Combinatorial $\kappa\textsc{-Reals}$ in the Higher Baire Space

Tristan van der Vlugt Universität Hamburg

Winter School in Abstract Analysis, Hejnice January 29, 2024

How do you show for two cardinal invariants $\mathfrak x$ and $\mathfrak y$ that $\mathfrak x<\mathfrak y$ is consistent?

Answer: (Usually) you assume $\mathfrak{x} = \mathfrak{y}$ are both ...

... adding \aleph_2 -many **Cohen reals** over $\mathbf{V} \vDash$ " $\mathfrak{b} = \mathfrak{d} = \aleph_1$ "

... adding \aleph_1 -many **Cohen reals** over $\mathbf{V} \vDash$ " $\mathfrak{b} = \mathfrak{d} = \aleph_2$ "

Question: Which forcing notions add which kinds of witnesses?

We will assume that κ is a regular uncountable cardinal. The higher Baire space ${}^{\kappa}\kappa$ is the set of κ -reals $f: \kappa \to \kappa$.

Many things known on ${}^{\omega}\omega$ also hold on ${}^{\kappa}\kappa$ by more or less the same proof, but not always! For example, $\mathfrak{b} < \mathfrak{s}$ is consistent, but $\mathfrak{s}_{\kappa} \leq \mathfrak{b}_{\kappa}$ is a theorem [Raghavan and Shelah, 2017].

Moreover, large cardinals are sometimes required to prove consistency. For example, $\mathfrak{s}_{\kappa} > \kappa^+$ implies the existence of a measurable μ with Mitchell order $\geq \mu^{++}$ [Zapletal, 1997].

Some notation:

$$f \leq^* f' \qquad \Leftrightarrow \qquad \exists \alpha_0 \in \kappa \forall \alpha \ge \alpha_0 (f(\alpha) \le f'(\alpha)),$$

$$f \leq^\infty f' \qquad \Leftrightarrow \qquad \forall \alpha_0 \in \kappa \exists \alpha \ge \alpha_0 (f(\alpha) \le f'(\alpha)).$$

Similar for $=^*$, $=^{\infty}$, \in^* , \in^{∞} .

Some κ -Reals

Let $\mathbf{V} \subseteq \mathbf{W}$ be models of ZFC. We call a κ -real $f \in ({}^{\kappa}\kappa)^{\mathbf{W}}$...

- ... dominating over V if $g \leq^* f$ for all $g \in ({}^{\kappa}\kappa)^{\mathbf{V}}$.
- ... unbounded over V if $f \not\leq^{\star} g$ for all $g \in ({}^{\kappa}\kappa)^{V}$.
- ... eventually different over V if $f \not\models^{\infty} g$ for all $g \in ({}^{\kappa}\kappa)^{V}$.
- ... cofinally equal over V if $f = {}^{\infty} g$ for all $g \in ({}^{\kappa}\kappa)^{V}$.

An arrow $P \to Q$ means that "there exists a $P \kappa$ -real over \mathbf{V} " implies "there exists a $Q \kappa$ -real over \mathbf{V} ".

$\kappa\text{-}\mathbf{Cohen}\ \mathbf{Forcing}$

 κ -Cohen forcing \mathbb{C}_{κ} has conditions $s \in {}^{<\kappa}\kappa$. The ordering is defined by $t \leq s$ iff $s \subseteq t$.

 \mathbb{C}_{κ} adds a κ -Cohen generic $\bigcup G \in {}^{\kappa}\kappa$, where G is a generic filter.

Theorem

A κ -Cohen generic is a cofinally equal κ -real.

Theorem

If $2^{<\kappa} = \kappa$, then $\mathbf{V}^{\mathbb{C}_{\kappa}}$ does not contain an eventually different κ -real over \mathbf{V} .

Proof sketch. Enumerate $\mathbb{C}_{\kappa} = \{p_{\alpha} \mid \alpha \in \kappa\}$ and given a name \dot{f} for a κ -real, define a κ -real g such that \Vdash " $\dot{f} = {}^{\infty} g$ ":

$$g: \alpha \mapsto \min\left\{ \xi \mid p_{\alpha} \not\Vdash ``\dot{f}(\alpha) \neq \xi'' \right\}$$

Let $\mathbf{V} \subseteq \mathbf{W}$ be models of ZFC with $b \in ({}^{\kappa}\kappa)^{\mathbf{V}}$. We assume $b(\alpha)$ is an infinite cardinal for all $\alpha \in \kappa$. Define:

$$\prod b = \prod_{\alpha \in \kappa} b(\alpha) = \{ f \in {}^{\kappa}\kappa \mid f < b \} \,.$$

We call a bounded κ -real $f \in (\prod b)^{\mathbf{W}} \dots$

- ... b-dominating over V if $g \leq^* f$ for all $g \in (\prod b)^V$.
- ... b-unbounded over V if $f \not\leq^* g$ for all $g \in (\prod b)^V$.

... b-eventually different over V if $f \not\Rightarrow^{\infty} g$ for all $g \in (\prod b)^{\mathbf{V}}$.

... b-cofinally equal over V if $f = {}^{\infty} g$ for all $g \in (\prod b)^{\mathbf{V}}$.

Note: *b*-dominating and *b*-unbounded κ -reals have no ${}^{\omega}\omega$ -analogue.

If $Q \subseteq \mathbb{P}$ is such that each $R \in [Q]^{<\kappa}$ has a lower bound (in \mathbb{P}), then Q is called $<\kappa$ -linked. If \mathbb{P} is the union of κ many $<\kappa$ -linked sets, \mathbb{P} is called $(\kappa, <\kappa)$ -centred.

Lemma

If $\mathbb P$ is $(\kappa,<\!\kappa)\text{-centred},$ then $\mathbb P$ does not add b-eventually different $\kappa\text{-reals}.$

Proof sketch. Let \mathbb{P}_{γ} be the $<\kappa$ -linked subsets and \Vdash " $\dot{f} \in \prod b$ ". We define f_{γ} s.t. if $h = {}^{\infty} f_{\gamma}$ for all $\gamma \in \kappa$, then \Vdash " $h = {}^{\infty} \dot{f}$ ":

$$f_{\gamma}: \alpha \mapsto \min\left\{ \xi \mid \forall p \in \mathbb{P}_{\gamma}(p \not\Vdash ``\dot{f}(\alpha) \neq \xi") \right\}.$$

 κ -Hechler forcing \mathbb{D}_{κ} has conditions (s, f) where $s \in {}^{<\kappa}\kappa$ and $f \in {}^{\kappa}\kappa$. The ordering is defined as $(t,g) \leq (s,f)$ iff $s \subseteq t$ and $f(\alpha) \leq g(\alpha)$ for all $\alpha \in \kappa \setminus \operatorname{dom}(s)$ and $f(\alpha) \leq t(\alpha)$ for all $\alpha \in \operatorname{dom}(t) \setminus \operatorname{dom}(s)$.

Theorem

 \mathbb{D}_{κ} adds a $\kappa\text{-}\mathsf{Cohen}$ generic and a dominating $\kappa\text{-}\mathsf{real}.$

Theorem [Cummings and Shelah, 1995, Lemma 7] If $2^{<\kappa} = \kappa$, then \mathbb{D}_{κ} is $(\kappa, <\kappa)$ -centred.

Corollary

If $2^{<\kappa} = \kappa$, then \mathbb{D}_{κ} does not add *b*-eventually different κ -reals.

If $Q \subseteq \mathbb{P}$ is such that each $R \in [Q]^{\kappa}$ has some $R' \in [R]^{\kappa}$ such that R' has a lower bound (in \mathbb{P}), then Q is called κ -calibre. If \mathbb{P} is the union of κ many κ -calibre sets, \mathbb{P} is called (κ, κ) -calibre.

Lemma

If \mathbb{P} is (κ, κ) -calibre, then \mathbb{P} does not add dominating κ -reals.

Proof sketch. Let \mathbb{P}_{γ} be the κ -calibre subsets and \Vdash " $\dot{f} \in {}^{\kappa}\kappa$ ". We define f_{γ} s.t. if $f_{\gamma} \leq^{\infty} h$ for all $\gamma \in \kappa$, then \Vdash " $\dot{f} \leq^{\infty} h$ ":

$$f_{\gamma}: \alpha \mapsto \min\left\{ \xi \mid \forall p \in \mathbb{P}_{\gamma}(p \not\Vdash ``\dot{f}(\alpha) \ge \xi") \right\} \qquad \Box$$

Let $b \in {}^{\kappa}\kappa$ be called **fast** if cf(b) is increasing and discontinuous on a club set C, i.e. $cf(b(\alpha)) \leq cf(b(\beta))$ for $\alpha \leq \beta$ and $\bigcup_{\xi \in \alpha} cf(b(\xi)) < cf(b(\alpha))$ for limit $\alpha \in C$.

Bounded κ -Hechler forcing \mathbb{D}_{κ}^{b} has conditions (s, f) where $s \in \prod_{<\kappa} b$ and $f \in \prod b$. The ordering is the same as in \mathbb{D}_{κ} .

Theorem

If b is fast, \mathbb{D}_{κ}^{b} adds a κ -Cohen generic and a b-dominating κ -real.

Theorem Follows from [Shelah, 2020]

If κ is weakly compact and b is fast, \mathbb{D}^b_{κ} has (κ, κ) -calibre, and hence does not add dominating κ -reals.

Bounded κ -Hechler Forcing (\mathbb{D}^b_{κ})

 κ -Eventually different forcing \mathbb{E}_{κ} has conditions (s, F) where $s \in {}^{<\kappa}\kappa$ and $F \in [{}^{\kappa}\kappa]{}^{<\kappa}$. The ordering is defined as $(t, G) \leq (s, F)$ iff $s \subseteq t$ and $F \subseteq G$ and $t(\alpha) \neq f(\alpha)$ for all $\alpha \in \operatorname{dom}(t) \setminus \operatorname{dom}(s)$ and $f \in F$.

Theorem

 \mathbb{E}_{κ} adds a $\kappa\text{-}\mathsf{Cohen}$ generic and an eventually different $\kappa\text{-}\mathsf{real}.$

Lemma

If $2^{<\kappa} = \kappa$, then \mathbb{E}_{κ} is $(\kappa, <\kappa)$ -centred.

Theorem

 \mathbb{E}_{κ} does not add a *b*-eventually different κ -real.

A space X is called $<\kappa$ -compact if every cover of X has a subcover of size $<\kappa$. The $<\kappa$ -box topology on $\prod_{i\in I} X_i$ is generated by open sets $[s] = \{f \in \prod_{i\in I} X_i \mid s \subseteq f\}$ where $s \in \prod_{i\in J} X_i$ for $J \subseteq I$ with $|J| < \kappa$.

If κ is strongly compact, then the κ -Tychonoff theorem holds: the $<\kappa$ -box product of $<\kappa$ -compact spaces is $<\kappa$ -compact.

Theorem [Buhagiar and Džamonja, 2021, Theorem 5.1] The $<\kappa$ -box product $\prod_{i\in\kappa} X_i$ with $w(X_i) \le \kappa$ and X_i a $<\kappa$ -compact space for each $i \in \kappa$ is $<\kappa$ -compact if and only if κ is weakly compact.

Lemma As in [Miller, 1981, Lemma 5.1] If κ is weakly compact, then \mathbb{E}_{κ} does not add a dominating κ -real.

κ -Eventually Different Forcing

For $h \in {}^{\kappa}\kappa$, an *h*-slalom φ is an element of $\mathrm{Sl}_{\kappa}^{h} = \prod_{\alpha \in \kappa} [\kappa]^{<h(\alpha)}$. If $f \in {}^{\kappa}\kappa$, then $\varphi \in \mathrm{Sl}_{\kappa}^{h}$ localises f if $f \in {}^{*}\varphi$, i.e. $f(\alpha) \in \varphi(\alpha)$ for almost all $\alpha \in \kappa$.

A forcing notion \mathbb{P} has the *h*-Laver property if for every $b \in {}^{\kappa}\kappa$, condition $p \in \mathbb{P}$ and name \dot{f} with $p \Vdash ``\dot{f} \in \prod b$ '' there exists some $\varphi \in \mathrm{Sl}^h_{\kappa}$ and $q \leq p$ such that $q \Vdash ``\dot{f} \in {}^*\varphi$ ''.

Lemma

If \mathbb{P} has the *h*-Laver property, then $\mathbf{V}^{\mathbb{P}}$ contains no κ -Cohen generics over \mathbf{V} and no *b*-unbounded κ -reals for $\mathrm{cf}(b) > h$.

We say that \mathbb{P} is ${}^{\kappa}\kappa$ -bounding, if $\mathbf{V}^{\mathbb{P}}$ does not contain unbounded κ -reals over \mathbf{V} . We say \mathbb{P} has the *h*-Sacks property if \mathbb{P} is ${}^{\kappa}\kappa$ -bounding and has the *h*-Laver property.

A tree $T \subseteq {}^{<\kappa}\kappa$ is ...

- ... **perfect** if for all $u \in T$ there exists $v \in T$ with $u \subseteq v$ such that v is a splitting node.
- ... closed (under splitting) if for all chains $C \subseteq T$ of splitting nodes with $|C| < \kappa$, also $\bigcup C \in T$ is a splitting node.
- ... guided by $\mathcal{U} \subseteq \mathcal{P}(\kappa)$ if for every splitting node $u \in T$ the set $\{\alpha \in \kappa \mid u^{\frown} \alpha \in T\}$ is in \mathcal{U} .
- ... Laver if there is a stem $u \in T$ such that v is a splitting node iff $u \subseteq v$, for $v \in T$.

Let \mathcal{U} be a nonprincipal $<\kappa$ -complete normal filter on κ .

 κ -Laver forcing $\mathbb{L}_{\kappa}^{\mathcal{U}}$ has the set of closed (perfect) Laver trees guided by \mathcal{U} as conditions, ordered by $S \leq T$ if $S \subseteq T$.

Theorem

 $\mathbb{L}^{\mathcal{U}}_{\kappa}$ adds a dominating $\kappa\text{-real}$ and a $\kappa\text{-Cohen}$ generic.

Theorem [Khomskii, Koelbing, Laguzzi, and Wohofsky, 2022] Any subforcing $\mathbb{L} \subseteq \mathbb{L}_{\kappa}^{\mathcal{U}}$ closed under taking subtrees of the form $(T)_s$ for $s \in T \in \mathbb{L}$ adds a κ -Cohen generic.

Question

Does there exist a $<\kappa$ -distributive forcing notion that adds a dominating κ -real, but no κ -Cohen generic?

Let \mathcal{U} be a nonprincipal $<\kappa$ -complete normal filter on κ .

 κ -Miller forcing $Mi_{\kappa}^{\mathcal{U}}$ has the set of closed perfect trees guided by \mathcal{U} as conditions, ordered by $S \leq T$ if $S \subseteq T$.

Theorem

 $\mathbb{Mi}_{\kappa}^{\mathcal{U}}$ adds an unbounded κ -real but no eventually different κ -real.

Theorem [Brendle, Brooke-Taylor, Friedman, and Montoya, 2018, Prp. 77] If \mathcal{U} is the club filter, then $\operatorname{Mi}_{\kappa}^{\mathcal{U}}$ adds a κ -Cohen generic.

Theorem [Brendle, Brooke-Taylor, Friedman, and Montoya, 2018, Prp. 81] Ilf \mathcal{U} is an ultrafilter, then $\operatorname{Mi}_{\kappa}^{\mathcal{U}}$ has the *h*-Laver property for $h: \alpha \mapsto (2^{|\alpha|})^+$, hence does not add a κ -Cohen generic or *b*-unbounded κ -real for $\operatorname{cf}(b) > h$.

$\kappa\textsc{-Miller}$ Forcing Guided by an Ultrafilter

We call an *h*-slalom $\varphi \in (\mathrm{Sl}^h_\kappa)^W$ *h*-localising over V if $f \in {}^*\varphi$ for all $f \in ({}^\kappa \kappa)^V$.

We call a κ -real $f \in ({}^{\kappa}\kappa)^{\mathbf{W}}$ *h*-avoiding over \mathbf{V} if $f \not \leq^{*} \varphi$ for all $\varphi \in (\mathrm{Sl}^{h}_{\kappa})^{\mathbf{V}}$.

By restricting ${}^{\kappa}\kappa$ to $\prod b$ we can also define (b, h)-localising slaloms and (b, h)-avoiding κ -reals.

Some More Simple Observations

 κ -Sacks forcing \mathbb{S}_{κ} has the set of closed perfect trees as conditions, ordered by $S \leq T$ if $S \subseteq T$.

Theorem

 \mathbb{S}_{κ} does not add eventually different κ -reals.

Theorem [Brendle, Brooke-Taylor, Friedman, and Montoya, 2018, Lm. 69] \mathbb{S}_{κ} has the *h*-Sacks property for $h : \alpha \mapsto (2^{|\alpha|})^+$ but adds an h'-avoiding κ -real for $h' : \alpha \mapsto |\alpha|^+$.

Let $h \in {}^{\kappa}\kappa$ be a cofinally increasing function with cardinal values.

 κ -Miller Lite forcing \mathbb{ML}_{κ}^{h} has the set of closed perfect trees T as conditions such that splitting nodes $u \in T$ with (order-type) α many splitting nodes below u split into $h(\alpha)$ -many successors.

The ordering is given by $S \leq T$ if $S \subseteq T$ and $suc(u, S) \neq suc(u, T)$ implies |suc(u, S)| < |suc(u, T)| for all splitting nodes $u \in S$.

Theorem

 \mathbb{ML}^h_{κ} does not add eventually different κ -reals.

Theorem [vdV.] \mathbb{ML}^h_{κ} has the $(2^h)^+$ -Sacks property, but adds an h-avoiding κ -real.

Theorem

 \mathbb{ML}^h_{κ} adds an *h*-unbounded κ -real.

κ -Miller Lite Forcing (\mathbb{ML}^h_{κ})

There are many more things to check. Most are likely easy, some could be hard. Some examples:

Can you add $b\text{-dominating }\kappa\text{-reals}$ without adding $b'\text{-dominating }\kappa\text{-reals}?$

Are eventually different κ -reals in $\mathbf{V}^{\mathbb{D}_{\kappa}}$ dominating? (on $\omega \omega$: yes)

Does κ -Miller forcing add a κ -Sacks generic? (on $\omega \omega$: no)

If d is a dominating κ -real over V and c is κ -Cohen generic over $\mathbf{V}[d]$, is d + c then \mathbb{D}_{κ} -generic over V? (on $\omega \omega$: yes)

What about splitting κ -reals?

What about random κ -reals?

- Jörg Brendle, Andrew Brooke-Taylor, Sy-David Friedman, and Diana Carolina Montoya. Cichoń's diagram for uncountable cardinals. Israel Journal of Mathematics, 225(2):959–1010, 2018.
- David Buhagiar and Mirna Džamonja. Square compactness and the filter extension property. Fundamenta Mathematicae, 252(3):325–342, 2021.
- James Cummings and Saharon Shelah. Cardinal invariants above the continuum. Annals of Pure and Applied Logic, 75:251–268, 1995.
- Yurii Khomskii, Marlene Koelbing, Giorgio Laguzzi, and Wolfgang Wohofsky. Laver trees in the generalized Baire space. Israel Journal of Mathematics, 255(2):599–620, December 2022.
- Arnold W. Miller. Some properties of measure and category. Transactions of the American Mathematical Society, 266(1):93–114, 1981.
- Dilip Raghavan and Saharon Shelah. Two inequalities between cardinal invariants. Fundamenta Mathematicae, 237(2):187–200, 2017.
- Saharon Shelah. On $CON(a_{\lambda} > cov_{\lambda}(meagre))$. Transactions of the American Mathematical Society, 373(8):5351–5369, 2020.
- Tristan van der Vlugt. Separating many localisation cardinals on the generalised Baire space. To appear in: Journal of Symbolic Logic.
- Jindřich Zapletal. Splitting number at uncountable cardinals. Journal of Symbolic Logic, 62:35-42, 1997.