Ideal analytic sets

Łukasz Mazurkiewicz Szymon Żeberski

Wrocław University of Science and Technology lukasz.mazurkiewicz@pwr.edu.pl

Winter School in Abstract Analysis 2024 31.01.2024

• □ ▶ • □ ▶ • □ ▶

Analytic complete sets

Definition

Let $A \subseteq X$, $B \subseteq Y$. We say, that B is *Borel reducible* to A if there exists a Borel map $f : Y \to X$ such that $f^{-1}[A] = B$.

Łukasz Mazurkiewicz Ideal analytic sets

・ロト ・ 理ト ・ ヨト・

æ

Definition

Let $A \subseteq X$, $B \subseteq Y$. We say, that B is *Borel reducible* to A if there exists a Borel map $f : Y \to X$ such that $f^{-1}[A] = B$.

Definition

A set $A \subseteq X$ is called Σ_1^1 -complete if A is analytic and for every Polish space Y and every analytic $B \subseteq Y$, B is Borel reducible to A.

<ロト <回ト < 回ト :

Definition

Let $A \subseteq X$, $B \subseteq Y$. We say, that B is *Borel reducible* to A if there exists a Borel map $f : Y \to X$ such that $f^{-1}[A] = B$.

Definition

A set $A \subseteq X$ is called Σ_1^1 -complete if A is analytic and for every Polish space Y and every analytic $B \subseteq Y$, B is Borel reducible to A.

Remark

If analytic set *B* is Borel reducible to *A* and *B* is Σ_1^1 -complete, then *A* is also Σ_1^1 complete.

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ideals on ω

For defining ideals we will use approach from [1].

Definition

Let $\mathcal{F} \subseteq [\omega]^{\omega}$. For a function $\rho : \mathcal{F} \to [\omega]^{\omega}$ we define a family

$$\mathcal{I}_{
ho} = \{ \pmb{A} \subseteq \omega : (orall \pmb{F} \in \mathcal{F})(
ho(\pmb{F}) \nsubseteq \pmb{A}) \} \,.$$

<ロト < 回 > < 回 > < 回 > < 回 > <

2

Ideals on ω

For defining ideals we will use approach from [1].

Definition

Let $\mathcal{F} \subseteq [\omega]^{\omega}$. For a function $\rho : \mathcal{F} \to [\omega]^{\omega}$ we define a family

$$\mathcal{I}_{
ho} = \left\{ oldsymbol{A} \subseteq \omega : (orall oldsymbol{F} \in \mathcal{F})(
ho(oldsymbol{F})
ot \subseteq oldsymbol{A})
ight\}.$$

Remark

If ${\mathcal I}$ is an ideal on $\omega,$ then it admits a function

$$\rho_{\mathcal{I}}: \mathcal{I}^+ \to [\omega]^{\omega}$$
 given by $\rho_{\mathcal{I}}(\mathbf{A}) = \mathbf{A}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ideals on ω

For defining ideals we will use approach from [1].

Definition

Let $\mathcal{F} \subseteq [\omega]^{\omega}$. For a function $\rho : \mathcal{F} \to [\omega]^{\omega}$ we define a family

$$\mathcal{I}_{
ho} = \left\{ oldsymbol{A} \subseteq \omega : (orall oldsymbol{F} \in \mathcal{F})(
ho(oldsymbol{F})
ot \subseteq oldsymbol{A})
ight\}.$$

Remark

If ${\mathcal I}$ is an ideal on $\omega,$ then it admits a function

$$\rho_{\mathcal{I}}: \mathcal{I}^+ \to [\omega]^{\omega}$$
 given by $\rho_{\mathcal{I}}(\mathcal{A}) = \mathcal{A}$.

Fact (Filipów, Kowitz, Kwela)

If ρ is continuous and \mathcal{F} is closed, then the ideal \mathcal{I}_{ρ} is coanalytic.

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲

1 Fix an injection $\alpha : \omega^{<\omega} \to \omega$ satisfying

$$\sigma \subseteq \tau \Rightarrow \alpha(\sigma) \le \alpha(\tau).$$

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

1 Fix an injection $\alpha : \omega^{<\omega} \to \omega$ satisfying $\sigma \subseteq \tau \Rightarrow \alpha(\sigma) \le \alpha(\tau).$

2 Define a function

$$f(T) = \bigcup_{\sigma \in T} \rho(\{\alpha(\sigma \restriction k) : k < |\sigma|\}).$$

Łukasz Mazurkiewicz Ideal analytic sets

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

1 Fix an injection $\alpha : \omega^{<\omega} \to \omega$ satisfying $\sigma \subseteq \tau \Rightarrow \alpha(\sigma) \le \alpha(\tau).$

2 Define a function

$$f(T) = \bigcup_{\sigma \in T} \rho(\{\alpha(\sigma \restriction k) : k < |\sigma|\}).$$

3 Note that if $\tau \in [T]$, then

$$\rho(\{\alpha(\tau \restriction k) : k \in \omega\}) \subseteq f(T).$$

▲ ■ ▶ ▲ 国 ▶ ▲ 国 ▶ ● 国 ● の Q @

1 Fix an injection $\alpha : \omega^{<\omega} \to \omega$ satisfying $\sigma \subseteq \tau \Rightarrow \alpha(\sigma) \le \alpha(\tau).$

2 Define a function

$$f(T) = \bigcup_{\sigma \in T} \rho(\{ \alpha(\sigma \restriction k) : k < |\sigma| \}).$$

3 Note that if $\tau \in [T]$, then

$$\rho(\{\alpha(\tau \restriction k) : k \in \omega\}) \subseteq f(T).$$

3.5 3

4 Prove that if $\rho(F) \subseteq f(T)$ for some $F \in \mathcal{F}$, then $[T] \neq \emptyset$.

Proposition (folklore)

The summable ideal

$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n+1} < \infty \right\}$$

is F_{σ} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Proposition (folklore)

The summable ideal

$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega : \sum_{n \in A} \frac{1}{n+1} < \infty \right\}$$

is F_{σ} .

Proposition (folklore)

A set $A \subseteq \omega$ is called an AP-set if it contains an arithmetic progressions of arbitrary finite length. The van der Waerden ideal

$$\mathcal{W} = \{ \mathbf{A} \subseteq \omega : \mathbf{A} \text{ is not an AP-set} \}$$

is F_{σ} .

A B A B A
 A
 B
 A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

臣

Good news

Theorem (M., Żeberski)

Following ideals are Π_1^1 -complete:

- Ramsey ideal $\mathcal{R} = \mathcal{I}_r$, where $r(F) = [F]^2$,
- Hindman ideal $\mathcal{H} = \mathcal{I}_{FS}$, where

$$FS(F) = \left\{\sum_{n \in B} n : B \in [F]^{<\omega} \setminus \emptyset \right\},$$

• ideal
$$\mathcal{H}_2 = \mathcal{I}_{FS_2}$$
, where

$$FS_2(F) = \left\{\sum_{n\in B} n: B\in [F]^2\right\},$$

• ideal $\mathcal{D} = \mathcal{I}_{\Delta}$, where

$$\Delta(F) = \{a - b : a, b \in F, a > b\}$$

Theorem (M., Żeberski)

The family \mathcal{I}_M , given by

 $M(F) = \{ \sigma \in F^{<\omega} : \sigma \text{ is increasing} \}$

is Π_1^1 -complete.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト ー

2

Theorem (M., Żeberski)

The family \mathcal{I}_M , given by

 $M(F) = \{ \sigma \in F^{<\omega} : \sigma \text{ is increasing} \}$

is Π_1^1 -complete.

Definition

A tree $T \in \text{Tree}_{\omega}$ is Mathias if there is $\sigma \in T$ and $F \in [\omega]^{\omega}$ such that

$$T_{\sigma}=M(F).$$

・ロト ・ 一下・ ・ ヨト・

크

Theorem (M., Żeberski)

The family \mathcal{I}_M , given by

 $M(F) = \{ \sigma \in F^{<\omega} : \sigma \text{ is increasing} \}$

is Π_1^1 -complete.

Definition

A tree $T \in \text{Tree}_{\omega}$ is Mathias if there is $\sigma \in T$ and $F \in [\omega]^{\omega}$ such that

$$T_{\sigma}=M(F).$$

Corollary

A family of all trees containing a Mathias tree is Σ_1^1 -complete.

Image: A marked and A marked

R. Filipów, K. Kowitz, A. Kwela

A unified approach to Hindman, Ramsey and van der Waerden spaces

preprint (2023), arXiv:2307.06907 [math.GN]

Rafał Filipów (2013) On Hindman spaces and the Bolzano-Weierstrass property *Topology Appl.* 160, no. 15

Alexander S. Kechris (1995) Classical Descriptive Set Theory Springer-Verlag New York, Inc.

イロト イヨト イヨト イヨト

Thank You for attention

And we invite you to 2nd Wrocław Logic Conference, A Row Review R