{f_{N}(\xi)} u_{2}(\xi) \\
\ldots & & & \\
\sum_{\xi \in A} \lambda_{\beta_{1}^{\alpha}}^{f_{1}(\xi)} u_{N}(\xi) & \sum_{\xi \in A} \lambda_{\beta_{2}^{\alpha}}^{f_{2}(\xi)} u_{N}(\xi) & \ldots & \sum_{\xi \in A} \lambda_{\beta_{N}^{\alpha}}^{f_{N}(\xi)} u_{N}(\xi)
\end{array}\right]\left[\begin{array}{c}
c_{1}^{\alpha} \\
c_{2}^{\alpha} \\
\ldots \\
c_{N}^{\alpha}
\end{array}\right]} \\
=\left[\begin{array}{c}
0 \\
0 \\
\ldots \\
0
\end{array}\right] .
\end{gathered}
$$

Someone stop these indices!

Consider $h:(0, \varepsilon)^{N} \rightarrow \mathbb{R}$ given by

$$
h\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\operatorname{det}\left[\begin{array}{ccc}
\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{1}(\xi) & \ldots & \sum_{\xi \in A} x_{N}^{f_{N}(\xi)} u_{1}(\xi) \\
\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{2}(\xi) & \ldots & \sum_{\xi \in A} x_{N}^{f_{N}(\xi)} u_{2}(\xi) \\
\ldots & & \\
\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{N}(\xi) & \ldots & \sum_{\xi \in A} x_{N}^{f_{N}(\xi)} u_{N}(\xi)
\end{array}\right]
$$

Someone stop these indices!

Consider $h:(0, \varepsilon)^{N} \rightarrow \mathbb{R}$ given by

$$
h\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\operatorname{det}\left[\begin{array}{ccc}
\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{1}(\xi) & \ldots & \sum_{\xi \in A} x_{N}^{f_{N}(\xi)} u_{1}(\xi) \\
\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{2}(\xi) & \ldots & \sum_{\xi \in A} x_{N}^{f_{N}(\xi)} u_{2}(\xi) \\
\ldots & & \\
\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{N}(\xi) & \ldots & \sum_{\xi \in A} x_{N}^{f_{N}(\xi)} u_{N}(\xi)
\end{array}\right]
$$

Let us denote by ψ_{i}^{x}, where $x \in(0, \delta)$ and $i=1, \ldots, N$, the functional on $c_{0}\left(\omega_{1}\right)$ given by its $\ell_{1}\left(\omega_{1}\right)$ representation: $\psi_{i}^{x}(\xi)=x^{f_{i}(\xi)}$ for $\xi \in A, \psi_{i}^{x}(\xi)=0$ otherwise.

Someone stop these indices!

Consider $h:(0, \varepsilon)^{N} \rightarrow \mathbb{R}$ given by

$$
h\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\operatorname{det}\left[\begin{array}{ccc}
\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{1}(\xi) & \ldots & \sum_{\xi \in A} x_{N}^{f_{N}(\xi)} u_{1}(\xi) \\
\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{2}(\xi) & \ldots & \sum_{\xi \in A} x_{N}^{f_{N}(\xi)} u_{2}(\xi) \\
\ldots & & \\
\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{N}(\xi) & \ldots & \sum_{\xi \in A} x_{N}^{f_{N}(\xi)} u_{N}(\xi)
\end{array}\right]
$$

Let us denote by ψ_{i}^{x}, where $x \in(0, \delta)$ and $i=1, \ldots, N$, the functional on $c_{0}\left(\omega_{1}\right)$ given by its $\ell_{1}\left(\omega_{1}\right)$ representation: $\psi_{i}^{x}(\xi)=x^{f_{i}(\xi)}$ for $\xi \in A, \psi_{i}^{x}(\xi)=0$ otherwise. Clearly

$$
h\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\operatorname{det}\left[\begin{array}{cccc}
\psi_{1}^{x_{1}}\left(u_{1}\right) & \psi_{2}^{x_{2}}\left(u_{1}\right) & \ldots & \psi_{N}^{x_{N}}\left(u_{1}\right) \\
\psi_{1}^{x_{1}}\left(u_{2}\right) & \psi_{2}^{x_{2}}\left(u_{2}\right) & \ldots & \psi_{N}^{x_{N}}\left(u_{2}\right) \\
\ldots & & & \psi_{1}^{x_{N}} \\
\psi_{1}^{x_{1}}\left(u_{N}\right) & \psi_{2}^{x_{2}}\left(u_{N}\right) & \ldots & \psi_{N}^{x_{N}}\left(u_{N}\right)
\end{array}\right] .
$$

Analytic functions...

Let us consider such determinants for small N. Start with $N=1$:

$$
\psi_{1}^{x_{1}}\left(u_{1}\right)=\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{1}(\xi)
$$

Analytic functions...

Let us consider such determinants for small N. Start with $N=1$:

$$
\psi_{1}^{x_{1}}\left(u_{1}\right)=\sum_{\xi \in A} x_{1}^{f_{1}(\xi)} u_{1}(\xi)
$$

By the definition this is a power series with non-zero coefficients, so there is a cofinite (in particular: comeager) set $J_{1} \subseteq(0, \varepsilon)$ such that it is non-zero for $x_{1} \in J_{1}$.

...and descriptive set theory

$$
\psi_{1}^{x_{1}}\left(u_{1}\right) \cdot \psi_{2}^{x_{2}}\left(u_{2}\right)-\psi_{1}^{x_{1}}\left(u_{2}\right) \cdot \psi_{2}^{x_{2}}\left(u_{1}\right)=\psi_{2}^{x_{2}}\left(\psi_{1}^{x_{1}}\left(u_{1}\right) u_{2}-\psi_{1}^{x_{1}}\left(u_{2}\right) u_{1}\right) .
$$

...and descriptive set theory

$\psi_{1}^{x_{1}}\left(u_{1}\right) \cdot \psi_{2}^{x_{2}}\left(u_{2}\right)-\psi_{1}^{x_{1}}\left(u_{2}\right) \cdot \psi_{2}^{x_{2}}\left(u_{1}\right)=\psi_{2}^{x_{2}}\left(\psi_{1}^{x_{1}}\left(u_{1}\right) u_{2}-\psi_{1}^{x_{1}}\left(u_{2}\right) u_{1}\right)$.
If $x_{1} \in J_{1}$, then the latter is the evaluation of a non-zero functional $\psi_{2}^{x_{2}}$ on a non-zero vector (as a nontrivial combination of linearly independent vectors), so we may repeat the argument with the power series.
$\psi_{1}^{x_{1}}\left(u_{1}\right) \cdot \psi_{2}^{x_{2}}\left(u_{2}\right)-\psi_{1}^{x_{1}}\left(u_{2}\right) \cdot \psi_{2}^{x_{2}}\left(u_{1}\right)=\psi_{2}^{x_{2}}\left(\psi_{1}^{x_{1}}\left(u_{1}\right) u_{2}-\psi_{1}^{x_{1}}\left(u_{2}\right) u_{1}\right)$.
If $x_{1} \in J_{1}$, then the latter is the evaluation of a non-zero functional $\psi_{2}^{x_{2}}$ on a non-zero vector (as a nontrivial combination of linearly independent vectors), so we may repeat the argument with the power series. Therefore for every $x_{1} \in J_{1}$ there is a cofinite set $K\left(x_{1}\right) \subseteq(0, \varepsilon)$ such that h_{2} is non-zero on (x_{1}, x_{2}) for $x_{2} \in K\left(x_{1}\right)$.

...and descriptive set theory

$\psi_{1}^{x_{1}}\left(u_{1}\right) \cdot \psi_{2}^{x_{2}}\left(u_{2}\right)-\psi_{1}^{x_{1}}\left(u_{2}\right) \cdot \psi_{2}^{x_{2}}\left(u_{1}\right)=\psi_{2}^{x_{2}}\left(\psi_{1}^{x_{1}}\left(u_{1}\right) u_{2}-\psi_{1}^{x_{1}}\left(u_{2}\right) u_{1}\right)$.
If $x_{1} \in J_{1}$, then the latter is the evaluation of a non-zero functional $\psi_{2}^{x_{2}}$ on a non-zero vector (as a nontrivial combination of linearly independent vectors), so we may repeat the argument with the power series. Therefore for every $x_{1} \in J_{1}$ there is a cofinite set $K\left(x_{1}\right) \subseteq(0, \varepsilon)$ such that h_{2} is non-zero on (x_{1}, x_{2}) for $x_{2} \in K\left(x_{1}\right)$. By the Kuratowski-Ulam theorem, there is a comeager set $M \subseteq(0, \delta)^{2}$ such that $h_{2}\left(x_{1}, x_{2}\right) \neq 0$ for $\left(x_{1}, x_{2}\right) \in M$.
$\psi_{1}^{x_{1}}\left(u_{1}\right) \cdot \psi_{2}^{x_{2}}\left(u_{2}\right)-\psi_{1}^{x_{1}}\left(u_{2}\right) \cdot \psi_{2}^{x_{2}}\left(u_{1}\right)=\psi_{2}^{x_{2}}\left(\psi_{1}^{x_{1}}\left(u_{1}\right) u_{2}-\psi_{1}^{x_{1}}\left(u_{2}\right) u_{1}\right)$.
If $x_{1} \in J_{1}$, then the latter is the evaluation of a non-zero functional $\psi_{2}^{x_{2}}$ on a non-zero vector (as a nontrivial combination of linearly independent vectors), so we may repeat the argument with the power series. Therefore for every $x_{1} \in J_{1}$ there is a cofinite set $K\left(x_{1}\right) \subseteq(0, \varepsilon)$ such that h_{2} is non-zero on (x_{1}, x_{2}) for $x_{2} \in K\left(x_{1}\right)$. By the Kuratowski-Ulam theorem, there is a comeager set $M \subseteq(0, \delta)^{2}$ such that $h_{2}\left(x_{1}, x_{2}\right) \neq 0$ for $\left(x_{1}, x_{2}\right) \in M$.
Proceeding by induction we show that there is a comeager set $K \subseteq(0, \delta)^{N}$ such that $h\left(x_{1}, \ldots, x_{n}\right) \neq 0$ for $\left(x_{1}, \ldots, x_{n}\right) \in K$. Therefore if $\left\{\lambda_{\alpha}: \alpha<\omega_{1}\right\}$ is strongly Lusin, we may pick $\left(\lambda_{\beta_{1}^{\alpha}}, \lambda_{\beta_{2}^{\alpha}}, \ldots, \lambda_{\beta_{N}^{\alpha}}\right) \in K$.

Holes and hopes

- Do we need extra set-theoretic assumptions? ${ }^{1}$
${ }^{1}$ To solve this problem. We obviously need them to keep our jobs.

Holes and hopes

- Do we need extra set-theoretic assumptions? ${ }^{1}$
- Study the structure of the set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in(0, \varepsilon)^{N}\right.$: that determinant is zero $\}$.
${ }^{1}$ To solve this problem. We obviously need them to keepour jobs.

Holes and hopes

- Do we need extra set-theoretic assumptions? ${ }^{1}$
- Study the structure of the set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in(0, \varepsilon)^{N}\right.$: that determinant is zero $\}$.
- Is every $A \in(\operatorname{Fin}(\mathbb{R}) \otimes \operatorname{Fin}(\mathbb{R})) \otimes \ldots \otimes \operatorname{Fin}(\mathbb{R})$ covered by a set of such form?
${ }^{1}$ To solve this problem. We obviously need them to keepour jobs.

Holes and hopes

- Do we need extra set-theoretic assumptions? ${ }^{1}$
- Study the structure of the set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in(0, \varepsilon)^{N}\right.$: that determinant is zero $\}$.
- Is every $A \in(\operatorname{Fin}(\mathbb{R}) \otimes \operatorname{Fin}(\mathbb{R})) \otimes \ldots \otimes \operatorname{Fin}(\mathbb{R})$ covered by a set of such form?
- Is there (in ZFC) a version of a strongly Lusin set for Fubini products of $\operatorname{Fin}(\mathbb{R})$?
${ }^{1}$ To solve this problem. We obviously need them to keepour jobs.

Holes and hopes

- Do we need extra set-theoretic assumptions? ${ }^{1}$
- Study the structure of the set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in(0, \varepsilon)^{N}\right.$: that determinant is zero $\}$.
- Is every $A \in(\operatorname{Fin}(\mathbb{R}) \otimes \operatorname{Fin}(\mathbb{R})) \otimes \ldots \otimes \operatorname{Fin}(\mathbb{R})$ covered by a set of such form?
- Is there (in ZFC) a version of a strongly Lusin set for Fubini products of $\operatorname{Fin}(\mathbb{R})$?
- How even start a construction of a ccc forcing notion which adds an Auerbach system?
${ }^{1}$ To solve this problem. We obviously need them to keepour jobs.

