

Marczewski-like ideals related to superperfect trees.

Arturo Martínez-Celis February 2024. Hejnice.

Winter School in Abstract Analysis 2024 section Set Theory & Topology (Joint work with Aleksander Cieślak)

A set $A \subseteq \omega^{\omega}$ is <u>nowhere dense</u> if for every $U \in \mathcal{O}$ there is $V \in \mathcal{O}, V \subseteq U$ such that $V \cap A = \emptyset$.

A set $A \subseteq \omega^{\omega}$ is <u>nowhere dense</u> if for every $U \in \mathcal{O}$ there is $V \in \mathcal{O}, V \subseteq U$ such that $V \cap A = \emptyset$.

Definition

A set $A \subseteq \omega^{\omega}$ is S<u>-small</u> if for every $T \in S$ there is $S \in S$ such that $S \subseteq T$ and $[T] \cap A = \emptyset$.

 \mathbb{S} is the collection of perfect trees on $2^{<\omega}$.

Definition

The Marczewski ideal s_0 is the collection of S-small sets.

All Borel S-small sets are countable!

Remark

There is an uncountable S-small set.

Proof: If CH holds take a Luzin set. If not take any set of size \aleph_1 .

¹Combinatorial forcing trees

Remark

There is an uncountable S-small set.

Proof: If CH holds take a Luzin set. If not take any set of size \aleph_1 .

Theorem (Marczewski 1935, Fremlin)

The ideal of S-small sets (called the Marczewski ideal) does not have a Borel basis. In fact $cof(s_0) > \mathfrak{c}$.

¹Combinatorial forcing trees

Remark

There is an uncountable S-small set.

Proof: If CH holds take a Luzin set. If not take any set of size \aleph_1 .

Theorem (Marczewski 1935, Fremlin)

The ideal of S-small sets (called the Marczewski ideal) does not have a Borel basis. In fact $cof(s_0) > \mathfrak{c}$.

Definition

Given a forcing notion of trees \mathbb{T}^1 on $\omega^{<\omega}$ (Sacks, Miller, Laver, ...), a set $X \subset \omega^{\omega}$ is \mathbb{T} -small if for every $T \in \mathbb{T}$ there is $S \subseteq T, S \in \mathbb{T}$ such that $[S] \cap X = \emptyset$. The ideal of \mathbb{T} -small sets will be denoted by t_0 .

¹Combinatorial forcing trees

What can be said about the ideal m_0 , the ideal of small sets according to the Miller/Superperfect tree forcing?

What can be said about the ideal m_0 , the ideal of small sets according to the Miller/Superperfect tree forcing?

Theorem (Brendle, Khomskii, Wohofsky, 2016)

If \mathbb{T} is a tree forcing notion, then $cof(t_0) > 0$ if one of the following hold.

- \mathbb{T} has the Constant or 1-1 property: For every $T \in \mathbb{T}$ and every continuous $f : [T] \to \omega$ there is $S \in \mathbb{T}$ such that $S \subseteq T$ and f[S] is constant or 1-1.
- \mathbb{T} has the Incompatibility shrinking property: If $\kappa < \mathfrak{c}$ and $\{A_{\alpha} : \alpha < \kappa\} \subseteq t_0^{\mathcal{B}}$, then there is $T \in \mathbb{T}$ such that $A_{\alpha} \cap [T] = \emptyset$ for every $\alpha < \kappa$.

Theorem (Brendle, Khomskii, Wohofsky, 2016) Under $\mathfrak{d} = \mathfrak{c}$, \mathbb{M} has the incompatibility shrinking property.

Theorem (Miller)

 ${\mathbb M}$ has the constant or 1-1 property.

Therefore $cof(m_0) > \mathfrak{c}$

Given an ideal \mathscr{I} on ω , the <u>Miller forcing of \mathscr{I} positive sets</u>, denoted by $\mathbb{M}_{\mathscr{I}}$ are trees $T \subseteq \omega^{<\omega}$ such that for every $\sigma \in T$ there is $\tau \in T$, $\sigma \subseteq \tau$ such that $succ_{T}(\tau)$ is not in \mathcal{I} .

The collection of $\mathbb{M}_{\mathscr{I}}$ small sets will be denoted by $m(\mathscr{I})_0$ and its Borel part will be $m(\mathscr{I})_0^B$.

Remark

 $\mathbb{M}_{\mathrm{Fin}}$ is the regular Miller forcing.

Questions

For which ideals \mathscr{I} does $\mathbb{M}_{\mathscr{I}}$ has the constant or 1-1 property? In which cases $\mathbb{M}_{\mathscr{I}}$ has the incompatibility shrinking property?

Theorem (Sabok, Zapletal, 2011)

 $\mathbb{M}_{\mathscr{I}}$ does not have the Constant or 1-1 property if and only if $\mathbb{M}_{\mathscr{I}}$ adds Cohen reals if and only if there is $X \notin \mathscr{I}$ such that $nwd \leq_{K} \mathscr{I}|_{X}$.

Incompatibility shrinking property as a cardinal invariant:

Definition

The incompatibility shrinking number of \mathbb{T} , is(\mathbb{T}) is the smallest number of elements of t_0^B required to hit all [7] for $T \in \mathbb{T}$.

Incompatibility shrinking property as a cardinal invariant:

Definition

The incompatibility shrinking number of \mathbb{T} , is(\mathbb{T}) is the smallest number of elements of t_0^B required to hit all [T] for $T \in \mathbb{T}$.

Remarks

- \mathbb{T} has the incompatibility shrinking property if and only if $is(\mathbb{T}) = \mathfrak{c}$.
- $\operatorname{add}(t_0^B) \leq \operatorname{is}(\mathbb{T}) \leq \operatorname{cov}(t_0^B).$

Incompatibility Shrinking Property General Facts

Theorem:

```
For any ideal \mathscr{I}, we have
```

```
\min\{\mathfrak{b}, \operatorname{cov}(m_0^{\mathbb{B}}(\mathscr{I}))\} \leq \operatorname{is}(\mathbb{M}_{\mathscr{I}}) \leq \operatorname{cov}(m_0^{\mathbb{B}}(\mathscr{I})) \leq \mathfrak{d}.
```

Moreover, if $\mathbb{M}_{\mathscr{I}}$ adds Cohen reals, then

 $\min\{\mathfrak{b}, \operatorname{cov}(m_0^{\mathcal{B}}(\mathscr{I}))\} = \operatorname{is}(\mathbb{M}_{\mathscr{I}})$

Incompatibility Shrinking Property General Facts

Theorem:

For any ideal \mathscr{I} , we have

 $\min\{\mathfrak{b}, \operatorname{cov}(m_0^{\mathsf{B}}(\mathscr{I}))\} \leq \operatorname{is}(\mathbb{M}_{\mathscr{I}}) \leq \operatorname{cov}(m_0^{\mathsf{B}}(\mathscr{I})) \leq \mathfrak{d}.$

Moreover, if $\mathbb{M}_{\mathscr{I}}$ adds Cohen reals, then

 $\min\{\mathfrak{b}, \operatorname{cov}(m_0^{\mathcal{B}}(\mathscr{I}))\} = \operatorname{is}(\mathbb{M}_{\mathscr{I}})$

Ideal I	$\operatorname{is}(\mathbb{M}_{\mathscr{I}}) \in$
Fin	{0}
$\operatorname{conv}, \mathcal{R}, \mathcal{ED}, \operatorname{Fin} \times \operatorname{Fin}$	$[\mathfrak{b},\mathfrak{d}]$
Analytic <i>p</i> -ideals	$[\mathrm{add}(\mathcal{N}), \mathfrak{d}]$ $\{\mathrm{add}(\mathcal{M})\}.$
nwd	$\{ add(\mathcal{M}) \}.$

The forcing \mathbb{FM} , the full Miller forcing, is the collection of superperfect trees such that each node splits into either one point or on the whole ω .

 $\mathbb{F}\mathbb{M}$ does not have the Constant or 1-1 property.

Theorem $is(\mathbb{FM}) = add(\mathcal{M}).$

Marczewski-like ideals related to superperfect Laver trees.

Arturo Martínez-Celis February 2024. Hejnice.

Winter School in Abstract Analysis 2024 section Set Theory & Topology (Joint work with Aleksander Cieślak)

Given an ideal \mathscr{I} on ω , the Laver forcing of \mathscr{I} positive sets, denoted by $\mathbb{L}_{\mathscr{I}}$ are trees $T \subseteq \omega^{<\omega}$ such that for every $\sigma \in T$ extending the stem, $succ_{T}(\sigma)$ is not in \mathcal{I} .

The collection of $\mathbb{L}_{\mathscr{I}}$ small sets will be denoted by $\ell(\mathscr{I})_0$ and its Borel part will be $\ell(\mathscr{I})_0^B$.

Given an ideal \mathscr{I} on ω , the Laver forcing of \mathscr{I} positive sets, denoted by $\mathbb{L}_{\mathscr{I}}$ are trees $T \subseteq \omega^{<\omega}$ such that for every $\sigma \in T$ extending the stem, $succ_{T}(\sigma)$ is not in \mathcal{I} .

The collection of $\mathbb{L}_{\mathscr{I}}$ small sets will be denoted by $\ell(\mathscr{I})_0$ and its Borel part will be $\ell(\mathscr{I})_0^B$.

Remark

 $\mathbb{L}_{\mathrm{Fin}}$ is the regular Laver forcing.

Given an ideal \mathscr{I} on ω , the Laver forcing of \mathscr{I} positive sets, denoted by $\mathbb{L}_{\mathscr{I}}$ are trees $T \subseteq \omega^{<\omega}$ such that for every $\sigma \in T$ extending the stem, $succ_{T}(\sigma)$ is not in \mathcal{I} .

The collection of $\mathbb{L}_{\mathscr{I}}$ small sets will be denoted by $\ell(\mathscr{I})_0$ and its Borel part will be $\ell(\mathscr{I})_0^B$.

Remark

 $\mathbb{L}_{\mathrm{Fin}}$ is the regular Laver forcing.

Questions

For which ideals \mathscr{I} does $\mathbb{L}_{\mathscr{I}}$ has the constant or 1-1 property? In which cases $\mathbb{L}_{\mathscr{I}}$ has the incompatibility shrinking property?

Constant or 1-1 property

Remark

If $\mathbb{M}_{\mathscr{I}}$ does not have the constant or 1-1 property, then $\mathbb{L}_{\mathscr{I}}$ does not have it either. In particular \mathbb{L}_{nwd} does not have the constant or 1-1 property.

Constant or 1-1 property

Remark

If $\mathbb{M}_{\mathscr{I}}$ does not have the constant or 1-1 property, then $\mathbb{L}_{\mathscr{I}}$ does not have it either. In particular \mathbb{L}_{nwd} does not have the constant or 1-1 property.

Theorem (Gray, 1980)

 ${\mathbb L}$ has the Constant or 1-1 property.

Therefore $cof(\ell_0) > \mathfrak{c}$.

Constant or 1-1 property

Remark

If $\mathbb{M}_{\mathscr{I}}$ does not have the constant or 1-1 property, then $\mathbb{L}_{\mathscr{I}}$ does not have it either. In particular \mathbb{L}_{nwd} does not have the constant or 1-1 property.

Theorem (Gray, 1980)

 ${\mathbb L}$ has the Constant or 1-1 property.

Therefore $cof(\ell_0) > \mathfrak{c}$.

Theorem

 $\mathbb{L}_{\mathscr{I}}$ has the Constant or 1-1 property provided that \mathscr{I} is p+ and nowhere maximal.

Question

What can be said about $\mathbb{L}_{Fin \times Fin}$ or $\mathbb{L}_{\mathcal{Z}}$?

Ideal I	$\operatorname{is}(\mathbb{L}_{\mathscr{I}}) \in$
$\mathrm{Fin},\mathrm{Fin}\times\mathrm{Fin}$	$\{\mathfrak{b}\}$
$\mathrm{conv}, \mathcal{R}, \mathcal{ED}$	$[\aleph_1, \mathfrak{b}]$
Analytic <i>p</i> -ideals	$[\operatorname{add}(\mathcal{N}), \mathfrak{b}]$
nwd	$\{ add(\mathcal{M}) \}.$

Thank you for your attention! 2nd Wrocław Logic Conference. https://prac.im.pwr.edu.pl/ twowlc/

arturo.martinez-celis@math.uni.wroc.pl

References

Aleksander Cieślak and Arturo Martínez-Celis.
<u>On ideals related to Laver and Miller trees</u>. 2023. arXiv: 2312.01387 [math.LO].