Orderings on P-point ultrafilters

Boriša Kuzeljević

University of Novi Sad

Winter School in Abstract Analysis 2024

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024.

1/20

Joint work with Dilip Raghavan and Jonathan Verner

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

< □ ト < □ ト < 三 ト < 三 ト < 三 ト 三 < ○ Q (~ February 2024. 2 / 20

For a topological space X, we say that $x \in X$ is a *P*-point if the only prime ideal of $C(X, \mathbb{R})$ at x is the maximal ideal M_x .

Note that this is equivalent to the fact that intersection of any countably many neighborhoods of x is a neighborhood of x.

Again, in the space $\beta\omega$, this is equivalent to saying that a non-principal ultrafilter \mathcal{U} is a P-point iff for any collection $\{a_n : n < \omega\} \subseteq \mathcal{U}$ there is an $a \in \mathcal{U}$ such that $a \setminus a_n$ is finite for all $n < \omega$.

Typically, one would write $a \subseteq^* a_n$ instead of saying that $a \setminus a_n$ is finite.

Another equivalent condition for a non-principal ultrafilter \mathcal{U} to be a P-point is that for every function $f: \omega \to \omega$ either f is finite-to-one on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

For a topological space X, we say that $x \in X$ is a *P*-point if the only prime ideal of $C(X, \mathbb{R})$ at x is the maximal ideal M_x .

Note that this is equivalent to the fact that intersection of any countably many neighborhoods of x is a neighborhood of x.

Again, in the space $\beta\omega$, this is equivalent to saying that a non-principal ultrafilter \mathcal{U} is a P-point iff for any collection $\{a_n : n < \omega\} \subseteq \mathcal{U}$ there is an $a \in \mathcal{U}$ such that $a \setminus a_n$ is finite for all $n < \omega$.

Typically, one would write $a \subseteq^* a_n$ instead of saying that $a \setminus a_n$ is finite.

Another equivalent condition for a non-principal ultrafilter \mathcal{U} to be a P-point is that for every function $f: \omega \to \omega$ either f is finite-to-one on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

For a topological space X, we say that $x \in X$ is a *P*-point if the only prime ideal of $C(X, \mathbb{R})$ at x is the maximal ideal M_x .

Note that this is equivalent to the fact that intersection of any countably many neighborhoods of x is a neighborhood of x.

Again, in the space $\beta\omega$, this is equivalent to saying that a non-principal ultrafilter \mathcal{U} is a P-point iff for any collection $\{a_n : n < \omega\} \subseteq \mathcal{U}$ there is an $a \in \mathcal{U}$ such that $a \setminus a_n$ is finite for all $n < \omega$.

Typically, one would write $a \subseteq^* a_n$ instead of saying that $a \setminus a_n$ is finite.

Another equivalent condition for a non-principal ultrafilter \mathcal{U} to be a P-point is that for every function $f: \omega \to \omega$ either f is finite-to-one on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

<ロト < □ ト < □ ト < 三 ト < 三 ト < 三 ト < 三 へ Q () February 2024. 3 / 20

For a topological space X, we say that $x \in X$ is a *P*-point if the only prime ideal of $C(X, \mathbb{R})$ at x is the maximal ideal M_x .

Note that this is equivalent to the fact that intersection of any countably many neighborhoods of x is a neighborhood of x.

Again, in the space $\beta\omega$, this is equivalent to saying that a non-principal ultrafilter \mathcal{U} is a P-point iff for any collection $\{a_n : n < \omega\} \subseteq \mathcal{U}$ there is an $a \in \mathcal{U}$ such that $a \setminus a_n$ is finite for all $n < \omega$.

Typically, one would write $a \subseteq^* a_n$ instead of saying that $a \setminus a_n$ is finite.

Another equivalent condition for a non-principal ultrafilter \mathcal{U} to be a P-point is that for every function $f: \omega \to \omega$ either f is finite-to-one on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

For a topological space X, we say that $x \in X$ is a *P*-point if the only prime ideal of $C(X, \mathbb{R})$ at x is the maximal ideal M_x .

Note that this is equivalent to the fact that intersection of any countably many neighborhoods of x is a neighborhood of x.

Again, in the space $\beta\omega$, this is equivalent to saying that a non-principal ultrafilter \mathcal{U} is a P-point iff for any collection $\{a_n : n < \omega\} \subseteq \mathcal{U}$ there is an $a \in \mathcal{U}$ such that $a \setminus a_n$ is finite for all $n < \omega$.

Typically, one would write $a \subseteq^* a_n$ instead of saying that $a \setminus a_n$ is finite.

Another equivalent condition for a non-principal ultrafilter \mathcal{U} to be a P-point is that for every function $f: \omega \to \omega$ either f is finite-to-one on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Theorem (W. Rudin, 1956)

Assume CH. Then there is a P-point ultrafilter in $\beta \omega$. Thus ω^* is not a homogeneous space.

Theorem (Shelah, 1970s)

There is a model of ZFC with no P-point ultrafilters.

$MA(\sigma$ -centered) ensures the existence of 2^c many P-points. Note that

$$CH \Rightarrow MA \Rightarrow MA(\sigma - centered).$$

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Theorem (W. Rudin, 1956)

Assume CH. Then there is a P-point ultrafilter in $\beta \omega$. Thus ω^* is not a homogeneous space.

Theorem (Shelah, 1970s)

There is a model of ZFC with no P-point ultrafilters.

${ m MA}(\sigma ext{-centered})$ ensures the existence of 2^c many P-points. Note that

 $CH \Rightarrow MA \Rightarrow MA(\sigma - centered).$

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024. 4 / 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへへ

Theorem (W. Rudin, 1956)

Assume CH. Then there is a P-point ultrafilter in $\beta \omega$. Thus ω^* is not a homogeneous space.

Theorem (Shelah, 1970s)

There is a model of ZFC with no P-point ultrafilters.

 $MA(\sigma$ -centered) ensures the existence of 2^c many P-points. Note that

 $CH \Rightarrow MA \Rightarrow MA(\sigma - centered).$

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024. 4 / 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへへ

Let \mathcal{U} and \mathcal{V} be ultrafilters on ω . We say that \mathcal{U} is *Rudin-Keisler reducible* to \mathcal{V} if there is a function $f : \omega \to \omega$ such that for every $a \subseteq \omega$:

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

We also say that \mathcal{U} is Rudin-Keisler below \mathcal{V} and write $\mathcal{U} \leq_{RK} \mathcal{V}$.

Note that this is equivalent to the condition that $f[a] \in \mathcal{U}$ for each $a \in \mathcal{V}$. This motivates the notation $f(\mathcal{V}) = \mathcal{U}$ which is sometimes used.

Observation

For ultrafilters \mathcal{U} and \mathcal{V} there is a bijection $f : \omega \to \omega$ such that $a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}$ if and only if $\mathcal{U} \leq_{RK} \mathcal{V}$ and $\mathcal{V} \leq_{RK} \mathcal{U}$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Let \mathcal{U} and \mathcal{V} be ultrafilters on ω . We say that \mathcal{U} is *Rudin-Keisler reducible* to \mathcal{V} if there is a function $f : \omega \to \omega$ such that for every $a \subseteq \omega$:

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

We also say that \mathcal{U} is Rudin-Keisler below \mathcal{V} and write $\mathcal{U} \leq_{RK} \mathcal{V}$.

Note that this is equivalent to the condition that $f[a] \in \mathcal{U}$ for each $a \in \mathcal{V}$. This motivates the notation $f(\mathcal{V}) = \mathcal{U}$ which is sometimes used.

Observation

For ultrafilters \mathcal{U} and \mathcal{V} there is a bijection $f : \omega \to \omega$ such that $a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}$ if and only if $\mathcal{U} \leq_{RK} \mathcal{V}$ and $\mathcal{V} \leq_{RK} \mathcal{U}$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024. 5 / 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへへ

Let \mathcal{U} and \mathcal{V} be ultrafilters on ω . We say that \mathcal{U} is *Rudin-Keisler reducible* to \mathcal{V} if there is a function $f : \omega \to \omega$ such that for every $a \subseteq \omega$:

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

We also say that \mathcal{U} is Rudin-Keisler below \mathcal{V} and write $\mathcal{U} \leq_{RK} \mathcal{V}$.

Note that this is equivalent to the condition that $f[a] \in \mathcal{U}$ for each $a \in \mathcal{V}$. This motivates the notation $f(\mathcal{V}) = \mathcal{U}$ which is sometimes used.

Observation

For ultrafilters \mathcal{U} and \mathcal{V} there is a bijection $f : \omega \to \omega$ such that $a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}$ if and only if $\mathcal{U} \leq_{RK} \mathcal{V}$ and $\mathcal{V} \leq_{RK} \mathcal{U}$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024. 5 / 20

Let \mathcal{U} and \mathcal{V} be ultrafilters on ω . We say that \mathcal{U} is *Rudin-Keisler reducible* to \mathcal{V} if there is a function $f : \omega \to \omega$ such that for every $a \subseteq \omega$:

$$a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}.$$

We also say that \mathcal{U} is Rudin-Keisler below \mathcal{V} and write $\mathcal{U} \leq_{RK} \mathcal{V}$.

Note that this is equivalent to the condition that $f[a] \in \mathcal{U}$ for each $a \in \mathcal{V}$. This motivates the notation $f(\mathcal{V}) = \mathcal{U}$ which is sometimes used.

Observation

For ultrafilters \mathcal{U} and \mathcal{V} there is a bijection $f: \omega \to \omega$ such that $a \in \mathcal{U} \Leftrightarrow f^{-1}[a] \in \mathcal{V}$ if and only if $\mathcal{U} \leq_{RK} \mathcal{V}$ and $\mathcal{V} \leq_{RK} \mathcal{U}$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Theorem (Kunen, 1970)

There are ultrafilters \mathcal{U} and \mathcal{V} on ω such that $\mathcal{U} \not\leq_{RK} \mathcal{V}$ and $\mathcal{V} \not\leq_{RK} \mathcal{U}$.

Note that if \mathcal{V} is a P-point and $\mathcal{U} \leq_{RK} \mathcal{V}$, then \mathcal{U} is also a P-point.

Note that no ultrafilter can have more that \mathfrak{c} many *RK* predecessors (since there are only \mathfrak{c} many functions from ω to ω).

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Theorem (Kunen, 1970)

There are ultrafilters \mathcal{U} and \mathcal{V} on ω such that $\mathcal{U} \not\leq_{RK} \mathcal{V}$ and $\mathcal{V} \not\leq_{RK} \mathcal{U}$.

Note that if \mathcal{V} is a P-point and $\mathcal{U} \leq_{RK} \mathcal{V}$, then \mathcal{U} is also a P-point.

Note that no ultrafilter can have more that \mathfrak{c} many *RK* predecessors (since there are only \mathfrak{c} many functions from ω to ω).

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024. 6 / 20

Theorem (Kunen, 1970)

There are ultrafilters \mathcal{U} and \mathcal{V} on ω such that $\mathcal{U} \not\leq_{RK} \mathcal{V}$ and $\mathcal{V} \not\leq_{RK} \mathcal{U}$.

Note that if \mathcal{V} is a P-point and $\mathcal{U} \leq_{RK} \mathcal{V}$, then \mathcal{U} is also a P-point.

Note that no ultrafilter can have more that \mathfrak{c} many *RK* predecessors (since there are only \mathfrak{c} many functions from ω to ω).

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

An ultrafilter \mathcal{U} is *selective* (Ramsey) iff for every function $f : \omega \to \omega$, either f is 1-1 on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Theorem (Blass, 1970)

An ultrafilter \mathcal{U} on ω is selective iff it is minimal in the RK ordering. (i.e. \mathcal{U} is selective iff for any non-principal $\mathcal{V}: \mathcal{V} \leq_{RK} \mathcal{U} \Rightarrow \mathcal{U} \leq_{RK} \mathcal{V}$).

Note that Kunen showed in the early 1970s that there are no selective ultrafilters in the random real model.

Theorem (Keisler, early 1970s)

Under ${
m CH},$ there are 2 $^{
m c}$ pairwise RK incomparable selective ultrafilters.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

An ultrafilter \mathcal{U} is *selective* (Ramsey) iff for every function $f : \omega \to \omega$, either f is 1-1 on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Theorem (Blass, 1970)

An ultrafilter \mathcal{U} on ω is selective iff it is minimal in the RK ordering. (i.e. \mathcal{U} is selective iff for any non-principal $\mathcal{V}: \mathcal{V} \leq_{RK} \mathcal{U} \Rightarrow \mathcal{U} \leq_{RK} \mathcal{V}$).

Note that Kunen showed in the early 1970s that there are no selective ultrafilters in the random real model.

Theorem (Keisler, early 1970s)

Under ${
m CH},$ there are 2° pairwise RK incomparable selective ultrafilters.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

An ultrafilter \mathcal{U} is *selective* (Ramsey) iff for every function $f : \omega \to \omega$, either f is 1-1 on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Theorem (Blass, 1970)

An ultrafilter \mathcal{U} on ω is selective iff it is minimal in the RK ordering. (i.e. \mathcal{U} is selective iff for any non-principal $\mathcal{V}: \mathcal{V} \leq_{RK} \mathcal{U} \Rightarrow \mathcal{U} \leq_{RK} \mathcal{V}$).

Note that Kunen showed in the early 1970s that there are no selective ultrafilters in the random real model.

Theorem (Keisler, early 1970s)

Under ${
m CH},$ there are 2 $^{
m c}$ pairwise RK incomparable selective ultrafilters.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

An ultrafilter \mathcal{U} is *selective* (Ramsey) iff for every function $f : \omega \to \omega$, either f is 1-1 on an element of \mathcal{U} or f is constant on an element of \mathcal{U} .

Theorem (Blass, 1970)

An ultrafilter \mathcal{U} on ω is selective iff it is minimal in the RK ordering. (i.e. \mathcal{U} is selective iff for any non-principal $\mathcal{V}: \mathcal{V} \leq_{RK} \mathcal{U} \Rightarrow \mathcal{U} \leq_{RK} \mathcal{V}$).

Note that Kunen showed in the early 1970s that there are no selective ultrafilters in the random real model.

Theorem (Keisler, early 1970s)

Under CH, there are 2^c pairwise RK incomparable selective ultrafilters.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Question (Raghavan-Shelah, 2017)

Assume $MA(\sigma - \text{centered})$. Let \mathbb{P} be a partial order of size at most $2^{\mathfrak{c}}$ where every element has at most \mathfrak{c} many predecessors. Does \mathbb{P} embed into the set of P-points under the RK ordering (and under the Tukey ordering).

Theorem (Blass, 1973)

Both ω_1 and $(\mathbb{R},<)$ embed into the set of P-points under the RK ordering.

Theorem (Blass, 1973)

If a countable set $\{U_n : n < \omega\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n < \omega$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Question (Raghavan-Shelah, 2017)

Assume $MA(\sigma - \text{centered})$. Let \mathbb{P} be a partial order of size at most $2^{\mathfrak{c}}$ where every element has at most \mathfrak{c} many predecessors. Does \mathbb{P} embed into the set of P-points under the RK ordering (and under the Tukey ordering).

Theorem (Blass, 1973)

Both ω_1 and $(\mathbb{R}, <)$ embed into the set of P-points under the RK ordering.

Theorem (Blass, 1973)

If a countable set $\{U_n : n < \omega\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n < \omega$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Question (Raghavan-Shelah, 2017)

Assume $MA(\sigma - \text{centered})$. Let \mathbb{P} be a partial order of size at most $2^{\mathfrak{c}}$ where every element has at most \mathfrak{c} many predecessors. Does \mathbb{P} embed into the set of P-points under the RK ordering (and under the Tukey ordering).

Theorem (Blass, 1973)

Both ω_1 and $(\mathbb{R}, <)$ embed into the set of P-points under the RK ordering.

Theorem (Blass, 1973)

If a countable set $\{U_n : n < \omega\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n < \omega$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Theorem (Rosen, 1985)

Ordinal ω_1 embeds into the set of P-points under the RK ordering as an initial segment, i.e. there is a set of P-points { $\mathcal{U}_{\alpha} : \alpha < \omega_1$ } such that

- $\mathcal{U}_{\alpha} <_{\mathit{RK}} \mathcal{U}_{\beta}$ for all $\alpha < \beta < \omega_1$ and
- for any ultrafilter U, if there is α < ω₁ such that U ≤_{RK} U_α, then there is some γ < ω₁ such that U_γ ≡_{RK} U.

Theorem (Laflamme, 1989)

For each $1 \leq \alpha < \omega_1$, there is an ultrafilter \mathcal{U}_{α} , generic for a partial order \mathbb{P}_{α} with the following properties:

- \mathcal{U}_{α} is a rapid P-point ultrafilter.
- There is a sequence $\langle \mathcal{V}_{\gamma} : \gamma < \alpha + 1 \rangle$ of P-points such that $\mathcal{V}_0 = \mathcal{U}_{\alpha}$, that $\mathcal{V}_{\gamma} <_{RK} \mathcal{V}_{\beta}$ for all $\beta < \gamma < \alpha + 1$, and that for any \mathcal{U} with $\mathcal{U} \leq_{RK} \mathcal{U}_{\alpha}$ there is $\gamma < \alpha + 1$ such that $\mathcal{U} \equiv_{RK} \mathcal{V}_{\gamma}$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Theorem (Raghavan-Shelah, 2017)

Assume MA(σ – centered). Then ($P(\omega)/Fin, \subseteq^*$) embeds into the set of *P*-points under the *RK* ordering (and under the Tukey ordering as well).

In particular, this implies that every poset of size at most \mathfrak{c} embeds.

Theorem (K-Raghavan, 2018)

Assume CH. Then c^+ embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024. 10 / 20

3

イロト イポト イヨト イヨト

Theorem (Raghavan-Shelah, 2017)

Assume MA(σ – centered). Then ($P(\omega)/Fin, \subseteq^*$) embeds into the set of *P*-points under the *RK* ordering (and under the Tukey ordering as well).

In particular, this implies that every poset of size at most $\mathfrak c$ embeds.

Theorem (K-Raghavan, 2018)

Assume CH. Then c^+ embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024. 10 / 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Theorem (Raghavan-Shelah, 2017)

Assume MA(σ – centered). Then ($P(\omega)/Fin, \subseteq^*$) embeds into the set of *P*-points under the *RK* ordering (and under the Tukey ordering as well).

In particular, this implies that every poset of size at most $\mathfrak c$ embeds.

Theorem (K-Raghavan, 2018)

Assume CH. Then c^+ embeds into the set of P-points under the RK ordering (and under the Tukey ordering as well).

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024. 10 / 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Theorem (Raghavan-Verner, 2019)

Assume CH. Let $\delta < \omega_2$ and let $\langle U_{\gamma} : \gamma < \delta \rangle$ be an RK increasing sequence of rapid P-points. Then there is a rapid P-point such that $U_{\gamma} \leq_{\mathsf{RK}} \mathcal{U}$ for every $\gamma < \delta$.

(Some assumption on U_{γ} 's is needed, as they also prove that there is an ω_1 -sequence of P-points which cannot be further extended.)

Theorem (Starosolski 2021)

Assume b = c. Then:

- 1 If $\langle U_n : n < \omega \rangle$ is an RK-increasing sequence of P-point ultrafilters, then there is a P-point \mathcal{U} such that $\mathcal{U}_n <_{RK} \mathcal{U}$ for each $n < \omega$.
- ② For each P-point U, there is an embedding of both the real line and the long line in the RK-ordering of P-points above U.
- ③ For every P-point U and every γ < c⁺ there is an RK-increasing sequence of P-points (U_α : α < γ) such that U₀ = U.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Theorem (Raghavan-Verner, 2019)

Assume CH. Let $\delta < \omega_2$ and let $\langle U_{\gamma} : \gamma < \delta \rangle$ be an RK increasing sequence of rapid P-points. Then there is a rapid P-point such that $U_{\gamma} \leq_{\mathsf{RK}} \mathcal{U}$ for every $\gamma < \delta$.

(Some assumption on U_{γ} 's is needed, as they also prove that there is an ω_1 -sequence of P-points which cannot be further extended.)

Theorem (Starosolski 2021)

Assume b = c. Then:

- **1** If $\langle U_n : n < \omega \rangle$ is an RK-increasing sequence of P-point ultrafilters, then there is a P-point \mathcal{U} such that $\mathcal{U}_n <_{RK} \mathcal{U}$ for each $n < \omega$.
- ② For each P-point U, there is an embedding of both the real line and the long line in the RK-ordering of P-points above U.
- ③ For every P-point U and every γ < c⁺ there is an RK-increasing sequence of P-points (U_α : α < γ) such that U₀ = U.

Winter School in Abstract Analysis

 ${\cal N}$ is the standard model for this language.

 $\mathcal M$ is an elementary extension of $\mathcal N.$

Note that if $a \in \mathcal{M}$, then the set $\{*f(a) : f \in \omega^{\omega}\}$ is the domain of an elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by *a* is isomorphic to the ultrapower of the standard model by the ultrafilter $U_a = \{b \subseteq \omega : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\omega}/\mathcal{U}_{\mathsf{a}}\cong \{^*f(\mathsf{a}):f\in\omega^{\omega}\}.$$

For $A, B \subseteq \mathcal{M}$, we say that they are *cofinal with each other* iff

 $(\forall a \in A)(\exists b \in B) \ a \ ^* \leq b \ \text{and} \ (\forall b \in B)(\exists a \in A) \ b \ ^* \leq a.$

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

(ロト 《 団 ト 《 臣 ト 《 臣 ト 《 臣 ト ② Q ②
 February 2024. 12 / 20

The language *L* consists of symbols for all relations and all functions on ω . \mathcal{N} is the standard model for this language.

 ${\mathcal M}$ is an elementary extension of ${\mathcal N}.$

Note that if $a \in \mathcal{M}$, then the set $\{*f(a) : f \in \omega^{\omega}\}$ is the domain of an elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by *a* is isomorphic to the ultrapower of the standard model by the ultrafilter $U_a = \{b \subseteq \omega : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\omega}/\mathcal{U}_{a}\cong \{^{*}f(a):f\in\omega^{\omega}\}.$$

For $A, B \subseteq \mathcal{M}$, we say that they are *cofinal with each other* iff

 $(\forall a \in A)(\exists b \in B) \ a \ ^* \leq b \ \text{and} \ (\forall b \in B)(\exists a \in A) \ b \ ^* \leq a.$

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

The language *L* consists of symbols for all relations and all functions on ω . \mathcal{N} is the standard model for this language.

${\mathcal M}$ is an elementary extension of ${\mathcal N}.$

Note that if $a \in \mathcal{M}$, then the set $\{*f(a) : f \in \omega^{\omega}\}$ is the domain of an elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by *a* is isomorphic to the ultrapower of the standard model by the ultrafilter $U_a = \{b \subseteq \omega : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\omega}/\mathcal{U}_{\mathsf{a}} \cong \{^*f(\mathsf{a}): f \in \omega^{\omega}\}.$$

For $A, B \subseteq \mathcal{M}$, we say that they are *cofinal with each other* iff

 $(\forall a \in A)(\exists b \in B) \ a \ ^* \leq b \ \text{and} \ (\forall b \in B)(\exists a \in A) \ b \ ^* \leq a.$

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

 $\ensuremath{\mathcal{N}}$ is the standard model for this language.

 ${\mathcal M}$ is an elementary extension of ${\mathcal N}.$

Note that if $a \in \mathcal{M}$, then the set $\{*f(a) : f \in \omega^{\omega}\}$ is the domain of an elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by *a* is isomorphic to the ultrapower of the standard model by the ultrafilter $U_a = \{b \subseteq \omega : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\omega}/\mathcal{U}_{a}\cong \{^{*}f(a):f\in\omega^{\omega}\}.$$

For $A, B \subseteq \mathcal{M}$, we say that they are *cofinal with each other* iff

 $(\forall a \in A)(\exists b \in B) \ a \ ^* \leq b \ \text{and} \ (\forall b \in B)(\exists a \in A) \ b \ ^* \leq a.$

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

 $\ensuremath{\mathcal{N}}$ is the standard model for this language.

 ${\mathcal M}$ is an elementary extension of ${\mathcal N}.$

Note that if $a \in \mathcal{M}$, then the set $\{*f(a) : f \in \omega^{\omega}\}$ is the domain of an elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by *a* is isomorphic to the ultrapower of the standard model by the ultrafilter $U_a = \{b \subseteq \omega : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\omega}/\mathcal{U}_{a}\cong \{*f(a):f\in\omega^{\omega}\}.$$

For $A, B \subseteq \mathcal{M}$, we say that they are *cofinal with each other* iff

 $(\forall a \in A)(\exists b \in B) \ a \ ^* \leq b \ \text{and} \ (\forall b \in B)(\exists a \in A) \ b \ ^* \leq a.$

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

 $\ensuremath{\mathcal{N}}$ is the standard model for this language.

 ${\mathcal M}$ is an elementary extension of ${\mathcal N}.$

Note that if $a \in \mathcal{M}$, then the set $\{*f(a) : f \in \omega^{\omega}\}$ is the domain of an elementary submodel of \mathcal{M} . Submodels like this are called *principal*.

Then a principal submodel generated by *a* is isomorphic to the ultrapower of the standard model by the ultrafilter $U_a = \{b \subseteq \omega : a \in {}^*b\}$, i.e.

$$\mathcal{N}^{\omega}/\mathcal{U}_{a} \cong \{^{*}f(a): f \in \omega^{\omega}\}.$$

For $A, B \subseteq \mathcal{M}$, we say that they are *cofinal with each other* iff

 $(\forall a \in A)(\exists b \in B) \ a \ ^* \leq b \ \text{and} \ (\forall b \in B)(\exists a \in A) \ b \ ^* \leq a.$

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

There is a reformulation of being a P-point in model theoretic terms.

Lemma

An ultrafilter \mathcal{U} on ω is a P-point if and only if every nonstandard elementary submodel of $\mathcal{N}^{\omega}/\mathcal{U}$ is cofinal with $\mathcal{N}^{\omega}/\mathcal{U}$.

There is a reformulation of the RK reducibility in model theoretic terms.

Lemma

For ultrafilters \mathcal{U} and \mathcal{V} on ω : $\mathcal{U} \leq_{RK} \mathcal{V}$ if and only if $\mathcal{N}^{\omega}/\mathcal{U}$ can be elementary embedded in $\mathcal{N}^{\omega}/\mathcal{V}$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

There is a reformulation of being a P-point in model theoretic terms.

Lemma

An ultrafilter \mathcal{U} on ω is a P-point if and only if every nonstandard elementary submodel of $\mathcal{N}^{\omega}/\mathcal{U}$ is cofinal with $\mathcal{N}^{\omega}/\mathcal{U}$.

There is a reformulation of the RK reducibility in model theoretic terms.

Lemma

For ultrafilters \mathcal{U} and \mathcal{V} on ω : $\mathcal{U} \leq_{RK} \mathcal{V}$ if and only if $\mathcal{N}^{\omega}/\mathcal{U}$ can be elementary embedded in $\mathcal{N}^{\omega}/\mathcal{V}$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

If a countable set $\{U_n : n \in \omega\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \omega$.

This theorem has two immediate consequences.

Corollary

Any RK-decreasing ω -sequence of P-points has an RK-lower bound.

Corollary

If two P-points have an upper bound, then they also have a lower bound.

The latter may be viewed as a witness to the fact that, under ${
m MA}$ for example, the RK ordering of P-points is not upwards directed.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

If a countable set $\{U_n : n \in \omega\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \omega$.

This theorem has two immediate consequences.

Corollary

Any RK-decreasing ω -sequence of P-points has an RK-lower bound.

Corollary

If two P-points have an upper bound, then they also have a lower bound.

The latter may be viewed as a witness to the fact that, under ${
m MA}$ for example, the RK ordering of P-points is not upwards directed.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

If a countable set $\{U_n : n \in \omega\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \omega$.

This theorem has two immediate consequences.

Corollary

Any RK-decreasing ω -sequence of P-points has an RK-lower bound.

Corollary

If two P-points have an upper bound, then they also have a lower bound.

The latter may be viewed as a witness to the fact that, under MA for example, the RK ordering of P-points is not upwards directed.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

If a countable set $\{U_n : n \in \omega\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \omega$.

This theorem was proved using the following.

Theorem (Blass, 1972)

If $\{M_i : i \in \omega\}$ is a collection of pairwise cofinals submodels of \mathcal{M} such that at least one of \mathcal{M}_i 's is principal, then $\bigcap_{i \in \omega} \mathcal{M}_i$ contains a principal submodel cofinal with each \mathcal{M}_i ($i \in \omega$).

Blass asked if this result can be extended to larger families of models.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024. 15 / 20

イロト イボト イヨト イヨト 二日

If a countable set $\{U_n : n \in \omega\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \omega$.

This theorem was proved using the following.

Theorem (Blass, 1972)

If $\{M_i : i \in \omega\}$ is a collection of pairwise cofinals submodels of \mathcal{M} such that at least one of \mathcal{M}_i 's is principal, then $\bigcap_{i \in \omega} \mathcal{M}_i$ contains a principal submodel cofinal with each \mathcal{M}_i ($i \in \omega$).

Blass asked if this result can be extended to larger families of models.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

February 2024. 15 / 20

If a countable set $\{U_n : n \in \omega\}$ of P-points has an upper bound which is a P-point, then there is an ultrafilter \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_n$ for each $n \in \omega$.

This theorem was proved using the following.

Theorem (Blass, 1972)

If $\{M_i : i \in \omega\}$ is a collection of pairwise cofinals submodels of \mathcal{M} such that at least one of \mathcal{M}_i 's is principal, then $\bigcap_{i \in \omega} \mathcal{M}_i$ contains a principal submodel cofinal with each \mathcal{M}_i ($i \in \omega$).

Blass asked if this result can be extended to larger families of models.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

An ultrafilter \mathcal{U} on ω is a P_c-point if for any $\alpha < \mathfrak{c}$ and any collection $\{a_i : i < \alpha\} \subseteq \mathcal{U}$ there is some $a \in \mathcal{U}$ such that $a \subseteq^* a_i$ for each $i < \alpha$.

Lemma

Let $\alpha < \mathfrak{c}$ and $\{\mathcal{M}_i : i < \alpha\}$ be a collection of submodels of \mathcal{M} such that:

- each \mathcal{M}_i is generated by a_i ,
- $\mathcal{M}_j \subseteq \mathcal{M}_i$ whenever $i < j < \alpha$,
- each \mathcal{M}_i is cofinal with \mathcal{M}_0 .

Suppose moreover that $U_0 = \{b \subseteq \omega : a_0 \in {}^*b\}$ is a P_c -point. Then there is a family $\{f_i : i < \alpha\} \subseteq \omega^{\omega}$ of finite-to-one maps such th

•
$$*f_i(a_0) = a_i \text{ for } i < \alpha$$
,

• for $i < j < \alpha$, there is $k \in \omega$ such that $f_j(n) = f_j(m)$ whenever $f_i(n) = f_i(m)$ and $m, n \ge k$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

An ultrafilter \mathcal{U} on ω is a P_c-point if for any $\alpha < \mathfrak{c}$ and any collection $\{a_i : i < \alpha\} \subseteq \mathcal{U}$ there is some $a \in \mathcal{U}$ such that $a \subseteq^* a_i$ for each $i < \alpha$.

Lemma

Let $\alpha < \mathfrak{c}$ and $\{\mathcal{M}_i : i < \alpha\}$ be a collection of submodels of \mathcal{M} such that:

- each \mathcal{M}_i is generated by a_i ,
- $\mathcal{M}_j \subseteq \mathcal{M}_i$ whenever $i < j < \alpha$,
- each \mathcal{M}_i is cofinal with \mathcal{M}_0 .

Suppose moreover that $U_0 = \{b \subseteq \omega : a_0 \in {}^*b\}$ is a P_c -point. Then there is a family $\{f_i : i < \alpha\} \subseteq \omega^{\omega}$ of finite-to-one maps such that:

•
$${}^{*}f_{i}(a_{0}) = a_{i}$$
 for $i < \alpha$,

• for $i < j < \alpha$, there is $k \in \omega$ such that $f_j(n) = f_j(m)$ whenever $f_i(n) = f_i(m)$ and $m, n \ge k$.

Winter School in Abstract Analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくべ

Let α be an ordinal, let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \omega^{\omega}$ be a family of functions, and let A be a subset of α . We say that a set $d \subseteq \omega$ is (A, \mathcal{F}) -closed if $f_i^{-1}[f_i[d]] \subseteq d$ for each $i \in A$.

Lemma

Let $\alpha < \mathfrak{c}$ and let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \omega^{\omega}$ be a family of finite-to-one maps. Suppose that for each $i < j < \alpha$ there is $k \in \omega$ such that $f_j(n) = f_j(m)$ whenever $f_i(n) = f_i(m)$ and $n, m \ge k$. Then for each finite $A \subseteq \alpha$ and each $w \in \omega$, there is a finite (A, \mathcal{F}) -closed set $d \subseteq \omega$ such that $w \in d$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Let α be an ordinal, let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \omega^{\omega}$ be a family of functions, and let A be a subset of α . We say that a set $d \subseteq \omega$ is (A, \mathcal{F}) -closed if $f_i^{-1}[f_i[d]] \subseteq d$ for each $i \in A$.

Lemma

Let $\alpha < \mathfrak{c}$ and let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \omega^{\omega}$ be a family of finite-to-one maps. Suppose that for each $i < j < \alpha$ there is $k \in \omega$ such that $f_j(n) = f_j(m)$ whenever $f_i(n) = f_i(m)$ and $n, m \ge k$. Then for each finite $A \subseteq \alpha$ and each $w \in \omega$, there is a finite (A, \mathcal{F}) -closed set $d \subseteq \omega$ such that $w \in d$.

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Lemma

Assume MA_{α} . Let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \omega^{\omega}$ be a family of finite-to-one functions. Suppose that for each non-empty finite set $A \subseteq \alpha$, and each $w \in \omega$, there is a finite (A, \mathcal{F}) -closed set $d \subseteq \omega$ containing w as an element. Then there is a finite-to-one function $h \in \omega^{\omega}$, and a collection $\{e_i : i < \alpha\} \subseteq \omega^{\omega}$ such that for each $i < \alpha$, there is $k \in \omega$ such that $h(n) = e_i(f_i(n))$ whenever $n \ge k$.

Theorem (K-Raghavan-Verner 2023)

Assume MA_{α} . Let \mathcal{M}_i $(i < \alpha)$ be a collection of pairwise cofinal submodels of \mathcal{M} . Suppose that \mathcal{M}_0 is principal, and that $\mathcal{U}_0 = \{b \subseteq \omega : a_0 \in {}^*b\}$ is a P_c -point, where a_0 generates \mathcal{M}_0 . Then there is an element $c \in \bigcap_{i < \alpha} \mathcal{M}_i$ which generates a principal model cofinal with all \mathcal{M}_i .

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Lemma

Assume MA_{α} . Let $\mathcal{F} = \{f_i : i < \alpha\} \subseteq \omega^{\omega}$ be a family of finite-to-one functions. Suppose that for each non-empty finite set $A \subseteq \alpha$, and each $w \in \omega$, there is a finite (A, \mathcal{F}) -closed set $d \subseteq \omega$ containing w as an element. Then there is a finite-to-one function $h \in \omega^{\omega}$, and a collection $\{e_i : i < \alpha\} \subseteq \omega^{\omega}$ such that for each $i < \alpha$, there is $k \in \omega$ such that $h(n) = e_i(f_i(n))$ whenever $n \ge k$.

Theorem (K-Raghavan-Verner 2023)

Assume MA_{α} . Let \mathcal{M}_i $(i < \alpha)$ be a collection of pairwise cofinal submodels of \mathcal{M} . Suppose that \mathcal{M}_0 is principal, and that $\mathcal{U}_0 = \{b \subseteq \omega : a_0 \in {}^*b\}$ is a P_c -point, where a_0 generates \mathcal{M}_0 . Then there is an element $c \in \bigcap_{i < \alpha} \mathcal{M}_i$ which generates a principal model cofinal with all \mathcal{M}_i .

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Theorem (K-Raghavan-Verner 2023)

Assume MA_{α} . Suppose that $\{U_i : i < \alpha\}$ is a collection of P-points and that U_0 is a P_c -point such that $U_i \leq_{RK} U_0$ for each $i < \alpha$. Then there is a P-point \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_i$ for each $i < \alpha$.

Corollary

Assume MA. If a collection of fewer than c many P_c -points has an upper bound which is a P_c -point, then it has a lower bound.

Corollary

Assume MA. The class of P_{c} -points is downwards < c-closed under \leq_{RK} .

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

Theorem (K-Raghavan-Verner 2023)

Assume MA_{α}. Suppose that { $\mathcal{U}_i : i < \alpha$ } is a collection of P-points and that \mathcal{U}_0 is a P_c-point such that $\mathcal{U}_i \leq_{RK} \mathcal{U}_0$ for each $i < \alpha$. Then there is a P-point \mathcal{U} such that $\mathcal{U} \leq_{RK} \mathcal{U}_i$ for each $i < \alpha$.

Corollary

Assume MA. If a collection of fewer than c many P_c -points has an upper bound which is a P_c -point, then it has a lower bound.

Corollary

Assume MA. The class of P_{c} -points is downwards < c-closed under \leq_{RK} .

Winter School in Abstract Analysis

Orderings on P-point ultrafilters

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

https://sites.dmi.uns.ac.rs/settop/2024/

Winter School in Abstract Analysis

Orderings on P-point ultrafilters