Antichain numbers of $\mathcal{P}(\omega)/\mathcal{J}$

Aleksander Cieślak

Wrocław University of Science and Technology

January 30, 2024

Aleksander Cieślak Antichain numbers of $\mathcal{P}(\omega)/\mathcal{J}$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Suppose that $\mathcal J$ is a tall, homogeneous ideal on ω . Recall

 $\begin{aligned} & add^*(\mathcal{J}) = \text{the minimal size of a family } \mathcal{F} \subseteq \mathcal{J} \\ & \text{with no pseudo-union in } \mathcal{J}, \\ & cov^*(\mathcal{J}) = \text{the minimal size of a family } \mathcal{F} \subseteq \mathcal{J} \text{ such that every} \\ & \text{infinite set infinitely intersects some element of } \mathcal{F}. \end{aligned}$

(日)

We define then the (+)-covering number of ${\cal J}$ as

 $cov_{+}^{*}(\mathcal{J})$ = the minimal size of a family $\mathcal{F} \subseteq \mathcal{J}$ such that every \mathcal{J} -positive set infinitely intersects some element of \mathcal{F} .

Observe that $add^*(\mathcal{J}) \leq cov^*_+(\mathcal{J}) \leq cov^*(\mathcal{J})$

・ロット (空)・ (日)・ (日)・ 日

We define then the (+)-covering number of ${\cal J}$ as

 $cov_{+}^{*}(\mathcal{J})$ = the minimal size of a family $\mathcal{F} \subseteq \mathcal{J}$ such that every \mathcal{J} -positive set infinitely intersects some element of \mathcal{F} .

Observe that $add^*(\mathcal{J}) \leq cov^*_+(\mathcal{J}) \leq cov^*(\mathcal{J})$

B. Farkas, L. Zdomskyy "Ways of destruction" (2022).

B. Balcar, F. Hernández-Hernández, M. Hrušák; "Combinatorics of dense subsets of the rationals" (2004)

A. Marton; "P-like properties of meager ideals and cardinal invariants" (2004)

Let ${\mathbb B}$ be a Boolean algebra. The antichain number of ${\mathbb B}$ is defined as

 $\mathfrak{a}(\mathbb{B}) = min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathbb{B} \text{ is an unctbl maximal antichain}\}$

Aleksander Cieślak Antichain numbers of $\mathcal{P}(\omega)/\mathcal{J}$

Let ${\mathbb B}$ be a Boolean algebra. The antichain number of ${\mathbb B}$ is defined as

 $\mathfrak{a}(\mathbb{B}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathbb{B} \text{ is an unctbl maximal antichain}\}$ We will write $\mathfrak{a}(J)$ for $\mathfrak{a}(\mathcal{P}(\omega)/J)$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

• $\mathfrak{a}(fin)$ is the classical almost disjoint number

<ロト < 部 > < 注 > < 注 > 二 注

SQC

- $\mathfrak{a}(fin)$ is the classical almost disjoint number
- (J.Steprans 2009) $\mathfrak{p} \leq \mathfrak{a}(nwd) \leq \mathfrak{b}$

<ロト < 部ト < 注ト < 注ト = 注

SQC

- $\mathfrak{a}(fin)$ is the classical almost disjoint number
- (J.Steprans 2009) $\mathfrak{p} \leq \mathfrak{a}(nwd) \leq \mathfrak{b}$
- (J.Cancino 2023) $add(\mathcal{M}) \leq \mathfrak{a}(nwd)$

イロト イポト イヨト イヨト 三日

- $\mathfrak{a}(fin)$ is the classical almost disjoint number
- (J.Steprans 2009) $\mathfrak{p} \leq \mathfrak{a}(nwd) \leq \mathfrak{b}$
- (J.Cancino 2023) $add(\mathcal{M}) \leq \mathfrak{a}(nwd)$
- (J.Brendle 2023) $\mathfrak{b} \leq \mathfrak{a}(fin \times fin) \leq \mathfrak{a}$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Э

- a(fin) is the classical almost disjoint number
- (J.Steprans 2009) $\mathfrak{p} \leq \mathfrak{a}(nwd) \leq \mathfrak{b}$
- (J.Cancino 2023) $add(\mathcal{M}) \leq \mathfrak{a}(nwd)$
- (J.Brendle 2023) $\mathfrak{b} \leq \mathfrak{a}(fin \times fin) \leq \mathfrak{a}$
- (J.Steprans 2009) $\mathfrak{b} \leq \mathfrak{a}(\emptyset \times fin) \leq \mathfrak{a}$?

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

- a(fin) is the classical almost disjoint number
- (J.Steprans 2009) $\mathfrak{p} \leq \mathfrak{a}(nwd) \leq \mathfrak{b}$
- (J.Cancino 2023) $add(\mathcal{M}) \leq \mathfrak{a}(nwd)$
- (J.Brendle 2023) $\mathfrak{b} \leq \mathfrak{a}(fin \times fin) \leq \mathfrak{a}$
- (J.Steprans 2009) $\mathfrak{b} \leq \mathfrak{a}(\emptyset \times fin) \leq \mathfrak{a}$?
- (B.Farkas, L.Soukup 2010) $\mathfrak{b} \leq \mathfrak{a}(J)$ for analytic *P*-ideals

Theorem

Suppose that an ideal $\mathcal J$ is good. Then we have

 $\mathfrak{a}(\mathcal{J}) \geq \min\{\mathfrak{b}, cov_{+}^{*}(\mathcal{J})\}.$

Aleksander Cieślak Antichain numbers of $\mathcal{P}(\omega)/\mathcal{J}$

ヘロト 人間 と 人 語 と 人 語 と

Э

DQ P

Theorem

Suppose that an ideal $\mathcal J$ is good. Then we have

 $\mathfrak{a}(\mathcal{J}) \geq \min\{\mathfrak{b}, cov_{+}^{*}(\mathcal{J})\}.$

\mathcal{J}	add $^*(\mathcal{J})$	$\mathit{cov}^*_+(\mathcal{J})$	$\mathit{cov}^*(\mathcal{J})$
nwd	ω	$add(\mathcal{M})$	$\mathit{cov}(\mathcal{M})$
fin×fin	ω	ω	b
$\mathcal{ED}_{\mathit{fin}}$	ω	$min\{\mathfrak{b}, cov^*(\mathcal{ED}_{fin})\} \leq$	$\mathit{non}(\mathcal{M})$
\mathcal{Z}	$add(\mathcal{N})$?	$\leq \mathit{non}(\mathcal{M})$
Sol	ω	$\mathit{non}(\mathcal{N})$	$\mathit{non}(\mathcal{N})$
\mathcal{R}	ω	c	c
conv	ω	¢	c

ヘロト 人間 と 人 語 と 人 語 と

Э

SQA

Theorem

Suppose that \mathcal{J} is a good ideal. Then $\mathfrak{a}(\mathcal{J}) \geq \min\{\mathfrak{b}, \operatorname{cov}^*_+(\mathcal{J})\}$.

Let $\kappa < \min\{\mathfrak{b}, \operatorname{cov}^*_+(\mathcal{J})\}$. Let $\{A_\alpha : \alpha < \kappa\} \subseteq \mathcal{J}^+$ be such that $A_\alpha \cap A_\beta \in \mathcal{J}$ for $\alpha \neq \beta$. We will construct $C \in \mathcal{J}^+$ such that $C \cap A_\alpha \in \mathcal{J}$ for all α 's.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

• Using $\kappa < cov_+^*(\mathcal{J})$ find \mathcal{J} -positive B_{α} 's such that $B_{\alpha} \subseteq A_{\alpha}$ and $B_{\alpha} \cap A_{\beta}$ is finite for $\alpha \neq \beta$.

- Using $\kappa < cov_+^*(\mathcal{J})$ find \mathcal{J} -positive B_{α} 's such that $B_{\alpha} \subseteq A_{\alpha}$ and $B_{\alpha} \cap A_{\beta}$ is finite for $\alpha \neq \beta$.
- (goodness of J) Every unctbl almost disjoint family B ⊆ J⁺ has a ctbl subfamily {B_n : n ∈ ω} ⊆ B such that: for every f ∈ ω^ω there is a sequence {C_n : n ∈ ω} ⊆ J, C_n ⊆ B_n \ f(n) such that C := U_n C_n is J-positive.

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

- Using $\kappa < cov_+^*(\mathcal{J})$ find \mathcal{J} -positive B_{α} 's such that $B_{\alpha} \subseteq A_{\alpha}$ and $B_{\alpha} \cap A_{\beta}$ is finite for $\alpha \neq \beta$.
- (goodness of J) Every unctbl almost disjoint family B ⊆ J⁺ has a ctbl subfamily {B_n : n ∈ ω} ⊆ B such that: for every f ∈ ω^ω there is a sequence {C_n : n ∈ ω} ⊆ J, C_n ⊆ B_n \ f(n) such that C := U_n C_n is J-positive.
- Let $f_{\alpha} \in \omega^{\omega}$ be such that $B_n \cap A_{\alpha} \subseteq f_{\alpha}(n)$. Using $\kappa < \mathfrak{b}$ find $f \in \omega^{\omega}$ dominating all f_{α} 's. Use goodness to find desired *C*.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Which ideals are good?

- nwd
- $\emptyset \times fin$ and $fin \times fin$
- all F_{σ} ideals, in particular: \mathcal{ED} , Random graph and Solecki ideal, Van Der Waerden ideal
- all analytic *P*-ideals:
- conv, Ramsey ideal

・ 同 ト ・ ヨ ト ・ ヨ ト

3

DQ P

Which ideals are good?

nwd

- $\emptyset \times fin$ and $fin \times fin$
- all F_{σ} ideals, in particular: \mathcal{ED} , Random graph and Solecki ideal, Van Der Waerden ideal
- all analytic *P*-ideals:
- conv, Ramsey ideal

Which Borel (analytic, coanalytic) ideal is not good?

・ 同 ト ・ ヨ ト ・ ヨ ト

Thank you for your attention, but ...

<ロト < 部 > < 注 > < 注 > < 注</p>

SECOND WROCLAW LOGIC CONFERENCE 31st May - 2nd June 2024 in Wrocław, Poland https://prac.im.pwr.edu.pl/~twowlc/

・ロト ・ 雪 ト ・ ヨ ト ・

3

DQ P

Thank you Let's go eat

Aleksander Cieślak Antichain numbers of $\mathcal{P}(\omega)/\mathcal{J}$

<ロト < 回ト < 回ト < 回ト < 回ト

E