
Ramsey theorem for trees with successor operation

Jan Hubička
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Big Ramsey Degrees of (Q,≤)

Theorem (Upper bound by Laver 1969, characterisation by Devlin 1979)

The order of rationals (Q,≤) has finite big Ramsey degrees: for every n ∈ ω there exists
T (n) ∈ ω such that whenever n-element subsets of Q are finitely colored, there exists a
copy of (Q,≤) in itself touching at most T (n) many colors.

T (n) = tan(2n−1)(0).

tan(2n−1)(0) is the (2n − 1)st derivative of the tangent evaluated at 0.

T (1) = 1,T (2) = 2,T (3) = 16,T (4) = 272,

T (5) = 7936,T (6) = 353792,T (7) = 22368256
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Trees (terminology)
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(2<7,⊑)

• A tree is a (possibly empty) partially ordered set (T , <T )
such that, for every t ∈ T , the set { s ∈ T : s <T t } is finite
and linearly ordered by <T . All trees considered are finite
or countable.

• Tree is rooted, that is, they have a unique minimal element
called the root of the tree.

• An element t ∈ T of a tree T is called a node of T and its
level, denoted by ℓT (t), is the size of the set
{ s ∈ T : s <T t }.

• We use T (n) to denote the set of all nodes of T at level n.
Similarly T (<n) denotes an initial segment of the tree
consisting of all nodes of level less than n.

• For s, t ∈ T , the meet s ∧T t of s and t is the largest s′ ∈ T
such that s′ ≤T s and s′ ≤T t .

• The height of T , denoted by h(T ), is the minimal natural
number h such that T (h) = ∅. If there is no such number
h, then we say that the height of T is ω.
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Subtrees and strong subtrees
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• A subtree of a tree T is a subset S ⊆ T viewed as a tree
equipped with the induced partial ordering.

• Given a tree T and nodes s, t ∈ T we say that s is a
successor of t in T if t ≤T s.

• The node s is an immediate successor of t in T if t <T s
and there is no s′ ∈ T such that t <T s′ <T s.

• Node with no successors is leaf.
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Definition

Let T be rooted tree. Nonempty S ⊆ T is a strong subtree of T of height n ∈ ω + 1 if:

1 S is closed for meets. (In particular, S is rooted.)

2 For every a ∈ S(<(n − 1)) and every immediate successor b of a in T there is an unique
immediate successor c of a in S such that a ⊑ b ⊑ c. (If n = ω then every a ∈ S.)

3 S is level preserving: Every level of S is a subset of some level of T .

4 S has height n.
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Ramsey-type theorem for strong subtrees

Let T be a tree and k ∈ ω+ 1. We use Strk (T ) to denote the set of all strong subtrees of T
of height k .

Theorem (Milliken 1979)

For every rooted finitely branching tree T with no leaves, every k ∈ ω and every finite
colouring of Strk (T ) there is S ∈ Strω(T ) such that the set Strk (S) is monochromatic.

The difficult case to prove is (product version of) k = 1 (Halpern–Läuchli Theorem, 1966)

0 1
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000 001 010 011 100 101 110 111

Notice that for regularly branching tree the strong subtree is isomorphic to the original tree.
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Some more recent results on big Ramsey degrees

1 Laflamme, Sauer, Vuksanovic (2006): Characterisation of big Ramsey degrees of Rado graph.
2 Nguyen Van Thé (2009): Characterisation of big Ramsey degrees of homogeneous ultrametric

spaces.
3 Laflamme, Nguyen Van Thé, Sauer (2010): Characterisation of big Ramsey degrees of

homogeneous dense local order.

4 Dobrinen (2020): Big Ramsey degrees of universal homogeneous triangle-free graphs are finite
5 Dobrinen (2023): Big Ramsey degrees of universal homogeneous Kk -free graphs are finite for

every k ≥ 3.
6 Zucker (2022): Big Ramsey degrees of Fraïssé limits of free amalgamation classes in binary

language with finitely many forbidden substructures are finite.
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many constraints.

11 Bice, de Rancourt, H., Konečný: metric big Ramsey degrees of ℓ∞ and the Urysohn sphere,
(2023+).
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Trees with a successor operation

While most Ramsey-type theorems are concerned about regularly branching trees, we need more
general notion allowing trees with finite but unbounded branching.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree with finitely
many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T × T<ω × Σ → T called the successor operation satisfying the following three axioms:

1 If S(a, p̄, c) is defined for some base a ∈ T , parameter p̄ ∈ T<ω and character c ∈ Σ, then
S(a, p̄, c) is an immediate successor of a and all nodes in p̄ have levels at most ℓ(a)− 1.

2 For every node a ∈ T and its immediate successor b, there exist p̄ ∈ T<ω and c ∈ Σ such that
b = S(a, p̄, c).

Example: a binary tree

Consider S-tree is (2<ω,⊑, {0, 1},S).
S is defined only for empty parameters p̄ by concatenation: S(a, c) = a⌢c.

S(S(S(S(S((), 0), 1), 0), 1), 1) = 01011.
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Shape-preserving functions

Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call an injection F : T → T shape-preserving if

1 F is level preserving:

(∀a,b∈T ) : (ℓ(a) = ℓ(b)) =⇒ (ℓ(F (a)) = ℓ(F (b)))

2 F is weakly S-preserving:

(∀a∈T ,p̄∈T<ω,c∈Σ) : S(a, p̄, c) is defined =⇒ S(F (a),F (p̄), c) ⪯ F (S(a, p̄, c)).

3 For every a ∈ T (0) it holds that a ⪯ F (a).

Given S ⊆ T , we also call a function f : S → T shape-preserving if it extends to a shape-preserving
function F : T → T .
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Monoids of shape-preserving functions
For a level-preserving function F : S → T , we denote by F̃ the function F̃ : ℓ(S) → ω defined by
F̃ (n) = ℓ(F (a)) for some a ∈ S with ℓ(a) = n.
We say that F is skipping level m if m /∈ F̃ [ω] and that F is skipping only level m if F̃ [ω] = ω \ {m}.

F F1 F2

F̃ (0) = 0, F̃ (1) = 2: F skips levels 1 and 2.

Definition ((S,M)-tree)

Given an S-tree (T ,⪯,Σ,S) and a monoid M of some shape-preserving functions T → T , we call
(T ,⪯,Σ,S,M) an (S,M)-tree if the following three conditions are satisfied:

1 M forms a closed monoid: M contains the identity and is closed for compositions and limits.

2 M admits decompositions: For every n ∈ ω and F ∈ M skipping level F̃ (n)− 1 there exist
F1,F2 ∈ M such that F2 skips only level F̃ (n)− 1 and F2 ◦ F1 ↾T (≤n)= F ↾T (≤n) .

F F1 F2

3 M is closed for duplication: For all n and m with n < m ∈ ω, there exists a function F n
m ∈ M

skipping only level m such that for every a ∈ T (n), b ∈ T (m), p̄ ∈ T<ω and c ∈ Σ, where
S(a, p̄, c) is defined and S(a, p̄, c) ⪯ b, we have F n

m(b) = S(b, p̄, c).

F 2
0 F 2

1
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(T ,⪯,Σ,S,M) an (S,M)-tree if the following three conditions are satisfied:

1 M forms a closed monoid: M contains the identity and is closed for compositions and limits.

2 M admits decompositions: For every n ∈ ω and F ∈ M skipping level F̃ (n)− 1 there exist
F1,F2 ∈ M such that F2 skips only level F̃ (n)− 1 and F2 ◦ F1 ↾T (≤n)= F ↾T (≤n) .

F F1 F2

3 M is closed for duplication: For all n and m with n < m ∈ ω, there exists a function F n
m ∈ M

skipping only level m such that for every a ∈ T (n), b ∈ T (m), p̄ ∈ T<ω and c ∈ Σ, where
S(a, p̄, c) is defined and S(a, p̄, c) ⪯ b, we have F n

m(b) = S(b, p̄, c).

F 2
0 F 2

1



Ramsey theorem for trees with successor operation

Put Mn = {F ∈ M : F ↾T (<n) is identity}, AMn
k = {F ↾T (<n+k): F ∈ Mn}.

Theorem (Balko, Dobrinen, Chodounský, H., Konečný, Nešetřil, Zucker, 2023+)

Let (T ,⪯,Σ,S,M) be an (S,M)-tree. Then, for every pair n, k ∈ ω and every finite coloring χ of
AMn

k , there exists F ∈ Mn such that χ is constant when restricted to {F ◦ g : g ∈ AMn
k}.

Examples

Consider S-tree (Σ<ω,⊑,Σ,S) for some finite alphabet Σ.

1 If |Σ| = 1 we obtain Ramsey theorem.

2 If |Σ| > 1 and M consists of all shape-preserving functions we obtain Milliken tree theorem.

3 If |Σ| > 1 and M is generated only by duplication functions we obtain dual Ramsey theorem.

4 If |Σ| > 1 and M is generated only by duplication and “constant” functions we obtain
Graham–Rothschild theorem theorem.
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Ellentuck topology on (S,M)-trees

Recall that a subset X of a topological space is

1 nowhere dense if every non-empty open set contains a non-empty open subset that avoids X .

2 meager if is the union of countably many nowhere dense sets,

3 has the Baire property if it can be written as the symmetric difference of an open set and a
meager set.

Put AM = {F ↾T (<n): F ∈ M, n ∈ ω}.

Definition (Ellentuck topological space M)

Given an (S,M)-tree (T ,⪯,Σ,S,M) we equip M with the Ellentuck topology given by the following
basic open sets:

[f ,F ] = {F ◦ F ′ : F ′ ∈ M and F ◦ F ′ extends f}
for every f ∈ AM and F ∈ M.



Topological Ramsey theorem for trees with successor operation
Given a shape-preserving function F ∈ M and f : T (≤n) → T such that f ∈ AM we define
depthF (f ) = g̃(n) for g ∈ AM satisfying F ◦ g = f . We set depthF (f ) = ω if there is no such g.

Definition

Let X be a subset of M.

1 We call X Ramsey if for every non-empty basic set [f ,F ] there is F ′ ∈ [F ↾depthF (f ),F ] such that
either [f ,F ′] ⊆ X or [f ,F ′] ∩ X = ∅.

2 We call X Ramsey null if for every [f ,F ] ̸= ∅ we can find F ′ ∈ [F ↾depthF (f ),F ] s. t. [f ,F ′]∩X = ∅.

Theorem (Ellentuck theorem for shape-preserving functions)

Let (T ,⪯,Σ,S,M) be an (S,M)-tree and consider M with the Ellentuck topology. Then every
property of Baire subset of M is Ramsey and every meager subset is Ramsey null.

Examples

Consider S-tree (Σ<ω,⊑,Σ,S) for some finite alphabet Σ.

1 If |Σ| = 0 we obtain Ellentuck theorem.

2 If |Σ| > 1 and M consists of all shape-preserving functions =⇒ Milliken theorem.

3 If |Σ| > 1 and M is generated only by duplication functions =⇒ Carlson–Simpson theorem.
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Proof outline

1 1-dimensional pigeonhole is proved using Hales–Jewett theorem
(duplication is important here).

2 Method of (combinatorial) forcing is used to prove ω-dimensional pigeonhole on a stronger
notion of “fat subtrees”.

3 Todorčević axioms of Ramsey spaces are used to obtain a Ramsey space of fat subtrees.

4 Topological Ramsey theorem for trees with successor operation follows as a consequence.

We obtain an interesting example of Ramsey space where Todorčević A3.2 axiom is not satisfied.
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Theorem

2. Partial orders
with linear
extension

3. Ordered metric
spaces

4. . . .

Ramsey, or
Graham–Rothschild

Theorem



Applications to small Ramsey degrees

Trees with sucessor operation Partite Lemma

Partite construction

1. Abramson-
Harrington
(unrestricted
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Abramson–Harrington theorem

Theorem (Nešetřil 1977, Abramson–Harrington 1978)

Let L be a relational language and A,B finite ordered L-structures. Then there exists finite ordered
L-structure C satisfying C −→ (B)A

2 .

Proof, step 1: associate vertices of structure B with words.

1 Fix A and B. WLOG assume that B = n = |B| and ≤B is the natural ordering of n.

2 Given two substructures B′ and B′′ of B we put B′ ≺ B′′ if either |B′| < |B′′| or |B′| = |B′′| and
B′ is lexicographically before B′′ (in the order of vertices of B).

3 Put p = 2n − 1 and enumerate all non-empty substructures of B as B0,B1, . . . ,Bp−1 in the
increasing order (given by ⪯). For each i < p

4 For each i < N find lexicographically first substructure Di isomorphic to Bi and denote by f i the
unique isomorphism Bi → Di .

φ(v)i =

{
−1 if v /∈ B i

f i(v) if v ∈ B i for every v ∈ B and i < p.

0 1 2 3 4 5 6
0 φ(0) = 0 n n 0 0 n 0
1 φ(1) = n 0 n 1 n 0 1
2 φ(2) = n n 0 n 2 1 2

B
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Abramson–Harrington theorem
0 1 2 3 4 5 6

0 φ(0) = 0 n n 0 0 n 0
1 φ(1) = n 0 n 1 n 0 1
2 φ(2) = n n 0 n 2 1 2

B

Proof, step 2: structure Cℓ on Σℓ.

Consider regularly branching tree (Σ<ω,⊑) with Σ = B ∪ {−1}.

Given k , ℓ ∈ ω, and a tuple w̄ = (w0,w1, . . . ,wk−1) of elements of Σℓ

1 we say that w̄ decides a structure on level i < ℓ if 0 ≤ w0
i < w1

i < · · · < wk−1
i and i is a minimal

with this property.

2 we say that w̄ become incompatible on level i ′ < ℓ if either

1 k = 2 and w0
i′ ≥ w1

i′ ≥ 0,
2 0 ≤ w0

i′ < w1
i′ < · · · < wk−1

i′ however there exists i < i ′ such that w̄ decides structure on
level i and B ↾{w0

i ,w
1
i ,...,w

k−1
i } is not isomorphic to B ↾{w0

i′ ,w
1
i′ ,...,w

k−1
i′ } .

For every ℓ ∈ ω construct an ordered L-structure Cℓ as a structure satisfying the following:

1 The vertex set of Cℓ is Cℓ = Σℓ,

2 ≤Cℓ
is the lexicographic ordering of Σℓ,

3 whenever (w0,w1, . . . ,wk−1) ∈ Σℓ is compatible and decides structure on some level i then
B ↾{w0,w1,...,wk−1} is isomorphic to B ↾{w0

i ,w
1
i ,...,w

k−1
i }.
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Abramson–Harrington theorem

Proof step 3: Building (S,M)-tree.

Define successors by concatenation.
Let M denote the set of all shape-preserving functions F : Σ<ω → Σ<ω satisfying for every ℓ ∈ ω
and every lexicographically increasing sequence w̄ of elements of Σℓ the following two properties:

1 if F (w̄) decides structure on level i then i ∈ F̃ [ω].

2 if F (w̄) become inconsistent on level i ′ then i ′ ∈ F̃ [ω].

Let N by given by our theorem for (S,M)-tree, 2|A| − 1 and 2|B| − 1. Then

Cℓ −→ (B)A
2 .

B

0 1 2
0 φ(0) = 0 n 0
1 φ(1) = n 0 1A

0 1 2 3 4 5 6
0 φ(0) = 0 n n 0 0 n 0
1 φ(1) = n 0 n 1 n 0 1
2 φ(2) = n n 0 n 2 1 2
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