Straightening almost chains in $P(\omega)$

Maciej Korpalski

University of Wrocław

Joint work with Antonio Avilés and Grzegorz Plebanek

Winter School in Abstract Analysis, February 2, 2024

イロト イボト イヨト イヨト

Separable compact lines

Definition

Consider a closed subset $F \subseteq [0, 1]$, any set $X \subseteq F$ and define a space

$$F_X = F \times \{0\} \cup X \times \{1\}$$

equipped with the topology generated by the lexicographic order.

Theorem (Ostaszewski, 1974)

The space L is a separable compact linearly ordered space if and only if L is homeomorphic to F_X for some closed set $F \subseteq [0,1]$ and a subset $X \subseteq F$.

イロト イヨト イヨト

Separable compact lines

Definition

Consider a closed subset $F \subseteq [0, 1]$, any set $X \subseteq F$ and define a space

$$F_X = F \times \{0\} \cup X \times \{1\}$$

equipped with the topology generated by the lexicographic order.

Theorem (Ostaszewski, 1974)

The space L is a separable compact linearly ordered space if and only if L is homeomorphic to F_X for some closed set $F \subseteq [0, 1]$ and a subset $X \subseteq F$.

< ロ > < 同 > < 三 > < 三 >

Countable discrete extensions

Definition

Given a compact space K, we say that L is a countable discrete extension of K if the following are satisfied

- K is a subspace of L,
- L is compact,
- **③** $L \setminus K$ is a countable infinite discrete space.

イロト 不得 トイヨト イヨト

Extension operators

Definition

For two compact spaces $K \subseteq L$ by an extension operator we mean a bounded linear operator $E : C(K) \to C(L)$ such that Ef|K = f and for every $f \in C(K)$.

$\eta(K,L)$

For a compact space K and $L \in CDE(K)$ we are interested in the minimal norm of an extension operator $E : C(K) \rightarrow C(L)$. This value is denoted by $\eta(K, L)$.

イロト イボト イヨト イヨト

Extension operators

Definition

For two compact spaces $K \subseteq L$ by an extension operator we mean a bounded linear operator $E : C(K) \to C(L)$ such that Ef|K = f and for every $f \in C(K)$.

$\eta(K,L)$

For a compact space K and $L \in CDE(K)$ we are interested in the minimal norm of an extension operator $E : C(K) \rightarrow C(L)$. This value is denoted by $\eta(K, L)$.

イロト イポト イヨト イヨト

Old results

Theorem (Marciszewski)

There is a separable compact line K of weight ω_1 and $L \in CDE(K)$ such that $\eta(K, L) = 3$.

Theorem (K., Plebanek)

If $\kappa \ge \operatorname{non}(\mathcal{E})$, then there is a separable compact line K of weight κ and $L \in CDE(K)$ such that $\eta(K, L) = \infty$.

 \mathcal{E} is the σ -ideal generated by closed measure zero sets; $non(\mathcal{E}) \leq non(\mathcal{M}), non(\mathcal{N})$

ヘロト ヘロト ヘヨト ヘヨト

Old results

Theorem (Marciszewski)

There is a separable compact line K of weight ω_1 and $L \in CDE(K)$ such that $\eta(K, L) = 3$.

Theorem (K., Plebanek)

If $\kappa \ge non(\mathcal{E})$, then there is a separable compact line K of weight κ and $L \in CDE(K)$ such that $\eta(K, L) = \infty$.

 \mathcal{E} is the σ -ideal generated by closed measure zero sets; $non(\mathcal{E}) \leq non(\mathcal{M}), non(\mathcal{N})$

ヘロト ヘロト ヘヨト ヘヨト

Old results 2

Theorem (K., Plebanek)

For a separable compact line K and $L \in CDE(K)$ we have $\eta(K, L) = 2k + 1$ for some $k \in \omega$ or $\eta(K, L) = \infty$.

ヘロト 人間 とくほ とくほ とう

Problem

[2, Problem 7.1.]

Is it relatively consistent that $\eta(K, L) < \infty$ for every separable compact space K of weight ω_1 and its countable discrete extension L?

Here we will focus on the situation where K is a separable compact line.

イロト イボト イヨト イヨト

Almost chains

Almost chain of subsets of ω indexed by the set $X \subseteq [0, 1]$ is a family \mathcal{A} such that

•
$$\mathcal{A} = \{A_x \subseteq \omega : x \in X\},$$

• $A_x \subseteq^* A_y$ for x < y.

By almost chains we will always mean almost chains of subsets of ω (or other countable set) indexed by a set $X \subseteq [0, 1]$ (which is usually fixed within a context).

Finite adjustment

We say that an almost chain \mathcal{B} is a finite adjustment of \mathcal{A} if for all $x \in X$ we have $A_x =^* B_x$.

イロト イヨト イヨト

Almost chains

Almost chain of subsets of ω indexed by the set $X \subseteq [0, 1]$ is a family \mathcal{A} such that

•
$$\mathcal{A} = \{A_x \subseteq \omega : x \in X\},\$$

• $A_x \subseteq^* A_y$ for x < y.

By almost chains we will always mean almost chains of subsets of ω (or other countable set) indexed by a set $X \subseteq [0, 1]$ (which is usually fixed within a context).

Finite adjustment

We say that an almost chain \mathcal{B} is a finite adjustment of \mathcal{A} if for all $x \in X$ we have $A_x =^* B_x$.

イロト イヨト イヨト

Alternations in an almost chain

Definition

We say that A is *barely alternating* if we cannot find $x_1 < x_2 < x_3 < x_4$ in X and $n \in \omega$ satisfying

$$n \in A_{x_1}, n \notin A_{x_2}, n \in A_{x_3}, n \notin A_{x_4}.$$

This property means that the almost chain A is alternating at most once in each n.

When for all n we cannot find any alternations, so there are no points x < y in X such that $n \in A_x$, $n \notin A_y$, then the almost chain A is just a chain (with the regular inclusion).

Alternations in an almost chain

Definition

We say that A is *barely alternating* if we cannot find $x_1 < x_2 < x_3 < x_4$ in X and $n \in \omega$ satisfying

$$n \in A_{x_1}, n \notin A_{x_2}, n \in A_{x_3}, n \notin A_{x_4}.$$

This property means that the almost chain A is alternating at most once in each n.

When for all *n* we cannot find any alternations, so there are no points x < y in X such that $n \in A_x$, $n \notin A_y$, then the almost chain A is just a chain (with the regular inclusion).

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Earlier results

Theorem (Marciszewski, restated)

There is a set $X \subseteq [0, 1]$ of cardinality ω_1 and an almost chain \mathcal{A} which cannot be finitely adjusted into a non-alternating chain.

Problem for separable compact lines, restated

Is it relatively consistent that for every set $X \subseteq [0, 1]$ of cardinality ω_1 and an almost chain \mathcal{A} on X there is a finite adjustment \mathcal{B} of \mathcal{A} which has finite amount of alternations?

イロト イボト イヨト イヨト

The straightening forcing

Theorem (Antonio Avilés)

(Under $MA(\kappa)$): Assume that we are given

- a set $X \subseteq [0,1]$ of cardinality κ ,
- an almost chain A = {A_x : x ∈ X} of subsets of ω indexed by X.

Then there is a barely alternating almost chain $\{B_x : x \in X\}$ which is a finite adjustment of A, so for all $x \in X$ we have $A_x =^* B_x$.

イロト イポト イヨト イヨト

The straightening forcing

Theorem (Antonio Avilés)

(Under $MA(\kappa)$): Assume that we are given

- a set $X \subseteq [0,1]$ of cardinality κ ,
- an almost chain A = {A_x : x ∈ X} of subsets of ω indexed by X.

Then there is a barely alternating almost chain $\{B_x : x \in X\}$ which is a finite adjustment of A, so for all $x \in X$ we have $A_x =^* B_x$.

The scheme of proof

We use the following forcing:

$$\mathbb{P} = \{ (F, \mathcal{B} = \{ B_x \subseteq \omega : x \in F \}) : F \subseteq X, F \text{ is finite}, \\ A_x =^* B_x \text{ for } x \in F, \\ \mathcal{B} \text{ is barely alternating} \}, \\ (F_1, \mathcal{B}_1) \leq (F_2, \mathcal{B}_2) \iff F_1 \subseteq F_2 \land \mathcal{B}_1 \subseteq \mathcal{B}_2. \end{cases}$$

It is then enough to prove the following:

• \mathbb{P} is ccc;

ヘロト ヘ団ト ヘヨト ヘヨト

The scheme of proof

We use the following forcing:

$$\mathbb{P} = \{ (F, \mathcal{B} = \{ B_x \subseteq \omega : x \in F \}) : F \subseteq X, F \text{ is finite}, \\ A_x =^* B_x \text{ for } x \in F, \\ \mathcal{B} \text{ is barely alternating} \}, \\ (F_1, \mathcal{B}_1) \leq (F_2, \mathcal{B}_2) \iff F_1 \subseteq F_2 \land \mathcal{B}_1 \subseteq \mathcal{B}_2. \end{cases}$$

It is then enough to prove the following:

2 $MA(\kappa) \implies$ Thesis.

ヘロト ヘロト ヘヨト ヘヨト

Corollary

Under $MA(\kappa)$, if K is a separable compact line of weight κ , then for each countable discrete extension L of K there is an extension operator $E : C(K) \rightarrow C(L)$ of norm at most 3.

イロト イポト イヨト イヨト

References

- A.J. Ostaszewski, A characterization of compact, separable, ordered spaces, J. Lond. Math. Soc. 7 (1974), 758–760.
- M. Korpalski and G. Plebanek, *Countable discrete extensions of compact lines*, (2023). arXiv:2305.04565; to be published in Fundamenta Mathematicae

イロト イポト イヨト イヨト