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Basic definitions

Definition

A topological space X is called

separable, if X contains a dense countable subset;

first-countable, if each element of X possesses a countable base;

countably compact, if X contains no infinite closed discrete subsets, or,
equivalently, each infinite subset of X has an accumulation point.

Definition

A tower is a well-ordered subset of the poset (P(ω),⊇∗);

t is the minimal cardinality of a tower with no pseudointersection;

a family S ⊂ [ω]ω is called splitting if for any A ∈ [ω]ω there exists S ∈ S
such that the sets S ∩A and A \ S are infinite;

s is the minimal cardinality of a splitting family;

b is the minimal cardinality of an unbounded subset of the poset (ωω,≤∗).
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Nyikos problem

Definition

A regular separable first-countable countably compact space is called a Nyikos
space.

Nyikos problem (Nyikos, 1986)

Does there exist a noncompact Nyikos space in ZFC?

Some relevant results

(b = c) exists T3 1
2
noncompact Nyikos space (van Douwen, Ostaszewski);

(ω1 = t) exists normal noncompact Nyikos space (Franklin, Rajagopalan);

(♦) exists perfectly normal noncompact Nyikos space (Ostaszewski);

(MA) each perfectly normal Nyikos space is compact (Weiss);

(PFA) each hereditary normal Nyikos space is compact (Dow, Tall);

(PFA) each normal Nyikos space is compact (Nyikos, Zdomskyy).
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Tzannes problem

Definition

Let Y be a topological space. A topological space X is called Y -rigid, if every
continuous function f : X → Y is constant.

General problem (Iliadis, Tzannes, 1986)

Let P be a topological property and Y be a space. Does there exist a Y -rigid
space with property P?

Among natural candidates for a property P are compact-like properties.

Theorem (Tzannes, 1996)

There exists a Hausdorff countably compact R-rigid space.

Tzannes problem (Tzannes, 2003)

Does there exist a regular (separable, first-countable) countably compact
R-rigid space?

Note that if we consider properties in brackets, Tzannes problem can be viewed
as an ultimate version of Nyikos problem.
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Results

Theorem (B., Zdomskyy, 2020)

There exists a separable countably compact R-rigid space.

What about first-countable case?

Definition

An ultrafilter u on ω is called simple Pc-point if u possesses a base which is a
tower of length c.

Theorem (B., Zdomskyy, 2020)

([ω1=t<b=c] ∧ [exists a simple Pc-point]) There exists a Nyikos R-rigid space.
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Principal question

The constructing of the above example had two main steps.

Step 1

Construct an appropriate regular separable first-countable R-rigid space X.

Step 2

Embed densely the space X into a Nyikos space.

Principal question

Under which conditions a regular first-countable space can be (densely)
embedded into a regular first-countable countably compact space?

Similar question was asked by Stephenson back in 1987.

Problem (Stephenson, 1987)

Does every locally feebly compact first-countable regular space embed densely
into a feebly compact first-countable regular space?

Answer, (Simon, Tironi, 2004)

Yes.
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Main results

Theorem (B., Nyikos, Zdomskyy)

The following assertions are equivalent:
1 ω1 = c.
2 Every first-countable Tychonoff space of weight < c embeds in a Hausdorff

first-countable compact space.

Theorem (B., Nyikos, Zdomskyy)

The following assertions are equivalent:
1 b = c.
2 Every Hausdorff, locally compact, first-countable space of weight < c

embeds in a Hausdorff first-countable locally compact countably compact
space.

3 Every Hausdorff, locally compact, first-countable space of cardinality < c
embeds in a Hausdorff first-countable countably compact space.
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Main results

Theorem (B., Nyikos, Zdomskyy)

The following assertions are equivalent:
1 b = s = c.
2 Every first-countable zero-dimensional Hausdorff space of weight < c

embeds densely into a first-countable zero-dimensional pseudocompact
space.

3 Every first-countable zero-dimensional Hausdorff space of cardinality < c
embeds densely into a first-countable zero-dimensional pseudocompact
space.

Essential ingredient in the proof of the previous result is the following.

Theorem (B., Nyikos, Zdomskyy)

A subspace X of the Cantor space is a λ-set if and only if the Pixley-Roy
hyperspace PR(X) embeds densely into a first-countable pseudocompact space.

Recall that a subspace X of the Cantor set is called a λ-set if each countable
subset of X is Gδ. By PR(X) we denote the set of all finite subsets of the
space X endowed with the topology generated by the base consisting of the sets

[F,U ] = {A ∈ [X]<ω : F ⊆ A ⊆ U},
where F ∈ [X]<ω and U is open in X.
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Main results

Theorem (B. Nyikos, Zdomskyy)

The following assertions are equivalent:
1 b = s = c.
2 Every regular separable first-countable non-normal space of weight < c

embeds into an R-rigid Nyikos space.
3 Every regular separable first-countable non-normal space of cardinality < c

embeds into an R-rigid Nyikos space.

The latter theorem allows us to find a solution of Tzannes problem under
milder assumptions.

Theorem (B. Nyikos, Zdomskyy)

(ω1 < b = s = c) There exists an R-rigid Nyikos space.

Theorem (B. Nyikos, Zdomskyy)

PFA implies the following assertions:
1 each normal Nyikos space is compact;
2 there exist plenty of R-rigid Nyikos spaces.

Serhii Bardyla Countably compact extensions and small cardinals



Main results

Theorem (B. Nyikos, Zdomskyy)

The following assertions are equivalent:
1 b = s = c.
2 Every regular separable first-countable non-normal space of weight < c

embeds into an R-rigid Nyikos space.
3 Every regular separable first-countable non-normal space of cardinality < c

embeds into an R-rigid Nyikos space.

The latter theorem allows us to find a solution of Tzannes problem under
milder assumptions.

Theorem (B. Nyikos, Zdomskyy)

(ω1 < b = s = c) There exists an R-rigid Nyikos space.

Theorem (B. Nyikos, Zdomskyy)

PFA implies the following assertions:
1 each normal Nyikos space is compact;
2 there exist plenty of R-rigid Nyikos spaces.

Serhii Bardyla Countably compact extensions and small cardinals



Main results

Theorem (B. Nyikos, Zdomskyy)

The following assertions are equivalent:
1 b = s = c.
2 Every regular separable first-countable non-normal space of weight < c

embeds into an R-rigid Nyikos space.
3 Every regular separable first-countable non-normal space of cardinality < c

embeds into an R-rigid Nyikos space.

The latter theorem allows us to find a solution of Tzannes problem under
milder assumptions.

Theorem (B. Nyikos, Zdomskyy)

(ω1 < b = s = c) There exists an R-rigid Nyikos space.

Theorem (B. Nyikos, Zdomskyy)

PFA implies the following assertions:
1 each normal Nyikos space is compact;
2 there exist plenty of R-rigid Nyikos spaces.

Serhii Bardyla Countably compact extensions and small cardinals



Thanks!

Thank You for attention!
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