Eggleston meets Mycielski - category case

Marcin Michalski, Robert Rałowski, Szymon Żeberski

Wrocław University of Science and Technology

Winter School in Abstract Analysis 2024 section Set Theory & Topology 27.01 – 03.02.2024 Hejnice

э

Motivation Setup Results	Eggleston and Mycielski t
Thanks!	

heorems

伺 ト イヨ ト イヨ ト 二 ヨ

Theorem (Eggleston)

For every conull set $F \subseteq [0,1]^2$ there are a perfect set $P \subseteq [0,1]$ and conull $B \subseteq [0,1]$ such that $P \times B \subseteq F$.

Let $\Delta = \{(x, x) : x \in [0, 1]\}.$

Theorem (Mycielski)

For every comeager or conull set $X \subseteq [0,1]^2$ there exists a perfect set $P \subseteq [0,1]$ such that $P \times P \subseteq X \cup \Delta$.

- H. G. Eggleston, Two measure properties of Cartesian product sets, The Quarterly Journal of Mathematics 5 (1954) 108-–115.
- Mycielski J., Algebraic independence and measure, Fundamenta Mathematicae 61 (1967) 165–169.

Consider the Cantor space 2^{ω} and let T be a tree on ω , i.e. for each $\sigma \in T$ we have $\sigma \upharpoonright n \in T$ for all natural n.

A body of a tree T is the set

$$[T] = \{x \in 2^{\omega} : (\forall n \in \omega)(x \upharpoonright n \in T)\}$$

of all infinite branches of T.

< ∃→

э.

Consider the Cantor space 2^{ω} and let T be a tree on ω , i.e. for each $\sigma \in T$ we have $\sigma \upharpoonright n \in T$ for all natural n.

A body of a tree T is the set

$$[T] = \{x \in 2^{\omega} : (\forall n \in \omega)(x \upharpoonright n \in T)\}$$

of all infinite branches of T.

Perfect sets = bodies of perfect trees.

ㅋ ㅋ

Notions and definitions

3

Consider the Cantor space 2^{ω} and let T be a tree on ω , i.e. for each $\sigma \in T$ we have $\sigma \upharpoonright n \in T$ for all natural n.

A body of a tree T is the set

$$[T] = \{x \in 2^{\omega} : (\forall n \in \omega)(x \upharpoonright n \in T)\}$$

of all infinite branches of T.

Perfect sets = bodies of perfect trees.

The goal: to switch from $[0,1]^2$ to $2^{\omega} \times 2^{\omega}$, replace a perfect set with a body of some tree, and prove Egglestone Theorem or its mixture with Mycielski Theorem for such a setting for the category.

Notions and definitions

Definition

We call a tree $T \subseteq 2^{<\omega}$

- a perfect or Sacks tree, if for each $\sigma \in T$ there is $\tau \in T$ such that $\sigma \subseteq \tau$ and $\tau \frown 0, \tau \frown 1 \in T$;
- uniformly perfect, if it is perfect and for all $\sigma, \tau \in T$ if $|\sigma| = |\tau|$ then $\sigma \cap 0, \sigma \cap 1 \in T \Leftrightarrow \tau \cap 0, \tau \cap 1 \in T$;
- a Silver tree, if it is perfect and for all $\sigma, \tau \in T$ with $|\sigma| = |\tau|$ we have $\sigma^{\frown}i \in T \Leftrightarrow \tau^{\frown}i \in T$ for i = 1, 2. Equivalently: if there is $x \in 2^{\omega}$ and an infinite set $A \subseteq \omega$ such that

 $(\forall \sigma \in T)(\forall n \in \mathsf{dom}(\sigma))(n \notin A \to \sigma(n) = x(n))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

• a Spinas tree if for every $\sigma \in T$ there is $N_{\sigma} \in \omega$ such that for each $n \geq N_{\sigma}$ there are $\tau_0, \tau_1 \in T \cap 2^n$ such that $\sigma \subseteq \tau_0^{\frown} 0 \in T$ and $\sigma \subseteq \tau_1^{\frown} 1 \in T$;

Definition

A tree $T \subseteq \omega^{<\omega}$ is a Miller tree if for every $\sigma \in T$ there is $\tau \in T$ and infinite set $A \subseteq \omega$ such that $\sigma \subseteq \tau$ and $\tau^{\frown} n \in T$ for every $n \in A$.

= na0

Definition

A tree $T \subseteq \omega^{<\omega}$ is a Miller tree if for every $\sigma \in T$ there is $\tau \in T$ and infinite set $A \subseteq \omega$ such that $\sigma \subseteq \tau$ and $\tau^{\frown} n \in T$ for every $n \in A$.

Theorem

There exists a dense G_{δ} set $G \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T_1] \times [T_2] \not\subseteq G \cup \Delta$ for any Miller trees T_1 and T_2 .

Definition

A tree $T \subseteq \omega^{<\omega}$ is a Miller tree if for every $\sigma \in T$ there is $\tau \in T$ and infinite set $A \subseteq \omega$ such that $\sigma \subseteq \tau$ and $\tau \cap n \in T$ for every $n \in A$.

Theorem

There exists a dense G_{δ} set $G \subseteq \omega^{\omega} \times \omega^{\omega}$ such that $[T_1] \times [T_2] \not\subseteq G \cup \Delta$ for any Miller trees T_1 and T_2 .

Corollary

Category variant of Eggleston Theorem for a body of Miller tree does not hold.

Motivation
Setup
Results
Thanks!

Theorem

For every comeager set $G \subseteq (2^{\omega} \times 2^{\omega})$ there are a Silver tree $T \subseteq 2^{\omega}$ and a dense G_{δ} -set $B \subseteq 2^{\omega}$ such that $[T] \times B \subseteq G$.

sketch of the proof.

 $G = \bigcap_{n \in \omega} U_n$, U_n open and dense. Fix a topological base $\{B_n : n \in \omega\}$. Construct inductively sequences $\tau_n \in 2^{<\omega}$ and open V_n such that for all n

$$V_n \subseteq B_n;$$

$$[\tau_0 \frown i_0 \frown \tau_1 \frown i_1 \frown \dots \frown \tau_{n-1} \frown i_{n-1} \frown \tau_n] \times V_n \subseteq U_n$$

for every $(i_0, i_1, i_2, \dots, i_{n-1}) \in 2^n$. Set

$$t = \tau_0 ^{-} 0^{-} \tau_1 ^{-} 0^{-} \tau_2 ^{-} 0^{-} \tau_3 ^{-} \dots,$$

$$A = \{ |\tau_0|, |\tau_0| + |\tau_1| + 1, |\tau_0| + |\tau_1| + |\tau_2| + 2, \dots \}.$$

Then $\{x \in 2^{\omega} : (\forall n \notin A) (x(n) = t(n))\}$ is a body of some Silver tree Tand $B = \bigcap_{n \in \omega} \bigcup_{m \ge n} V_m$ is the desired dense G_{δ} set.

A 3 5 4 3 5 4

Theorem

For every comeager $G \subseteq (2^{\omega} \times 2^{\omega})$ there are a Spinas tree $T \subseteq 2^{<\omega}$ and a dense G_{δ} -set $B \subseteq 2^{\omega}$ such that $[T] \times B \subseteq G$. Moreover T contains a Silver tree.

ヨート

<2> ≥ <</p>

Remark

There exists an open dense set $U \subseteq 2^{\omega} \times 2^{\omega}$ such that $[T] \times [T] \not\subseteq U \cup \Delta$ for any Silver tree T. Thus we cannot have $[T] \subseteq B$ in previous theorems.

= nar

A B A A B A

Theorem

Let $G \subseteq 2^{\omega} \times 2^{\omega}$ be comeager. Then there exist a uniformly perfect tree $T \subseteq 2^{<\omega}$ and a dense G_{δ} set $B \subseteq 2^{\omega}$ such that $[T] \subseteq B$ and $[T] \times B \subseteq G \cup \Delta$.

I nar

Theorem

Let $G \subseteq 2^{\omega} \times 2^{\omega}$ be comeager. Then there exist a uniformly perfect tree $T \subseteq 2^{<\omega}$ and a dense G_{δ} set $B \subseteq 2^{\omega}$ such that $[T] \subseteq B$ and $[T] \times B \subseteq G \cup \Delta$.

Problem

Does every comeager set $G \subseteq 2^{\omega} \times 2^{\omega}$ contain $([T] \times D) \setminus \Delta$, where $T \subseteq 2^{<\omega}$ is a Spinas tree and $D \subseteq 2^{\omega}$ is a dense G_{δ} set such that $[T] \subseteq D$?

Thank you!

- Michalski M., Rałowski R. Żeberski Sz., Around Eggleston theorem, arXiv:2307.07020.
- M. Michalski, R. Rałowski, and Sz. Żeberski, Mycielski among trees, Mathematical Logic Quarterly 67 (2021) 271–281.

2nd Wrocław Logic Conference: https://prac.im.pwr.edu.pl/~twowlc