Uncountable homogeneous structures

Wiesław Kubiś

Institute of Mathematics, CAS, Prague, Czechia

Winter School in Abstract Analysis 2024 Hejnice, Jan 27 – Feb 3, 2024

Joint work with Adam Bartoš and Mirna Džamonja

Definition

- lacktriangle We fix a Fraissé class $\mathcal F$ of finitely generated structures in a countable language.
- We denote by $\sigma \mathcal{F}$ the class of all unions of countable chains in \mathcal{F} , in other words, the class of all countable structures whose age is in \mathcal{F} .
- \blacksquare We denote by $\overline{\mathcal{F}}$ the class of all structures whose age is in \mathcal{F} .
- lacktriangle We denote by $\mathbb U$ the Fraïssé limit of $\mathcal F$.

Definition

- We fix a Fraïssé class \mathcal{F} of finitely generated structures in a countable language.
- We denote by $\sigma \mathcal{F}$ the class of all unions of countable chains in \mathcal{F} , in other words, the class of all countable structures whose age is in \mathcal{F} .
- \blacksquare We denote by $\overline{\mathcal{F}}$ the class of all structures whose age is in \mathcal{F} .
- lacktriangle We denote by $\mathbb U$ the Fraïssé limit of $\mathcal F$.

Definition

A structure M is homogeneous if every isomorphism between its finitely generated substructures extends to an automorphism of M.

Definition

- We fix a Fraïssé class \mathcal{F} of finitely generated structures in a countable language.
- We denote by $\sigma \mathcal{F}$ the class of all unions of countable chains in \mathcal{F} , in other words, the class of all countable structures whose age is in \mathcal{F} .
- lacktriangle We denote by $\overline{\mathcal{F}}$ the class of all structures whose age is in \mathcal{F} .
- lacktriangle We denote by $\mathbb U$ the Fraïssé limit of $\mathcal F$.

Definition

A structure M is homogeneous if every isomorphism between its finitely generated substructures extends to an automorphism of M.

Main questions

What can we say about uncountable homogeneous structures in $\overline{\mathcal{F}}$?

Definition

- lacktriangle We fix a Fraissé class $\mathcal F$ of finitely generated structures in a countable language.
- We denote by $\sigma \mathcal{F}$ the class of all unions of countable chains in \mathcal{F} , in other words, the class of all countable structures whose age is in \mathcal{F} .
- lacktriangle We denote by $\overline{\mathcal{F}}$ the class of all structures whose age is in \mathcal{F} .
- lacktriangle We denote by $\mathbb U$ the Fraissé limit of $\mathcal F.$

Definition

A structure M is homogeneous if every isomorphism between its finitely generated substructures extends to an automorphism of M.

Main questions

What can we say about uncountable homogeneous structures in $\overline{\mathcal{F}}$? Do they always exist?

An example from basic group theory

Example

Let \mathcal{F} be the class of all torsion-free cyclic groups. Then $\sigma \mathcal{F} = \overline{\mathcal{F}}$.

An example from basic group theory

Example

Let $\mathcal F$ be the class of all torsion-free cyclic groups. Then $\sigma\mathcal F=\overline{\mathcal F}$.

Note that, up to isomorphism, $\mathcal{F} = \{1, \langle \mathbb{Z}, + \rangle \}.$

An example from basic group theory

Example

Let \mathcal{F} be the class of all torsion-free cyclic groups. Then $\sigma \mathcal{F} = \overline{\mathcal{F}}$.

Note that, up to isomorphism, $\mathcal{F} = \{1, \langle \mathbb{Z}, + \rangle \}.$

Note that $\sigma \mathcal{F}$ consists of all locally cyclic torsion-free groups. All of them are isomorphic to subgroups of the Fraissé limit $\mathbb{U} = \langle \mathbb{Q}, + \rangle$.

Fraïssé-Jónsson theory

Theorem

Assume CH. If $\sigma \mathcal{F}$ has the amalgamation property then there exists a unique structure $\mathbb{U}_{\omega_1} \in \overline{\mathcal{F}}$ of cardinality \aleph_1 that is $\sigma \mathcal{F}$ -homogeneous and universal.

Furthermore, every structure in $\overline{\mathcal{F}}$ of cardinality $\leq 2^{\aleph_0}$ embeds into \mathbb{U}_{ω_1} .

Fraïssé-Jónsson theory

Theorem

Assume CH. If $\sigma\mathcal{F}$ has the amalgamation property then there exists a unique structure $\mathbb{U}_{\omega_1} \in \overline{\mathcal{F}}$ of cardinality \aleph_1 that is $\sigma\mathcal{F}$ -homogeneous and universal.

Furthermore, every structure in $\overline{\mathcal{F}}$ of cardinality $\leq 2^{\aleph_0}$ embeds into \mathbb{U}_{ω_1} .

Remark

This may fail without CH.

Ultrapowers

Ultrapowers

Theorem (cf. Keisler 1964)

Assume the language of $\mathcal F$ is finite and relational and fix a non-principle ultrafilter p over ω . Then the ultrapower $\mathbb U^\omega/p$ is homogeneous and its age is $\mathcal F$.

Katětov functors

Katětov functors

Theorem (cf. Kubiś & Mašulović 2017)

Assume there exists a functor $K : \sigma \mathcal{F} \to \sigma \mathcal{F}$ together with a natural transformation η from the identity to K such that $K(\mathbb{U}) \approx \mathbb{U}$ and $\eta_{\mathbb{U}} \colon \mathbb{U} \to K(\mathbb{U})$ is a nontrivial embedding.

Katětov functors

Theorem (cf. Kubiś & Mašulović 2017)

Assume there exists a functor $K \colon \sigma \mathcal{F} \to \sigma \mathcal{F}$ together with a natural transformation η from the identity to K such that $K(\mathbb{U}) \approx \mathbb{U}$ and $\eta_{\mathbb{U}} \colon \mathbb{U} \to K(\mathbb{U})$ is a nontrivial embedding. Then $K^{\omega_1}(\mathbb{U})$ is homogeneous.

Definition

Let $\mathcal{E}\mathbb{U}$ denote the monoid of all self-embeddings of \mathbb{U} . We say that $\mathcal{E}\mathbb{U}$ is nontrivial if $\mathcal{E}\mathbb{U} \neq \operatorname{Aut}(\mathbb{U})$.

Definition

Let $\mathcal{E}\mathbb{U}$ denote the monoid of all self-embeddings of \mathbb{U} . We say that $\mathcal{E}\mathbb{U}$ is nontrivial if $\mathcal{E}\mathbb{U} \neq \operatorname{Aut}(\mathbb{U})$.

Claim

If the language of $\mathcal F$ is finite and relational then $\mathcal E\mathbb U$ is nontrivial.

Definition

Let $\mathcal{E}\mathbb{U}$ denote the monoid of all self-embeddings of \mathbb{U} . We say that $\mathcal{E}\mathbb{U}$ is nontrivial if $\mathcal{E}\mathbb{U} \neq \operatorname{Aut}(\mathbb{U})$.

Claim

If the language of $\mathcal F$ is finite and relational then $\mathcal E\mathbb U$ is nontrivial.

Example

Let $\mathcal F$ consist of all pairs of the form $\langle \mathcal F, f \rangle$, where $f \colon \mathcal F \to \omega$ is a one-to-one function. Then $\mathbb U \approx \langle \omega, \mathrm{id}_\omega \rangle$ and $\mathcal E \mathbb U = \{ \mathrm{id}_\mathbb U \}$.

Theorem

Assume $\mathcal M$ is a sub-monoid of $\mathcal E\mathbb U$ containing $\operatorname{Aut}(\mathbb U)$ as well as at least one nontrivial embedding. Furthermore, assume that $\mathcal M$ has the amalgamation property.

Theorem

Assume $\mathcal M$ is a sub-monoid of $\mathcal E\mathbb U$ containing $\operatorname{Aut}(\mathbb U)$ as well as at least one nontrivial embedding. Furthermore, assume that $\mathcal M$ has the amalgamation property.

Then there exists an uncountable homogeneous structure with age \mathcal{F} .

Theorem

Assume $\mathcal M$ is a sub-monoid of $\mathcal E\mathbb U$ containing $\operatorname{Aut}(\mathbb U)$ as well as at least one nontrivial embedding. Furthermore, assume that $\mathcal M$ has the amalgamation property.

Then there exists an uncountable homogeneous structure with age \mathcal{F} .

Remark

The assumptions above are fulfilled if the language of $\mathcal F$ is finite and relational, namely, in that case $\mathcal E\mathbb U$ has the amalgamation property.

Question

Does there exist a relational Fraïssé class ${\cal F}$ such that no uncountable structure with age ${\cal F}$ is homogeneous?

Question

Does there exist a relational Fraïssé class $\mathcal F$ such that no uncountable structure with age $\mathcal F$ is homogeneous?

Claim

There exists a relational Fraissé classes $\mathcal F$ such that no $X\in\sigma\mathcal F$ is an amalgamation base.

Question

Does there exist a relational Fraïssé class ${\cal F}$ such that no uncountable structure with age ${\cal F}$ is homogeneous?

Claim

There exists a relational Fraissé classes $\mathcal F$ such that no $X\in\sigma\mathcal F$ is an amalgamation base.

Proof.

One of the examples is the class of all finite anti-metric spaces with natural values.

THE END