The Nikodym property and filters on ω

Tomasz Żuchowski

Kurt Gödel Research Center, University of Vienna Mathematical Institute, University of Wrocław

Winter School in Abstract Analysis, Hejnice 2024

(4 同) (4 日) (4 日)

イロト イヨト イヨト

3

SQA

 $\|\mu\| = \sup \left\{ |\mu(A)| + |\mu(B)| : A, B \in \mathcal{A}, A \land B = 0_{\mathcal{A}} \right\} < \infty.$

イロト イポト イヨト イヨト 二日

$$\|\mu\| = \sup\left\{|\mu(A)| + |\mu(B)|: A, B \in \mathcal{A}, A \land B = 0_{\mathcal{A}}\right\} < \infty.$$

A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

- *pointwise null* if $\mu_n(A) \to 0$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

イロト イボト イヨト イヨト

$$\|\mu\| = \sup\left\{|\mu(A)| + |\mu(B)|: A, B \in \mathcal{A}, A \land B = 0_{\mathcal{A}}\right\} < \infty.$$

A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

- *pointwise null* if $\mu_n(A) \to 0$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

Nikodym property of Boolean algebra

A Boolean algebra A has the *Nikodym property* if every pointwise null sequence of measures on A is uniformly bounded.

イロト イヨト イヨト

• σ -algebras (Nikodym '30),

・ 同 ト ・ ヨ ト ・ ヨ ト

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),

< 同 > < 回 > < 回 > -

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0,1] (Schachermayer '82).

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0,1] (Schachermayer '82).

However, if the Stone space St(A) of ultrafilters on A contains a non-trivial convergent sequence, then A does not have the Nikodym property:

・ 戸 ト ・ ヨ ト ・ ヨ ト

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- the algebra of Jordan measurable subsets of [0,1] (Schachermayer '82).

However, if the Stone space St(A) of ultrafilters on A contains a non-trivial convergent sequence, then A does not have the Nikodym property:

if $x_n \to x$, then consider the sequence of measures $\mu_n = n(\delta_{x_n} - \delta_x)$.

ヘロア 人間 アメヨア ト

 N_F spaces

F - a free filter on ω *N_F* = $\omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:

DQC2

N_F spaces

 ${\it F}$ - a free filter on ω

 $N_F = \omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:

• every point of ω is isolated in N_F ,

・ 戸 ト ・ ヨ ト ・ ヨ ト

3

N_F spaces

 ${\it F}$ - a free filter on ω

 $N_F = \omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:

- every point of ω is isolated in N_F ,
- U is an open neighborhood of p_F iff $A \cup \{p_F\}$ for some $A \in F$.

N_F spaces

 ${\it F}$ - a free filter on ω

 $N_F = \omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:

- every point of ω is isolated in N_F ,
- U is an open neighborhood of p_F iff $A \cup \{p_F\}$ for some $A \in F$.

Trivial example

 N_{Fr} is homeomorphic to a convergent sequence (together with its limit), where by Fr we denote the Fréchet filter on ω

・ 同 ト ・ ヨ ト ・ ヨ ト …

N_F spaces

 ${\it F}$ - a free filter on ω

 $N_F = \omega \cup \{p_F\}$, where $p_F \notin \omega$, with the following topology:

- every point of ω is isolated in N_F ,
- U is an open neighborhood of p_F iff $A \cup \{p_F\}$ for some $A \in F$.

Trivial example

 N_{Fr} is homeomorphic to a convergent sequence (together with its limit), where by Fr we denote the Fréchet filter on ω

Question

For which filters F on ω , if N_F embeds into the Stone space St(A) of a Boolean algera A, then A does not have the Nikodym property?

イロト イボト イヨト イヨト

nar

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

・ロト ・ 同ト ・ ヨト ・ ヨト

DQC2

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

nac

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

Nikodym property of filter

 ${\it F}$ - a free filter on ω

We say that *F* has the **Nikodym property** if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on N_F such that

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

Nikodym property of filter

F - a free filter on ω We say that *F* has the **Nikodym property** if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on N_F such that

•
$$\|\mu_n\| \to \infty$$
, and

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

Nikodym property of filter

 ${\it F}$ - a free filter on ω

We say that *F* has the **Nikodym property** if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on N_F such that

- $\|\mu_n\| \to \infty$, and
- $\mu_n(A) \to 0$ for every $A \in \text{Clopen}(N_F)$.

イロト イポト イヨト イヨト 二日

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

Nikodym property of filter

 ${\it F}$ - a free filter on ω

We say that *F* has the **Nikodym property** if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on N_F such that

- $\|\mu_n\| \to \infty$, and
- $\mu_n(A) \to 0$ for every $A \in \text{Clopen}(N_F)$.

(we call such a sequence of measures anti-Nikodym).

イロト イポト イヨト イヨト 二日

A Borel measure μ on a topological space X is *finitely supported* if $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ for some $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ and distinct $x_1, \ldots, x_n \in X$.

In this case we have $\|\mu\| = \sum_{i=1}^{n} |\alpha_i|$ and $supp(\mu_n) = \{x_1, \dots, x_n\}$.

Nikodym property of filter

 ${\it F}$ - a free filter on ω

We say that *F* has the **Nikodym property** if there is no sequence of finitely supported measures $\langle \mu_n : n \in \omega \rangle$ on N_F such that

• $\|\mu_n\| \to \infty$, and

•
$$\mu_n(A) \rightarrow 0$$
 for every $A \in \text{Clopen}(N_F)$.

(we call such a sequence of measures anti-Nikodym).

 \mathcal{AN} - the class of all ideals on ω whose dual filters do not have the Nikodym property

・ロト ・ 同ト ・ ヨト ・ ヨト

 ${\mathcal A}$ - a Boolean algebra $St({\mathcal A})$ - the Stone space of ${\mathcal A},$ i.e. the space of all ultrafilters on ${\mathcal A}$ endowed with the standard topology

イロト イポト イヨト イヨト

Э

DQ P

 ${\mathcal A}$ - a Boolean algebra $St({\mathcal A})$ - the Stone space of ${\mathcal A},$ i.e. the space of all ultrafilters on ${\mathcal A}$ endowed with the standard topology

イロト イポト イヨト イヨト

Э

DQ P

${\cal A}$ - a Boolean algebra

St(A) - the Stone space of A, i.e. the space of all ultrafilters on A endowed with the standard topology

Theorem

If N_F homeomorphically embeds into St(A) and F does not have the Nikodym property, then A does not have the Nikodym property.

< 回 > < 回 > < 回 >

If a filter F on ω does not have the Nikodym property, then there is an anti-Nikodym sequence of measures (μ_n) on N_F which is disjointly supported, that is, $supp(\mu_k) \cap supp(\mu_I) = \emptyset$ for every $k \neq I \in \omega$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

If a filter F on ω does not have the Nikodym property, then there is an anti-Nikodym sequence of measures (μ_n) on N_F which is disjointly supported, that is, $supp(\mu_k) \cap supp(\mu_l) = \emptyset$ for every $k \neq l \in \omega$. Moreover, we may have $supp(\mu_n) \subseteq \omega$ for every $n \in \omega$.

伺下 イヨト イヨト

If a filter F on ω does not have the Nikodym property, then there is an anti-Nikodym sequence of measures (μ_n) on N_F which is disjointly supported, that is, $supp(\mu_k) \cap supp(\mu_l) = \emptyset$ for every $k \neq l \in \omega$. Moreover, we may have $supp(\mu_n) \subseteq \omega$ for every $n \in \omega$.

Theorem

A filter F on ω has the Nikodym property if and only if there is no sequence $\langle \mu_n : n \in \omega \rangle$ of finitely supported non-negative measures on N_F with disjoint supports such that:

If a filter F on ω does not have the Nikodym property, then there is an anti-Nikodym sequence of measures (μ_n) on N_F which is disjointly supported, that is, $supp(\mu_k) \cap supp(\mu_l) = \emptyset$ for every $k \neq l \in \omega$. Moreover, we may have $supp(\mu_n) \subseteq \omega$ for every $n \in \omega$.

Theorem

A filter F on ω has the Nikodym property if and only if there is no sequence $\langle \mu_n : n \in \omega \rangle$ of finitely supported non-negative measures on N_F with disjoint supports such that:

•
$$supp(\mu_n) \subseteq \omega$$
 for every $n \in \omega$,

If a filter F on ω does not have the Nikodym property, then there is an anti-Nikodym sequence of measures (μ_n) on N_F which is disjointly supported, that is, $supp(\mu_k) \cap supp(\mu_l) = \emptyset$ for every $k \neq l \in \omega$. Moreover, we may have $supp(\mu_n) \subseteq \omega$ for every $n \in \omega$.

Theorem

A filter F on ω has the Nikodym property if and only if there is no sequence $\langle \mu_n : n \in \omega \rangle$ of finitely supported non-negative measures on N_F with disjoint supports such that:

• $supp(\mu_n) \subseteq \omega$ for every $n \in \omega$,

•
$$\lim_{n\to\infty} \mu_n(\omega) = \infty$$
,

If a filter F on ω does not have the Nikodym property, then there is an anti-Nikodym sequence of measures (μ_n) on N_F which is disjointly supported, that is, $supp(\mu_k) \cap supp(\mu_l) = \emptyset$ for every $k \neq l \in \omega$. Moreover, we may have $supp(\mu_n) \subseteq \omega$ for every $n \in \omega$.

Theorem

A filter F on ω has the Nikodym property if and only if there is no sequence $\langle \mu_n : n \in \omega \rangle$ of finitely supported non-negative measures on N_F with disjoint supports such that:

• $supp(\mu_n) \subseteq \omega$ for every $n \in \omega$,

•
$$\lim_{n\to\infty} \mu_n(\omega) = \infty$$
,

•
$$\lim_{n\to\infty} \mu_n(\omega \setminus A) = 0$$
 for every $A \in F$.

Submeasures on ω

Definition

 $\varphi: \mathcal{P}(\omega) \to [0,\infty]$ is a submeasure if

- $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for every $n \in \omega$,
- $\varphi(X) \leq \varphi(Y)$ whenever $X \subseteq Y$,
- $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for every $X, Y \subseteq \omega$.

(4月) (3日) (3日) 日

Submeasures on ω

Definition

 $\varphi : \mathcal{P}(\omega) \to [0,\infty]$ is a submeasure if

- $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for every $n \in \omega$,
- $\varphi(X) \leq \varphi(Y)$ whenever $X \subseteq Y$,
- $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for every $X, Y \subseteq \omega$.

A submeasure φ on ω is *lower semicontinuous (lsc)* if $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap [0, n])$ for every $A \subseteq \omega$. In particular, every non-negative measure μ on ω is an lsc submeasure.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Submeasures on ω

Definition

 $\varphi: \mathcal{P}(\omega) \to [0,\infty]$ is a submeasure if

- $\varphi(\emptyset) = 0$ and $\varphi(\{n\}) < \infty$ for every $n \in \omega$,
- $\varphi(X) \leq \varphi(Y)$ whenever $X \subseteq Y$,
- $\varphi(X \cup Y) \leq \varphi(X) + \varphi(Y)$ for every $X, Y \subseteq \omega$.

A submeasure φ on ω is *lower semicontinuous (lsc)* if $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap [0, n])$ for every $A \subseteq \omega$. In particular, every non-negative measure μ on ω is an lsc submeasure.

Exhaustive ideal

arphi - lsc submeasure

The following ideal on ω is called *the exhaustive ideal* of φ :

$$Exh(\varphi) = \{A \subseteq \omega : \lim_{n \to \infty} \varphi(A \setminus [0, n]) = 0\}$$

イロト イヨト イヨト

nar

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

イロト イポト イヨト イヨト 二日

DQC2

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

Non-pathological submeasure

A submeasure φ is *non-pathological* if for every $A \subseteq \omega$ we have: $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a non-negative measure on } \omega \text{ s.t. } \mu \leq \varphi \}$

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

Non-pathological submeasure

A submeasure φ is *non-pathological* if for every $A \subseteq \omega$ we have: $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a non-negative measure on } \omega \text{ s.t. } \mu \leq \varphi \}$

Trivially, every non-negative measure on ω is non-pathological.

・ 同 ト ・ ヨ ト ・ ヨ ト

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

Non-pathological submeasure

A submeasure φ is *non-pathological* if for every $A \subseteq \omega$ we have: $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a non-negative measure on } \omega \text{ s.t. } \mu \leq \varphi \}$

Trivially, every non-negative measure on ω is non-pathological.

Density submeasure

A submeasure φ is a *density submeasure* if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of finitely supported non-negative measures on ω with disjoint supports such that $\varphi = \sup_{n \in \omega} \mu_n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

For submeasures φ, ψ we write $\psi \leq \varphi$ if $\psi(A) \leq \varphi(A)$ for all $A \subseteq \omega$.

Non-pathological submeasure

A submeasure φ is *non-pathological* if for every $A \subseteq \omega$ we have: $\varphi(A) = \sup \{ \mu(A) : \mu \text{ is a non-negative measure on } \omega \text{ s.t. } \mu \leq \varphi \}$

Trivially, every non-negative measure on ω is non-pathological.

Density submeasure

A submeasure φ is a *density submeasure* if there exists a sequence $\langle \mu_n : n \in \omega \rangle$ of finitely supported non-negative measures on ω with disjoint supports such that $\varphi = \sup_{n \in \omega} \mu_n$.

An example is an *asymptotic density* on ω defined by:

$$\varphi_d(A) = \sup_{n \in \omega} \left| A \cap [2^n, 2^{n+1}) \right| / 2^n.$$

Let F be a filter on ω . Then, the following are equivalent:

Tomasz Żuchowski The Nikodym property and filters on ω

・ 同 ト ・ ヨ ト ・ ヨ ト

Let F be a filter on ω . Then, the following are equivalent:

• F does not have the Nikodym property;

< 同 > < 三 > < 三 >

Let F be a filter on ω . Then, the following are equivalent:

- F does not have the Nikodym property;
- there is a density submeasure φ on ω such that $\varphi(\omega) = \infty$ and $F \subseteq Exh(\varphi)^*$;

・ 戸 ト ・ ヨ ト ・ ヨ ト

Let F be a filter on ω . Then, the following are equivalent:

- F does not have the Nikodym property;
- there is a density submeasure φ on ω such that $\varphi(\omega) = \infty$ and $F \subseteq Exh(\varphi)^*$;
- there is a non-pathological lsc submeasure φ on ω such that $\varphi(\omega) = \infty$ and $F \subseteq Exh(\varphi)^*$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let \mathcal{I} and \mathcal{J} be ideals on ω . We write that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$.

イロト イポト イヨト イヨト

Let \mathcal{I} and \mathcal{J} be ideals on ω . We write that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$. We denote $\mathcal{I} <_{\mathcal{K}} \mathcal{J}$ when $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ and $\mathcal{J} \notin_{\mathcal{K}} \mathcal{I}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let \mathcal{I} and \mathcal{J} be ideals on ω . We write that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$. We denote $\mathcal{I} <_{\mathcal{K}} \mathcal{J}$ when $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ and $\mathcal{J} \leq_{\mathcal{K}} \mathcal{I}$.

Theorem

There exists a family $\{\mathcal{J}_{\alpha}: \alpha < \mathfrak{d}\}$ of density ideals from \mathcal{AN} such that for any $\mathcal{I} \in \mathcal{AN}$ there is $\alpha < \mathfrak{d}$ such that $\mathcal{I} \leq_{K} \mathcal{J}_{\alpha}$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Let \mathcal{I} and \mathcal{J} be ideals on ω . We write that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$. We denote $\mathcal{I} <_{\mathcal{K}} \mathcal{J}$ when $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ and $\mathcal{J} \leq_{\mathcal{K}} \mathcal{I}$.

Theorem

There exists a family $\{\mathcal{J}_{\alpha}: \alpha < \mathfrak{d}\}$ of density ideals from \mathcal{AN} such that for any $\mathcal{I} \in \mathcal{AN}$ there is $\alpha < \mathfrak{d}$ such that $\mathcal{I} \leq_{K} \mathcal{J}_{\alpha}$.

However, there is no $\leq_{\mathcal{K}}$ -maximal element in \mathcal{AN} !

・ 同 ト ・ ヨ ト ・ ヨ ト

Let \mathcal{I} and \mathcal{J} be ideals on ω . We write that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f: \omega \to \omega$ such that $f^{-1}[I] \in \mathcal{J}$ for all $I \in \mathcal{I}$. We denote $\mathcal{I} <_{\mathcal{K}} \mathcal{J}$ when $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ and $\mathcal{J} \leq_{\mathcal{K}} \mathcal{I}$.

Theorem

There exists a family $\{\mathcal{J}_{\alpha}: \alpha < \mathfrak{d}\}$ of density ideals from \mathcal{AN} such that for any $\mathcal{I} \in \mathcal{AN}$ there is $\alpha < \mathfrak{d}$ such that $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}_{\alpha}$.

However, there is no \leq_{K} -maximal element in AN!

Theorem

For every $\mathcal{I} \in \mathcal{AN}$ there is $\mathcal{J} \in \mathcal{AN}$ such that $\mathcal{I} <_{\mathcal{K}} \mathcal{J}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

A Boolean algebra \mathcal{A} has the *Grothendieck property* if the Banach space $C(St(\mathcal{A}))$ has the Grothendieck property.

・ 同 ト ・ ヨ ト ・ ヨ ト

A Boolean algebra \mathcal{A} has the *Grothendieck property* if the Banach space $C(St(\mathcal{A}))$ has the Grothendieck property.

Not easy to distinguish with the Nikodym property!

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A Boolean algebra \mathcal{A} has the *Grothendieck property* if the Banach space $C(St(\mathcal{A}))$ has the Grothendieck property.

Not easy to distinguish with the Nikodym property!

Nikodym property vs Grothendieck property

• (Schachermayer, 1982) the algebra of Jordan measurable subsets of [0,1] has (N) but not (G)

・ 同 ト ・ ヨ ト ・ ヨ ト

A Boolean algebra \mathcal{A} has the *Grothendieck property* if the Banach space $C(St(\mathcal{A}))$ has the Grothendieck property.

Not easy to distinguish with the Nikodym property!

Nikodym property vs Grothendieck property

- (Schachermayer, 1982) the algebra of Jordan measurable subsets of [0,1] has (N) but not (G)
- (Talagrand, 1984) example under the Continuum Hypothesis of the algebra with (G) but without (N)

(4 同) 4 ヨ) 4 ヨ)

A Boolean algebra \mathcal{A} has the *Grothendieck property* if the Banach space $C(St(\mathcal{A}))$ has the Grothendieck property.

Not easy to distinguish with the Nikodym property!

Nikodym property vs Grothendieck property

- (Schachermayer, 1982) the algebra of Jordan measurable subsets of [0,1] has (N) but not (G)
- (Talagrand, 1984) example under the Continuum Hypothesis of the algebra with (G) but without (N)
- (Sobota & Zdomskyy, preprint 2023) example under the Martin's Axiom of the algebra with (G) but without (N)

イロト イボト イヨト イヨト

Theorem (Marciszewski, Sobota)

Let F be a filter on ω and A a Boolean algebra. Then,

 if N_F has the BJN property and embeds into St(A) then A does not have the Grothendieck property;

< 同 > < 三 > < 三 >

Theorem (Marciszewski, Sobota)

Let F be a filter on ω and A a Boolean algebra. Then,

- if N_F has the BJN property and embeds into St(A) then A does not have the Grothendieck property;
- N_F has the BJN property iff $F^* \leq_K \mathcal{Z}(= Exh(\varphi_d))$.

< 同 ト < 三 ト < 三 ト

Theorem (Marciszewski, Sobota)

Let F be a filter on ω and A a Boolean algebra. Then,

- if N_F has the BJN property and embeds into St(A) then A does not have the Grothendieck property;
- N_F has the BJN property iff $F^* \leq_K \mathcal{Z}(= Exh(\varphi_d))$.

Theorem

For a density ideal \mathcal{I} on ω we have $\mathcal{I} \in \mathcal{AN}$ if and only if $\mathcal{I} <_{\mathcal{K}} \mathcal{Z}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank You! :)

< □ > < □ > < □ > < Ξ > < Ξ >

3

990