Keisler's theorem and cardinal invariants at uncoutable cardinals

Tatsuya Goto

Kobe University

February 1, 2024

Keisler-Shelah theorem

Keisler-Shelah theorem

For every (first-order) language \mathcal{L} and two \mathcal{L} -structures \mathcal{A}, \mathcal{B} , the following are equivalent:

- \bullet $\mathcal{A} \equiv \mathcal{B}$ (that is, \mathcal{A} and \mathcal{B} are elementarily equivalent).
- **2** There is a nonprincipal ultrafilter \mathcal{U} over an infinite set such that the ultrapowers $\mathcal{A}^{\mathcal{U}}$ and $\mathcal{B}^{\mathcal{U}}$ are isomorphic.

 $(2) \Rightarrow (1)$ is obvious. Keisler proved $(1) \Rightarrow (2)$ under GCH. Shelah eliminated GCH assumption.

How about versions with restrictions on the cardinalities of languages, structures and the underlying sets of ultrafilters?

Keisler-Golshani-Shelah theorem

Keisler–Golshani–Shelah theorem (Keisler, Golshani and Shelah)

The following are equivalent:

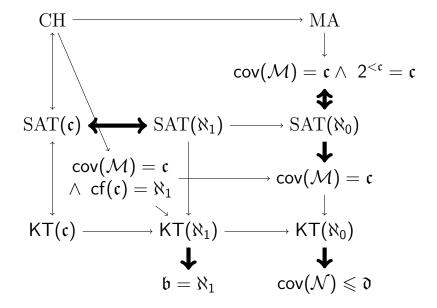
- The continuum hypothesis.
- Proof of the size of the size
- $(1) \Rightarrow (2)$ was proved by Keisler (1961) and $(2) \Rightarrow (1)$ is due to Golshani and Shelah (2022).

The principles

Let λ be a cardinal.

- We say $\mathsf{KT}(\lambda)$ holds if for every countable language $\mathcal L$ and $\mathcal L$ -structures $\mathcal A,\mathcal B$ of size $\leqslant \lambda$ which are elementarily equivalent, there exists an ultrafilter $\mathcal U$ over ω such that $\mathcal A^\omega/\mathcal U\simeq \mathcal B^\omega/\mathcal U$.
- We say $SAT(\lambda)$ holds if there exists an ultrafilter \mathcal{U} over ω such that for every countable language \mathcal{L} and every sequence of \mathcal{L} -structures $(\mathcal{A}_i)_{i\in\omega}$ with each \mathcal{A}_i of size $\leqslant \lambda$, $\prod_{i\in\omega} \mathcal{A}_i/\mathcal{U}$ is saturated.

The implications (thick lines are due to the speaker)



Let's generalize these principles much more!

The generalized principles

Let κ , μ and λ be infinite cardinals.

$$\mathsf{KT}^{\mu}_{\kappa}(\lambda) \iff$$
 for every language $\mathcal L$ of size $\leqslant \mu$ and every elementarily equivalent $\mathcal L$ -structures $\mathcal A, \mathcal B$ of size $\leqslant \lambda$, there is a uniform ultrafilter $\mathcal U$ on κ such that $\mathcal A^{\mathcal U} \simeq \mathcal B^{\mathcal U}$.

$$\mathrm{SAT}^{\mu}_{\kappa}(\lambda) \iff$$
 there is a uniform ultrafilter \mathcal{U} on κ such that for every language \mathcal{L} of size $\leqslant \mu$ and every sequence $\langle \mathcal{A}_i : i < \kappa \rangle$ of infinite \mathcal{L} -str. of size $\leqslant \lambda$, the ultraproduct $\left(\prod_{i \in \mathcal{I}} \mathcal{A}_i\right)/\mathcal{U}$ is saturated.

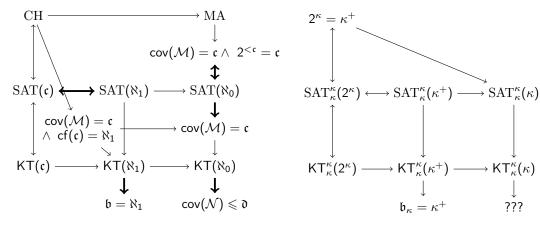
Keisler-Shelah theorem in this context

The statement of Keisler-Shelah theorem can be said as $KT_{2^{\kappa}}^{2^{\kappa}}(\kappa)$.

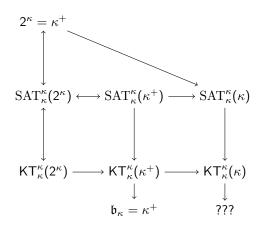
KT^{size} of language (size of structures)

The implications

The countable case



The general case



Results

KTsize of language (size of structures)

- SAT^{μ}_{κ}(λ) implies KT^{μ}_{κ}(λ).
- \circ $\neg SAT_{\kappa}^{\aleph_0}(\kappa^{++}).$
- \bullet $\neg \mathsf{KT}_{\kappa}^{\aleph_0}(\kappa^{++}).$
- 5 The following are equivalent.

a.
$$2^{\kappa} = \kappa^+$$
. b. $SAT^{\mu}_{\kappa}(2^{\kappa})$. c. $SAT^{\mu}_{\kappa}(\kappa^+)$. d. $KT^{\mu}_{\kappa}(2^{\kappa})$.

- **6** SAT $_{\kappa}^{\aleph_0}(\kappa)$ implies $2^{<2^{\kappa}}=2^{\kappa}$.
- When κ is regular, $\mathsf{KT}_{\kappa}^{\aleph_0}(\kappa^+)$ implies $\mathfrak{b}_{\kappa} = \kappa^+$.

The meager ideal on κ

Let κ be a regular cardinal. Topologize $2^{\kappa} = \{0,1\}^{\kappa}$ by $<\kappa$ -box topology, where $\{0,1\}$ is the discrete space. Then the meager ideal on 2^{κ} is κ -additive ideal generated by nowhere dense sets of 2^{κ} .

Let $cov(\mathcal{M}_{\kappa})$ be the covering number of the meager ideal of 2^{κ} .

- When κ is a regular cardinal, $cov(\mathcal{M}_{\kappa}) = 2^{\kappa}$ implies $\mathsf{KT}_{\kappa}^{\mu}(\kappa)$ for $\mu < 2^{\kappa}$.
- When κ is an **inaccessible** cardinal, $SAT_{\kappa}^{\aleph_0}(\kappa)$ implies $cov(\mathcal{M}_{\kappa}) = 2^{\kappa}$.
 - We showed this result by using van der Vlugt's theorem extending Bartoszynski's characterization of $cov(\mathcal{M})$ in terms of slaloms.
- **3** When κ is a regular cardinal, $cov(\mathcal{M}_{\kappa}) = 2^{<2^{\kappa}} = 2^{\kappa}$ implies $SAT_{\kappa}^{\kappa}(\kappa)$.

van der Vlugt's theorem Let κ be an inaccessible cardinal. Then $cov(\mathcal{M}_{\kappa}) \geqslant \lambda$ holds iff for every $X \subseteq \kappa^{\kappa}$ of size $<\lambda$ there is $S \in \prod_{i < \kappa} [\kappa]^{[\leqslant |i| + 1}$ for all $x \in X$ we have $\{i < \kappa : x(i) \in S(i)\}$ is cofinal in κ .

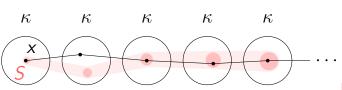


Figure: photo © Ola Matsson
— Trysil, Hedmark Fylke, NO

Theomem (G.) Let κ be inaccessible. Then $SAT_{\kappa}^{\aleph_0}(\kappa)$ implies $cov(\mathcal{M}_{\kappa}) = 2^{\kappa}$.

Let \mathcal{U} be a regular ultrafilter on κ witnessing $\mathrm{SAT}_{\kappa}^{\aleph_0}(\kappa)$. Let $X \subseteq \kappa^{\kappa}$ of size $<2^{\kappa}$. Let $\mathcal{L} = \{\subseteq\}$. For $i < \kappa$, define a \mathcal{L} -structure \mathcal{A}_i by $\mathcal{A}_i = ([\kappa]^{<|i|}, \subseteq)$. For $x \in \kappa^{\kappa}$, we define $S_x = \langle \{x(i)\} : i < \kappa \rangle$. Put $\mathcal{A}_* = \prod_{i < \kappa} \mathcal{A}_i / \mathcal{U}$. Consider a set of formulas p(S) defined by

$$p(S) = \{ \lceil [S_x] \subseteq S \rceil : x \in X \}.$$

Then p(S) is finitely satisfiable and number of parameters occurring in p(S) is $<2^{\kappa}$. Thus, by $\mathrm{SAT}_{\kappa}^{\aleph_0}(\kappa)$, we can take $[S] \in \mathcal{A}_*$ realizing p(S).

Then we have

$$(\forall x \in X)(\{i < \kappa : x(i) \in S(i)\} \in \mathcal{U}).$$

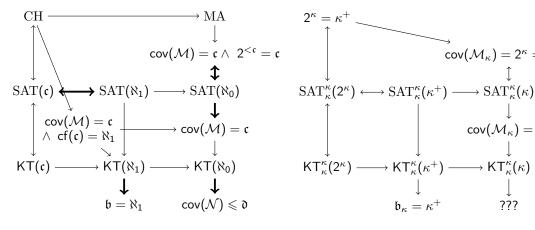
But since our ultrafilter \mathcal{U} is uniform, we have

$$(\forall x \in X)(\{i < \kappa : x(i) \in S(i)\})$$
 is cofinal).

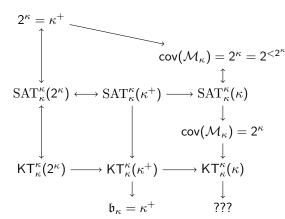
So by van der Vlught's theorem, we showed $cov(\mathcal{M}_{\kappa})=2^{\kappa}$.

The implications

The countable case

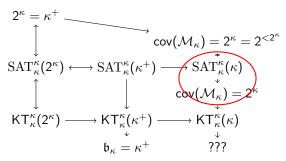


The **inaccessible** case



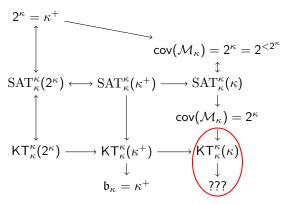
Questions

- Can we eliminate the inaccessibility assumption from the result which states $SAT_{\kappa}^{\aleph_0}(\kappa)$ implies $cov(\mathcal{M}_{\kappa}) = 2^{\kappa}$.
 - Note that when κ is a successor and $2^{\kappa^-} > \kappa$, we have $\text{cov}(\mathcal{M}_{\kappa}) = \kappa^+$.
 - Note also that when κ is a successor, "The minimum cardinality of $X \subseteq \kappa^{\kappa}$ such that there is no $S \in \prod_{i < \kappa} [\kappa]^{\leq |i| + 1}$ such that for all $x \in X$, $\{i < \kappa : x(i) \in S(i)\}$ is cofinal in κ " is equal to \mathfrak{d}_{κ} .



Questions

- **2** Can we prove the consistency of $\neg \mathsf{KT}_{\kappa}^{\kappa}(\kappa)$?
 - Recall that $\mathsf{KT}^{\aleph_0}_{\aleph_0}(\aleph_0)$ implies $\mathsf{cov}(\mathcal{N}) \leqslant \mathfrak{d}$.



References

- [Kei64] H Jerome Keisler. "Ultraproducts and saturated models". In: *Indag. Math* 26 (1964), pp. 178–186.
- [She71] Saharon Shelah. "Every two elementarily equivalent models have isomorphic ultrapowers". In: *Israel Journal of Mathematics* 10.2 (1971), pp. 224–233.
- [Got22] Tatsuya Goto. "Keisler's theorem and cardinal invariants". In: *The Journal of Symbolic Logic* (2022), pp. 1–13.
- [GS23] Mohammad Golshani and Saharon Shelah. "The Keisler-Shelah isomorphism theorem and the continuum hypothesis". In: *Fund. Math.* 260.1 (2023). arXiv: 2108.03977, pp. 59–66.
- [Vlu23] Tristan van der Vlugt. Cardinal Characteristics on Bounded Generalised Baire Spaces. 2023. arXiv: 2307.14118 [math.L0].
- [Tsu22] Akito Tsuboi. "Some results related to Keisler-Shelah isomorphism theorem (Model theoretic aspects of the notion of independence and dimension)". In: RIMS Kôkyûroku 2218 (May 2022).