In the talk I will consider filters on ω in the measurability (and complexity) context. Also, one can distinguish some natural subclasses of non-meager filters. We say that a filter \mathcal{F} is *ccc* if $\mathcal{P}(\omega)/\mathcal{F}$ is *ccc*. Similarly, we say that a filter supports a measure if there is a probability measure μ on ω such that $\mathcal{F} = \{A : \mu(A) = 1\}$. I will show that every ultrafilter supports a measure, every measure supporting filter is *ccc* and every *ccc* filter is non-meager. So, one can think about these notions as forming some hierarchy of complexity of filters. This hierarchy is strict. Next I will show that for every ultrafilter from the forcing extension (by \mathbb{A}), there is a ground model filter \mathcal{F} such that the ultrafilter extends \mathcal{F} and there is an injective Boolean homomorphism $\varphi: P(\omega)/F \to \mathbb{A}$.