Antichain numbers of $\mathcal{P}(\omega) / \mathcal{J}$

Aleksander Cieślak

Wrocław University of Science and Technology

$$
\text { January 30, } 2024
$$

(+)-covering number

Suppose that \mathcal{J} is a tall, homogeneous ideal on ω. Recall $\operatorname{add}^{*}(\mathcal{J})=$ the minimal size of a family $\mathcal{F} \subseteq \mathcal{J}$ with no pseudo-union in \mathcal{J}, $\operatorname{cov}^{*}(\mathcal{J})=$ the minimal size of a family $\mathcal{F} \subseteq \mathcal{J}$ such that every infinite set infinitely intersects some element of \mathcal{F}.

(+)-covering number

We define then the (+)-covering number of \mathcal{J} as
$\operatorname{cov}_{+}^{*}(\mathcal{J})=$ the minimal size of a family $\mathcal{F} \subseteq \mathcal{J}$ such that every \mathcal{J}-positive set infinitely intersects some element of \mathcal{F}.

Observe that $\operatorname{add}^{*}(\mathcal{J}) \leq \operatorname{cov}_{+}^{*}(\mathcal{J}) \leq \operatorname{cov}^{*}(\mathcal{J})$

(+)-covering number

We define then the (+)-covering number of \mathcal{J} as
$\operatorname{cov}_{+}^{*}(\mathcal{J})=$ the minimal size of a family $\mathcal{F} \subseteq \mathcal{J}$ such that every \mathcal{J}-positive set infinitely intersects some element of \mathcal{F}.

Observe that $\operatorname{add}^{*}(\mathcal{J}) \leq \operatorname{cov}_{+}^{*}(\mathcal{J}) \leq \operatorname{cov}^{*}(\mathcal{J})$
目 B. Farkas, L. Zdomskyy "Ways of destruction" (2022).
國 B. Balcar, F. Hernández-Hernández, M. Hrušák; "Combinatorics of dense subsets of the rationals" (2004)
A. Marton; "P-like properties of meager ideals and cardinal invariants" (2004)

Antichain number

Let \mathbb{B} be a Boolean algebra. The antichain number of \mathbb{B} is defined as

$$
a(\mathbb{B})=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathbb{B} \text { is an unctbl maximal antichain }\}
$$

Antichain number

Let \mathbb{B} be a Boolean algebra. The antichain number of \mathbb{B} is defined as

$$
a(\mathbb{B})=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathbb{B} \text { is an unctbl maximal antichain }\}
$$

We will write $\mathfrak{a}(J)$ for $\mathfrak{a}(\mathcal{P}(\omega) / J)$

Known estimates

A couple of known results:

- a(fin) is the classical almost disjoint number

Known estimates

A couple of known results:

- a(fin) is the classical almost disjoint number
- (J.Steprans 2009) $\mathfrak{p} \leq \mathfrak{a}(n w d) \leq \mathfrak{b}$

Known estimates

A couple of known results:

- a(fin) is the classical almost disjoint number
- (J.Steprans 2009) $\mathfrak{p} \leq \mathfrak{a}(n w d) \leq \mathfrak{b}$
- (J.Cancino 2023) $\operatorname{add}(\mathcal{M}) \leq \mathfrak{a}(n w d)$

Known estimates

A couple of known results:

- a(fin) is the classical almost disjoint number
- (J.Steprans 2009) $\mathfrak{p} \leq \mathfrak{a}(n w d) \leq \mathfrak{b}$
- (J.Cancino 2023) $\operatorname{add}(\mathcal{M}) \leq \mathfrak{a}(n w d)$
- (J.Brendle 2023) $\mathfrak{b} \leq \mathfrak{a}(f i n \times f i n) \leq \mathfrak{a}$

A couple of known results:

- a(fin) is the classical almost disjoint number
- (J.Steprans 2009) $\mathfrak{p} \leq \mathfrak{a}(n w d) \leq \mathfrak{b}$
- (J.Cancino 2023) $\operatorname{add}(\mathcal{M}) \leq \mathfrak{a}(n w d)$
- (J.Brendle 2023) $\mathfrak{b} \leq \mathfrak{a}($ fin \times fin $) \leq \mathfrak{a}$
- (J.Steprans 2009) $\mathfrak{b} \leq \mathfrak{a}(\varnothing \times$ fin $) \leq \mathfrak{a}$?

Known estimates

A couple of known results:

- a(fin) is the classical almost disjoint number
- (J.Steprans 2009) $\mathfrak{p} \leq \mathfrak{a}(n w d) \leq \mathfrak{b}$
- (J.Cancino 2023) $\operatorname{add}(\mathcal{M}) \leq \mathfrak{a}(n w d)$
- (J.Brendle 2023) $\mathfrak{b} \leq \mathfrak{a}($ fin \times fin $) \leq \mathfrak{a}$
- (J.Steprans 2009) $\mathfrak{b} \leq \mathfrak{a}(\varnothing \times f i n) \leq a$?
- (B.Farkas, L.Soukup 2010) $\mathfrak{b} \leq \mathfrak{a}(J)$ for analytic P-ideals

Antichain numbers vs $\operatorname{cov}_{+}^{*}(\mathcal{J})$

Theorem
Suppose that an ideal \mathcal{J} is good. Then we have

$$
\mathfrak{a}(\mathcal{J}) \geq \min \left\{\mathfrak{b}, \operatorname{cov}_{+}^{*}(\mathcal{J})\right\} .
$$

Antichain numbers vs $\operatorname{cov}_{+}^{*}(\mathcal{J})$

Theorem

Suppose that an ideal \mathcal{J} is good. Then we have

$$
\mathfrak{a}(\mathcal{J}) \geq \min \left\{\mathfrak{b}, \operatorname{cov}_{+}^{*}(\mathcal{J})\right\} .
$$

\mathcal{J}	$\operatorname{add}^{*}(\mathcal{J})$	$\operatorname{cov}_{+}^{*}(\mathcal{J})$	$\operatorname{cov}^{*}(\mathcal{J})$
nwd	ω	$\operatorname{add}(\mathcal{M})$	$\operatorname{cov}(\mathcal{M})$
$\operatorname{fin} \times$ fin	ω	ω	\mathfrak{b}
$\mathcal{E} \mathcal{D}_{\text {fin }}$	ω	$\min \left\{\mathfrak{b}, \operatorname{cov}^{*}\left(\mathcal{E D} \mathcal{D}_{\text {fin }}\right)\right\} \leq$	$\operatorname{non}(\mathcal{M})$
\mathcal{Z}	$\operatorname{add}(\mathcal{N})$	$?$	$\leq \operatorname{non}(\mathcal{M})$
$\mathcal{S o l}$	ω	$\operatorname{non}(\mathcal{N})$	$\operatorname{non}(\mathcal{N})$
\mathcal{R}	ω	\mathfrak{c}	\mathfrak{c}
conv	ω	\mathfrak{c}	\mathfrak{c}

Proof

Theorem

Suppose that \mathcal{J} is a good ideal. Then $\mathfrak{a}(\mathcal{J}) \geq \min \left\{\mathfrak{b}, \operatorname{cov}_{+}^{*}(\mathcal{J})\right\}$.
Let $\kappa<\min \left\{\mathfrak{b}, \operatorname{cov}_{+}^{*}(\mathcal{J})\right\}$.
Let $\left\{A_{\alpha}: \alpha<\kappa\right\} \subseteq \mathcal{J}^{+}$be such that $A_{\alpha} \cap A_{\beta} \in \mathcal{J}$ for $\alpha \neq \beta$. We will construct $C \in \mathcal{J}^{+}$such that $C \cap A_{\alpha} \in \mathcal{J}$ for all α 's.
(1) Using $\kappa<\operatorname{cov}_{+}^{*}(\mathcal{J})$ find \mathcal{J}-positive B_{α} 's such that $B_{\alpha} \subseteq A_{\alpha}$ and $B_{\alpha} \cap A_{\beta}$ is finite for $\alpha \neq \beta$.
(1) Using $\kappa<\operatorname{cov}_{+}^{*}(\mathcal{J})$ find \mathcal{J}-positive B_{α} 's such that $B_{\alpha} \subseteq A_{\alpha}$ and $B_{\alpha} \cap A_{\beta}$ is finite for $\alpha \neq \beta$.
(2) (goodness of \mathcal{J}) Every unctbl almost disjoint family $\mathcal{B} \subseteq \mathcal{J}^{+}$ has a ctbl subfamily $\left\{B_{n}: n \in \omega\right\} \subseteq \mathcal{B}$ such that: for every $f \in \omega^{\omega}$ there is a sequence $\left\{C_{n}: n \in \omega\right\} \subseteq \mathcal{J}$, $C_{n} \subseteq B_{n} \backslash f(n)$ such that $C:=\cup_{n} C_{n}$ is \mathcal{J}-positive.
(1) Using $\kappa<\operatorname{cov}_{+}^{*}(\mathcal{J})$ find \mathcal{J}-positive B_{α} 's such that $B_{\alpha} \subseteq A_{\alpha}$ and $B_{\alpha} \cap A_{\beta}$ is finite for $\alpha \neq \beta$.
(2) (goodness of \mathcal{J}) Every unctbl almost disjoint family $\mathcal{B} \subseteq \mathcal{J}^{+}$ has a ctbl subfamily $\left\{B_{n}: n \in \omega\right\} \subseteq \mathcal{B}$ such that: for every $f \in \omega^{\omega}$ there is a sequence $\left\{C_{n}: n \in \omega\right\} \subseteq \mathcal{J}$, $C_{n} \subseteq B_{n} \backslash f(n)$ such that $C:=\cup_{n} C_{n}$ is \mathcal{J}-positive.
(3) Let $f_{\alpha} \in \omega^{\omega}$ be such that $B_{n} \cap A_{\alpha} \subseteq f_{\alpha}(n)$. Using $\kappa<\mathfrak{b}$ find $f \in \omega^{\omega}$ dominating all f_{α} 's. Use goodness to find desired C.

Which ideals are good?

- nwd
- $\varnothing \times$ fin and fin \times fin
- all F_{σ} ideals, in particular:
$\mathcal{E D}$, Random graph and Solecki ideal, Van Der Waerden ideal
- all analytic P-ideals:
- conv, Ramsey ideal

Which ideals are good?

- nwd
- $\varnothing \times$ fin and $f i n \times f i n$
- all F_{σ} ideals, in particular:
$\mathcal{E D}$, Random graph and Solecki ideal, Van Der Waerden ideal
- all analytic P-ideals:
- conv, Ramsey ideal

Which Borel (analytic, coanalytic) ideal is not good?

Thank you for your attention, but ...

SECOND WROCLAW LOGIC CONFERENCE 31st May - 2nd June 2024
 in Wrocław, Poland
 https://prac.im.pwr.edu.pl/~twowlc/

Thank you
 Let's go eat

