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Definition

An infinite game is a pair G = (T ,A) with T ⊂ M<ω and A ⊂ Mω

for some set M such that

(I) If t ∈ T , then t ↾ k ∈ T for all k ≤ |t|;
(II) For all t ∈ T there is an x ∈ M such that t⌢x ∈ T ;

(III) A ⊂ Runs(G ) = {R ∈ Mω : R ↾ n ∈ T for all n ∈ ω}.

3 / 22



Infinite games
Krom spaces
References

Definition

An infinite game is a pair G = (T ,A) with T ⊂ M<ω and A ⊂ Mω

for some set M such that

(I) If t ∈ T , then t ↾ k ∈ T for all k ≤ |t|;
(II) For all t ∈ T there is an x ∈ M such that t⌢x ∈ T ;
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If t = ⟨x0, . . . , xn−1⟩, then

|t| = n
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An infinite game is a pair G = (T ,A) with T ⊂ M<ω and A ⊂ Mω

for some set M such that

(I) If t ∈ T , then t ↾ k ∈ T for all k ≤ |t|;
(II) For all t ∈ T there is an x ∈ M such that t⌢x ∈ T ;

(III) A ⊂ Runs(G ) = {R ∈ Mω : R ↾ n ∈ T for all n ∈ ω}.

All of our games will be infinite in this talk, so we will omit the
word “infinite” from now on.
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Dictionary

A sequence t ∈ T is a moment of the game G .

A sequence R ∈ Runs(G ) = {R ∈ Mω : R ↾ n ∈ T for all n ∈ ω} is
a run of the game G .

If t ∈ T and |t| is even, then we say that it is Alice’s turn and{
x ∈ M : t⌢x ∈ T

}
is the set of all valid choices that Alice can

make at t.

If t ∈ T and |t| is odd, then we say that it is Bob’s turn and{
x ∈ M : t⌢x ∈ T

}
is the set of all valid choices that Bob can

make at t.

If t ∈ T and |t| = 2n or |t| = 2n + 1, then we say that t is at the
nth inning.

We say that A is the payoff set of G : a run R is won by Alice if
R ∈ A (and won by Bob otherwise).
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Example (Banach-Mazur game)

Given a non-empty topological space X , consider the following
game denoted by BM(X ):

At the first inning:

Alice chooses a non-empty open set U0;
Bob responds with a non-empty open set V0 ⊂ U0.

At the following nth innings:

Alice chooses a non-empty open set Un contained in the
open set Vn−1 chosen by Bob in the previous inning;
Bob responds with a non-empty open set Vn ⊂ Un.

Then Bob wins the run ⟨U0,V0, . . . ,Un,Vn, . . .⟩ if
⋂

n∈ω Vn ̸= ∅
(and Alice wins otherwise).
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Definition

A space X is Baire if for every sequence ⟨An : n ∈ ω⟩ of dense
open sets of X ,

⋂
n∈ω An is dense in X .

Theorem (Oxtoby – 1957)

A nonempty space X is Baire if, and only if, A ̸ ↑BM(X ).
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Example (Menger game)

Given a topological space X , consider the game denoted by
Menger(X ) in which, at each inning n ∈ ω:

Alice chooses an open cover Un of X ;

Bob responds with Fn ⊂ Un finite.

Then Bob wins the run ⟨U0,F0, . . . ,Un,Fn, . . .⟩ if
⋃

n∈ω Fn is an
open cover for X (and Alice wins otherwise).
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Definition

A topological space X is Menger if for every sequence of open
covers ⟨Un : n ∈ ω⟩ there is a sequence ⟨Fn : n ∈ ω⟩ such that
Fn ∈ [Un]

<ω for every n ∈ ω and
⋃

n∈ω Fn is an open cover for X .

Theorem (Hurewicz – 1926)

A topological space X is Menger if, and only if, A ̸ ↑Menger(X ).
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Definition (Krom – 1974)

Given a space X , let K(X ) be the set of all decreasing (with
respect to inclusion) sequences (of length ω) of nonempty open
sets of X with nonempty intersection.

In this case, we consider the ultrametric over K(X ) defined by

d(R,S) =

{
1

∆(R,S)+1 , if R ̸= S

0, otherwise,

where ∆(R,S) = min { n ∈ ω : R(n) ̸= S(n) }.

Remark

Note that R ∈ K(X ) if, and only if, R is a run of BM(X ) in which
Bob wins!
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Definition

Given a game G = (T ,A), let K(G ) = Runs(G ) \ A.

In this case, we consider the ultrametric over K(X ) defined by

d(R, S) =

{
1

∆(R,S)+1 , if R ̸= S

0, otherwise.

Obviously, K(X ) = K(BM(X )) for every nonempty space X .
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Definition

Let X be a nonempty space and suppose B is a basis for X . We
denote by BM(X ,B) the game played as in the Banach-Mazur
game with the added restriction that both players must choose
open sets exclusively from B.

Fact

The games BM(X ,B) and BM(X ) are equivalent, that is,

A ↑BM(X ,B) ⇐⇒ A ↑BM(X ),

B ↑BM(X ,B) ⇐⇒ B ↑BM(X ).

So, given G = (T ,A), we will only consider the moves made in
BM(K(G )) of the form

[t] = {R ∈ K(G ) : R extends t } ,

with t ∈ T .
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Let us recall the following theorem from Group Theory, which
states that symmetric groups are, in some sense, “universal”:

Theorem (Cayley – 1854)

For every group G there is a set X (G ) such that G is isomorphic
to a subgroup of the symmetric group of X (G ).

We also have the “universality” of the Banach-Mazur game:

Theorem (D., Szeptycki, Tholen – 2024)

For every game G there is a metrizable space K∗(G ) such that G is
isomorphic to a subgame of the Banach-Mazur game over K∗(G ).
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But how different can G be from BM(K(G ))?

Example

Let X be a space such that B ̸ ↑Menger(X ).

Note that
B ↑BM(K(Menger(X ))) (trivially!):

Suppose Alice begins by choosing a basic open set identified
by ⟨U0,F0, . . . ,Un⟩.
Then Bob can respond with ⟨U0,F0, . . . ,Un⟩⌢⟨Fn, {X}⟩ and
game over.
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However, some infinite games behave well with the Banach-Mazur
game over their Krom space:

Theorem

For every nonempty space X , BM(X ) is equivalent to
BM(K(BM(X ))).
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Definition

For a space X , let Menger∗(X ) denote the game played exactly as
the Menger game over X , with the new restriction stating that
Alice must choose in the inning n + 1 an open cover which
refines the open cover that she chose in the nth inning.

Fact

For every space X , the game Menger∗(X ) is equivalent to
Menger(X ).
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Theorem

For every space X , the game Menger∗(X ) is equivalent to
BM(K(Menger∗(X ))).

Corollary

For every space X , the game Menger(X ) is equivalent to
BM(K(Menger∗(X ))).

Corollary

A space X is Menger if, and only if, K(Menger∗(X )) is Baire.
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Idea of the theorem’s proof:

blackboard!
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Děkuji!
Thank you!
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