Non-meager filters

Daria Perkowska

Uniwersytet Wrocławski

1. Types of filters

2. Hierarchy of filters

3. Filters and forcing

Types of filters

For a filter \mathcal{F} we define $\mathcal{P}(\omega)/\mathcal{F}$ as the quotient algebra of the equivalence relation defined by

$$A \sim B \iff A \triangle B \in \mathcal{F}^c,$$

where \mathcal{F}^{c} denotes the ideal dual to the filter \mathcal{F} , i.e.

$$\mathcal{F}^{\mathsf{c}} = \{ \mathsf{I} \subseteq \omega \colon \mathsf{I}^{\mathsf{c}} \in \mathcal{F} \}$$

Types of filters

- A filter *F* supports a measure if *F* = {*A* : μ(*A*) = 1} for some probability measure μ on ω.
- A filter \mathcal{F} is **ccc** if $\mathcal{P}(\omega)/\mathcal{F}$ is ccc.
- A filter ${\cal F}$ is **non-meager** if it is non-meager as a subset of 2^{ω}
- A filter \mathcal{F} is **Fréchet** if it contains all cofinite subsets of ω .

Theorem

If ${\mathcal F}$ is an ultrafilter, then ${\mathcal F}$ supports measure.

Theorem

If \mathcal{F} is an ultrafilter, then \mathcal{F} supports measure.

Proof

Take any ultrafilter ${\cal U}$ and measure μ on ω such that:

- $\mu(A) = 0$ iff $A \notin \mathcal{U}$
- $\mu(A) = 1$ iff $A \in \mathcal{U}$

With this measure we can write \mathcal{U} as $\{A : \mu(A) = 1\}$, so \mathcal{U} is a filter supporting measure.

Proposition

There exists a filter that supports measure but which is not an ultrafilter.

Proposition

There exists a filter that supports measure but which is not an ultrafilter.

Proof

Take a non-principal ultrafilter \mathcal{U} . Let

$$\mathcal{F} = \{A : \lim_{n \to \mathcal{U}} \frac{|A \cap n|}{n} = 1\}.$$

Then, the family \mathcal{F} is a filter

Proposition

There exists a filter that supports measure but which is not an ultrafilter.

Proof

Take a non-principal ultrafilter \mathcal{U} . Let

$$\mathcal{F} = \{A : \lim_{n \to \mathcal{U}} \frac{|A \cap n|}{n} = 1\}.$$

Then, the family \mathcal{F} is a filter, but clearly not an ultrafilter.

Proposition

Every filter \mathcal{F} supporting measure is ccc.

Proposition

Every filter \mathcal{F} supporting measure is ccc.

Proof

Since ${\mathcal F}$ supports measure, then there exists μ such that

$$\mathcal{F} = \{ A : \mu(A) = 1 \}.$$

So we have that the elements of the dual ideal are the sets of measure 0. Suppose, towards the contradiction, that we can find an uncountable family $(A_{\alpha})_{\alpha < \omega_1}$ of subsets of ω such that $\mu(A_{\alpha} \triangle A_{\beta}) = 0$ for each $\alpha \neq \beta$ and $\mu(A_{\alpha}) > 0$ for each $\alpha < \omega_1$. Without loss of generality, passing to an uncountable subfamily if needed, we may assume that there is a > 0 such that $\mu(A_{\alpha}) > a$ for each α . This is a contradiction as $\mu(A_0 \cup \cdots \cup A_m) > 1$ for m > 1/a.

Theorem

There is a filter which is ccc but does not support a measure.

Theorem

There is a filter which is ccc but does not support a measure.

Proof

First, note that there is a complete Boolean algebra \mathbb{A} of size \mathfrak{c} which is ccc but which does not support a measure (i.e. there is no measure μ such that $\mu(A) > 0$ for each nonzero element A of \mathbb{A}), e.g. the Gaifman algebra.

Theorem

There is a filter which is ccc but does not support a measure.

Proof

First, note that there is a complete Boolean algebra \mathbb{A} of size \mathfrak{c} which is ccc but which does not support a measure (i.e. there is no measure μ such that $\mu(A) > 0$ for each nonzero element A of \mathbb{A}), e.g. the Gaifman algebra. We claim that there is a homomorphism $\varphi \colon \mathcal{P}(\omega) \to \mathbb{A}$ which is onto. This follows from the Fichtencholz-Kantorowicz theorem saying that there is an independent family $(X_{\alpha})_{\alpha < \mathfrak{c}}$ of subsets of ω . We can define a function $f \colon \{X_{\alpha} \colon \alpha < \mathfrak{c}\} \to \mathbb{A}$ which is onto. Then, by Sikorski extension theorem, we can extend f to a homomorphism $\varphi \colon \mathcal{P}(\omega) \to \mathbb{A}$. Let \mathcal{F} be the filter dual to the kernel of φ . Then $\mathcal{P}(\omega)/\mathcal{F}$ is isomorphic to \mathbb{A} and so \mathcal{F} is a ccc filter which does not support a measure.

Proposition

Every ccc filter is non-meager.

Proposition

Every ccc filter is non-meager.

Theorem

A filter \mathcal{F} is meager if and only if there is an interval partition (I_n) such that for each infinite N we have $\bigcup_{n \in N} I_n \notin \mathcal{F}^c$.

Proposition

Every ccc filter is non-meager.

Theorem

A filter \mathcal{F} is meager if and only if there is an interval partition (I_n) such that for each infinite N we have $\bigcup_{n \in \mathbb{N}} I_n \notin \mathcal{F}^c$.

Proposition

There is a non-meager filter which is not ccc.

Hierarchy of filters

We will force with a complete Boolean algebra \mathbb{A} . Let G be an \mathbb{A} -generic. By $\dot{\mathcal{U}}$ we will denote an \mathbb{A} -name for an non-principal ultrafilter in $\mathcal{P}(\omega) \cap V[G]$.

We will force with a complete Boolean algebra \mathbb{A} . Let G be an \mathbb{A} -generic. By $\dot{\mathcal{U}}$ we will denote an \mathbb{A} -name for an non-principal ultrafilter in $\mathcal{P}(\omega) \cap V[G]$.

Example

Suppose $\dot{\mathcal{U}}$ is such that $1 \Vdash \dot{\mathcal{U}}$ is non-principal. Then $1 \Vdash \dot{\mathcal{U}}$ extends the filter consisting of co-finite subsets of ω .

We will force with a complete Boolean algebra \mathbb{A} . Let G be an \mathbb{A} -generic. By $\dot{\mathcal{U}}$ we will denote an \mathbb{A} -name for an non-principal ultrafilter in $\mathcal{P}(\omega) \cap V[G]$.

Example

Suppose $\dot{\mathcal{U}}$ is such that $1 \Vdash \dot{\mathcal{U}}$ is non-principal. Then $1 \Vdash \dot{\mathcal{U}}$ extends the filter consisting of co-finite subsets of ω .

Example

Consider the forcing with $\mathcal{P}(\omega)/\text{fin.}$ This forcing adds generically an ultrafilter. Consider the name

$$\dot{\mathcal{U}} = \{ \langle A, A \rangle \colon A \in \mathcal{P}(\omega) / fin \}.$$

A generic 'reads' this name as an ultrafilter on $\mathcal{P}(\omega)$. Notice that if $A \in \mathcal{P}(\omega) \cap V$ is a co-infinite set, then $A^c \Vdash A \notin \dot{\mathcal{U}}$. So, there is no ground model filter \mathcal{F} bigger than the Frechet filter for which $1 \Vdash \dot{\mathcal{U}}$ extends \mathcal{F} .

Theorem

Let $\dot{\mathcal{U}}$ be as above. There exists a filter \mathcal{F} on ω in V such that:

- $1 \Vdash \dot{\mathcal{U}}$ extends \mathcal{F} ,
- there exists an injective Boolean homomorphism
 ψ: P(ω)/F → A.

Theorem

Let $\dot{\mathcal{U}}$ be as above. There exists a filter \mathcal{F} on ω in V such that:

- $1 \Vdash \dot{\mathcal{U}}$ extends \mathcal{F} ,
- there exists an injective Boolean homomorphism
 ψ: P(ω)/F → A.

Corollary

If \mathbb{A} is *ccc*, then every ultrafilter from $\mathcal{P}(\omega) \cap V[G]$ extends a ccc filter \mathcal{F} from the ground model.

Theorem

Let $\dot{\mathcal{U}}$ be as above. There exists a filter \mathcal{F} on ω in V such that:

- $1 \Vdash \dot{\mathcal{U}}$ extends \mathcal{F} ,
- there exists an injective Boolean homomorphism $\psi: \mathcal{P}(\omega)/\mathcal{F} \to \mathbb{A}.$

Corollary

If \mathbb{A} is *ccc*, then every ultrafilter from $\mathcal{P}(\omega) \cap V[G]$ extends a ccc filter \mathcal{F} from the ground model.

Corollary

If \mathbb{B} is the random forcing and G is a \mathbb{B} -generic, then every ultrafilter from V[G] extends a measure supporting filter \mathcal{F} from ground model.

Proposition

For an A-name $\dot{\mathcal{U}}$ for an ultrafilter let $\phi \colon \mathcal{P}(\omega) \to \mathbb{A}$ be defined by $\phi(A) = \llbracket A \in \dot{\mathcal{U}} \rrbracket$. Then ϕ is a Boolean homomorphism.

Proposition

For an A-name $\dot{\mathcal{U}}$ for an ultrafilter let $\phi \colon \mathcal{P}(\omega) \to \mathbb{A}$ be defined by $\phi(A) = \llbracket A \in \dot{\mathcal{U}} \rrbracket$. Then ϕ is a Boolean homomorphism.

Proof of the theorem

Let ϕ be the homomorphism promised by the above proposition. Let

$$\mathcal{F} = \{ F \in \mathcal{P}(\omega) \cap V : \phi(F) = 1 \}.$$

Notice that \mathcal{F} is a filter on ω (as ϕ is a Boolean homomorphism). **Claim.** $1 \Vdash \dot{\mathcal{U}}$ extends \mathcal{F} .

Indeed, if $\phi(F) = 1$, then $\llbracket F \in \dot{\mathcal{U}} \rrbracket = 1$ and so $1 \Vdash F \in \dot{\mathcal{U}}$.

Claim. There exists an injective Boolean homomorphism

 $\psi \colon \mathcal{P}(\omega)/\mathcal{F} \to \mathbb{A}.$

Define $\psi \colon \mathcal{P}(\omega)/\mathcal{F} \to \mathbb{A}$ by

$$\psi([A]_{\mathcal{F}}) = \phi(A).$$

Since ϕ is homomorphism we only have to check that ψ is well defined and it is injective.

ψ is well defined Take A, B such that [A]_F = [B]_F. Then AΔB ∈ ker(φ), so φ(AΔB) = 0. Hence φ(A)Δφ(B) = 0, so ψ([A]_F) = ψ([B]_F).
ψ is injective Take [A]_F, [B]_F, such that [A]_F ≠ [B]_F, then AΔB ∉ ker(φ) so φ(A)Δφ(B) ≠ 0. Hence ψ([A]_F) ≠ ψ([B]_F).