High dimensional sequential compactness

César Corral (Joint with Osvaldo Guzmán, Carlos López-Callejas, Pourya Memarpanahi, Paul Szeptycki and Stevo Todorcević)

York University

Winter School in Abstract Analysis 2024, Set Theory & Topology Section

High dimensional sequences

Definition

A sequence in X is a function $f: \omega \to X$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

High dimensional sequences

Definition

A sequence in X is a function $f : \omega \to X$. An *n*-dimensional sequence is a function $f : [\omega]^n \to X$.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

High dimensional sequences

Definition

A sequence in X is a function $f : \omega \to X$. An *n*-dimensional sequence is a function $f : [\omega]^n \to X$.

Definition

If $M \in [\omega]^{\omega}$ and $f : [M]^n \to X$, we say that f converges to $x \in X$ if for every $x \in U \subseteq X$ open, there exists $k \in \omega$ such that $f''[M \setminus k]^n \subseteq U$.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

n-sequentially compact spaces

Definition (Kubis & Szeptycki)

A space X is *n*-sequentially compact, if for every function $f : [\omega]^n \to X$ there is $M \in [\omega]^{\omega}$ such that $f \upharpoonright [M]^n$ converges to some $x \in X$.

n-sequentially compact spaces

Definition (Kubis & Szeptycki)

A space X is *n*-sequentially compact, if for every function $f : [\omega]^n \to X$ there is $M \in [\omega]^{\omega}$ such that $f \upharpoonright [M]^n$ converges to some $x \in X$.

The case n = 2 was considered by M. Bojańczyk, E. Kopczyński and S. Toruńczyk, where they show that compact metric spaces are 2-sequentially compact and used this to prove that compact metric semigroups have idempotents naturally associated to the limits of a two dimensional sequence f : [ω]² → X.

Definitions	Some results	Examples	Some applications
Barriers on ω			

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

What is the natural equivalent to $[\omega]^n$ for countable infinite dimensions?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Barriers on ω

What is the natural equivalent to $[\omega]^n$ for countable infinite dimensions?

Definition

- A family $\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if
 - \mathcal{B} is a \subseteq -antichain and
 - for every M ∈ [ω]^ω there exists b ∈ B an initial segment of M (i.e., b ⊑ M).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Barriers on ω

What is the natural equivalent to $[\omega]^n$ for countable infinite dimensions?

Definition

- A family $\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if
 - \mathcal{B} is a \subseteq -antichain and
 - for every M ∈ [ω]^ω there exists b ∈ B an initial segment of M (i.e., b ⊑ M).

We identify $[\omega]^{<\omega}$ with the set of increasing finite sequences of natural numbers.

ション ふゆ く 山 マ チャット しょうくしゃ

Barriers on ω

What is the natural equivalent to $[\omega]^n$ for countable infinite dimensions?

Definition

- A family $\mathcal{B} \subseteq [\omega]^{<\omega}$ is a barrier if
 - \mathcal{B} is a \subseteq -antichain and
 - for every M ∈ [ω]^ω there exists b ∈ B an initial segment of M (i.e., b ⊑ M).

We identify $[\omega]^{<\omega}$ with the set of increasing finite sequences of natural numbers. Then let $T(\mathcal{B}) = \{s \in [\omega]^{<\omega} : \exists b \in \mathcal{B} \ (s \subseteq b)\} \subseteq \omega^{<\omega}.$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Barriers on ω

Definition

The rank of a barrier \mathcal{B} , denoted by $\rho(\mathcal{B})$, is the well founded rank of \emptyset in the tree $T(\mathcal{B})$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Barriers on ω

Definition

The rank of a barrier \mathcal{B} , denoted by $\rho(\mathcal{B})$, is the well founded rank of \emptyset in the tree $T(\mathcal{B})$.

Examples of barriers

- $[\omega]^n$ is a barrier of rank *n* for every $n \in \omega$.
- $S = \{s \in [\omega]^{<\omega} : |s| = \min(s) + 1\}$ is a barrier of rank ω .

Barriers on ω

Definition

The rank of a barrier \mathcal{B} , denoted by $\rho(\mathcal{B})$, is the well founded rank of \emptyset in the tree $T(\mathcal{B})$.

Examples of barriers

- $[\omega]^n$ is a barrier of rank *n* for every $n \in \omega$.
- $S = \{s \in [\omega]^{<\omega} : |s| = \min(s) + 1\}$ is a barrier of rank ω .

Given a barrier \mathcal{B} on $M \in [\omega]^{\omega}$ and an infinite set $N \in [M]^{\omega}$, let $\mathcal{B}|N = \mathcal{B} \cap \mathcal{P}(N)$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Barriers on ω

Definition

The rank of a barrier \mathcal{B} , denoted by $\rho(\mathcal{B})$, is the well founded rank of \emptyset in the tree $T(\mathcal{B})$.

Examples of barriers

- $[\omega]^n$ is a barrier of rank *n* for every $n \in \omega$.
- $S = \{s \in [\omega]^{<\omega} : |s| = \min(s) + 1\}$ is a barrier of rank ω .

Given a barrier \mathcal{B} on $M \in [\omega]^{\omega}$ and an infinite set $N \in [M]^{\omega}$, let $\mathcal{B}|N = \mathcal{B} \cap \mathcal{P}(N)$. Notice that $\mathcal{B}|N$ is a barrier on N and $\rho(\mathcal{B}|N) \leq \rho(\mathcal{B})$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Infinite dimensional sequential compactness

Definition

Let \mathcal{B} be a barrier on $M \in [\omega]^{\omega}$. A \mathcal{B} -sequence in X is a function $f : \mathcal{B} \to X$. We say that f converges to $x \in X$ if for every $x \in U \subseteq X$ open, there exists $k \in \omega$ such that $f[\mathcal{B}|(M \setminus k)] \subseteq U$.

Infinite dimensional sequential compactness

Definition

Let \mathcal{B} be a barrier on $M \in [\omega]^{\omega}$. A \mathcal{B} -sequence in X is a function $f : \mathcal{B} \to X$. We say that f converges to $x \in X$ if for every $x \in U \subseteq X$ open, there exists $k \in \omega$ such that $f[\mathcal{B}|(M \setminus k)] \subseteq U$.

Definition

A space is \mathcal{B} -sequentially compact (for a barrier \mathcal{B} on ω), if for every \mathcal{B} -sequence, there exists $M \in [\omega]^{\omega}$ such that $f \upharpoonright (\mathcal{B}|M)$ converges to some $x \in X$.

・ロト ・ 日 ・ ・ 田 ト ・ 田 ・ うらぐ

Infinite dimensional sequential compactness

Definition

Let \mathcal{B} be a barrier on $M \in [\omega]^{\omega}$. A \mathcal{B} -sequence in X is a function $f : \mathcal{B} \to X$. We say that f converges to $x \in X$ if for every $x \in U \subseteq X$ open, there exists $k \in \omega$ such that $f[\mathcal{B}|(M \setminus k)] \subseteq U$.

Definition

A space is \mathcal{B} -sequentially compact (for a barrier \mathcal{B} on ω), if for every \mathcal{B} -sequence, there exists $M \in [\omega]^{\omega}$ such that $f \upharpoonright (\mathcal{B}|M)$ converges to some $x \in X$. We say that X is α -sequentially compact if it is \mathcal{B} -sequentially compact for every barrier \mathcal{B} on ω of rank α .

 et	11	10	ns
	 	\sim	

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (C., Guzmán, López-Callejas, Memarpanahi, Szeptycki, Todorčević)

The following are equivalent:

- X is α -sequentially compact,
- X is \mathcal{B} -sequentially compact for every "uniform" barrier of rank α ,
- X is B-sequentially compact for some "uniform" barrier B of rank α.

 Ott		+ -	0	n	U
		•••	U		-

うして ふゆう ふほう ふほう うらつ

Theorem (C., Guzmán, López-Callejas, Memarpanahi, Szeptycki, Todorčević)

The following are equivalent:

- X is α -sequentially compact,
- X is \mathcal{B} -sequentially compact for every "uniform" barrier of rank α ,
- X is \mathcal{B} -sequentially compact for some "uniform" barrier \mathcal{B} of rank α .

Uniformity is a combinatorial property for a barrier \mathcal{B} , that ensures that the rank of \mathcal{B} does not decrease if we take an infinite restriction $\mathcal{B}|M$.

Definitions	Some results	Examples	Some applications

Theorem

- (Ramsey) Every finite space is *n*-sequentially compact for every *n* ∈ ω.
- (Nash-Williams) Every finite space is *B*-sequentially compact for every barrier *B*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

De	finitions	Some results	Examples	Some applications

Theorem

- (Ramsey) Every finite space is *n*-sequentially compact for every *n* ∈ ω.
- (Nash-Williams) Every finite space is *B*-sequentially compact for every barrier *B*.

Theorem (C., Guzmán, López-Callejas, Memarpanahi, Szeptycki, Todorčević)

If $\alpha < \beta < \omega_1$ and X is β -sequentially compact, then X is also α -sequentially compact.

うして ふゆう ふほう ふほう うらつ

De	finitions	Some results	Examples	Some applications

Theorem

- (Ramsey) Every finite space is *n*-sequentially compact for every *n* ∈ ω.
- (Nash-Williams) Every finite space is *B*-sequentially compact for every barrier *B*.

Theorem (C., Guzmán, López-Callejas, Memarpanahi, Szeptycki, Todorčević)

If $\alpha < \beta < \omega_1$ and X is β -sequentially compact, then X is also α -sequentially compact.

The case $\alpha, \beta \in \omega$ was previously proved by Kubis and Szeptycki.

うして ふゆう ふほう ふほう うらつ

Definitions	Some results	Examples	Some applications

Definition

If \mathcal{B} is a barrier, then $\mathfrak{par}_{\mathcal{B}}$ is the least size of a set of colorings of \mathcal{B} with no common almost monochromatic set.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definitions	Some results	Examples	Some applications

Definition

If \mathcal{B} is a barrier, then $\mathfrak{par}_{\mathcal{B}}$ is the least size of a set of colorings of \mathcal{B} with no common almost monochromatic set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The classical cardinal invariants coincide with this definition, i.e.,

 $\mathfrak{par}_n = \mathfrak{par}_{[\omega]^n}$.

Definition

If \mathcal{B} is a barrier, then $\mathfrak{par}_{\mathcal{B}}$ is the least size of a set of colorings of \mathcal{B} with no common almost monochromatic set.

The classical cardinal invariants coincide with this definition, i.e., $par_n = par_{[\omega]^n}$.

Theorem

- (Blass) $\mathfrak{par}_1 = \mathfrak{s}$,
- (Blass) $\mathfrak{par}_n = \mathfrak{par}_2$ for every $1 < n \in \omega$,
- (CGLMST) $\mathfrak{par}_{\mathcal{B}} = \mathfrak{par}_2$ for every barrier \mathcal{B} ,
- (Kubis & Szeptycki) pat₂ is the minimum κ such that 2^κ is not n-sequentially compact,
- (CGLMST) pat₂ is the minimum κ such that 2^κ is not B-sequentially compact for every barrier B.

5						
	A1		+ :	0	n	
\sim	CI			U.		

Some results

Examples

Some applications

・ロト ・ 日 ・ モート ・ 田 ・ うへで

 ω_1 -sequentially compact spaces.

Notation: A space is ω_1 -sequentially compact if it is α -sequentially compact for every $\alpha < \omega_1$.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

ω_1 -sequentially compact spaces.

Notation: A space is ω_1 -sequentially compact if it is α -sequentially compact for every $\alpha < \omega_1$.

Theorem (CGLMST)

Every sequentially compact space of character less than $\mathfrak b$ is $\omega_1\text{-sequentially compact.}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

ω_1 -sequentially compact spaces.

Notation: A space is ω_1 -sequentially compact if it is α -sequentially compact for every $\alpha < \omega_1$.

Theorem (CGLMST)

Every sequentially compact space of character less than $\mathfrak b$ is $\omega_1\text{-sequentially compact.}$

Again, the result for finite ordinals was previously proved by Kubis and Szeptycki.

ω_1 -sequentially compact spaces.

Notation: A space is ω_1 -sequentially compact if it is α -sequentially compact for every $\alpha < \omega_1$.

Theorem (CGLMST)

Every sequentially compact space of character less than $\mathfrak b$ is $\omega_1\text{-sequentially compact.}$

Again, the result for finite ordinals was previously proved by Kubis and Szeptycki.

Theorem (C., Guzmán and López-Callejas)

The cardinal invariant \mathfrak{b} is characterized as the minimum character of a sequentially compact space that is not 2-sequentially compact.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Theorem (Todorčević)

Every compact bisequential space is ω_1 -sequentially compact.

Recall that X is bisequential at x if every ultrafilter converging to x contains a countable family converging to x too. The space X is bisequential if it is bisequential at every point.

Examples

Some applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Kubis & Szeptycki)

There is a sequentially compact space that is not 2-sequentially compact.

Theorem (Kubis & Szeptycki)

There is a sequentially compact space that is not 2-sequentially compact.

Assuming the existence of a completely separable MAD family (e.g., under $\mathfrak{s} \leq \mathfrak{a}$ or $\mathfrak{c} < \aleph_{\omega}$), there is such an example that is Fréchet.

Theorem (Kubis & Szeptycki)

There is a sequentially compact space that is not 2-sequentially compact.

Assuming the existence of a completely separable MAD family (e.g., under $\mathfrak{s} \leq \mathfrak{a}$ or $\mathfrak{c} < \aleph_{\omega}$), there is such an example that is Fréchet. Under CH, for every $n \in \omega$ there is an *n*-sequentially compact space that is not (n + 1)-sequentially compact.

Theorem (Kubis & Szeptycki)

There is a sequentially compact space that is not 2-sequentially compact.

Assuming the existence of a completely separable MAD family (e.g., under $\mathfrak{s} \leq \mathfrak{a}$ or $\mathfrak{c} < \aleph_{\omega}$), there is such an example that is Fréchet. Under CH, for every $n \in \omega$ there is an *n*-sequentially compact space that is not (n + 1)-sequentially compact.

Theorem (C., Guzmán, López-Callejas)

There is a Fréchet sequentially compact space that is not 2-sequentially compact.

Theorem (Kubis & Szeptycki)

There is a sequentially compact space that is not 2-sequentially compact.

Assuming the existence of a completely separable MAD family (e.g., under $\mathfrak{s} \leq \mathfrak{a}$ or $\mathfrak{c} < \aleph_{\omega}$), there is such an example that is Fréchet. Under CH, for every $n \in \omega$ there is an *n*-sequentially compact space that is not (n + 1)-sequentially compact.

Theorem (C., Guzmán, López-Callejas)

There is a Fréchet sequentially compact space that is not 2-sequentially compact. For every $n \in \omega$, there is an *n*-sequentially compact space that is not (n + 1)-sequentially compact if one assumes any of the following:

• $\mathfrak{b} = \mathfrak{c}$

•
$$\diamondsuit(\mathfrak{b}) + \mathfrak{d} = \omega_1$$

•
$$\mathfrak{s} = \mathfrak{b}$$

Definitions	Some results	Examples	Some applications

Theorem(CGLMST)

There is a compact and ω_1 -sequentially compact space that is not bisequential.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Theorem(CGLMST)

There is a compact and ω_1 -sequentially compact space that is not bisequential.

Theorem(CGLMST)

Under $\mathfrak{b} = \mathfrak{c}$, there is, for each $\alpha < \omega_1$, a space that is β -sequentially compact for every $\beta < \alpha$ but fails to be α -sequentially compact.

Theorem(CGLMST)

There is a compact and ω_1 -sequentially compact space that is not bisequential.

Theorem(CGLMST)

Under $\mathfrak{b} = \mathfrak{c}$, there is, for each $\alpha < \omega_1$, a space that is β -sequentially compact for every $\beta < \alpha$ but fails to be α -sequentially compact.

A more general result can be proved: There are two natural ideals associated to a barrier \mathcal{B} , namely $\operatorname{Fin}^{\mathcal{B}}$ and $\mathcal{G}_{c}(\mathcal{B})$. Then if \mathcal{B} and \mathcal{C} are two barriers and $\operatorname{FIN}^{\mathcal{C}} \not\leq_{\mathcal{K}} \mathcal{G}_{c}(\mathcal{B})$, there is a \mathcal{B} -sequentially compact space that is not \mathcal{C} -sequentially compact.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some classes spaces that are ω_1 -sequentially compact

The following are ω_1 -sequentially compact:

• Rosenthal compact spaces.

Some classes spaces that are ω_1 -sequentially compact

The following are ω_1 -sequentially compact:

- Rosenthal compact spaces.
- \mathbb{R} -embeddable almost disjoint families.

Some classes spaces that are ω_1 -sequentially compact

The following are ω_1 -sequentially compact:

- Rosenthal compact spaces.
- \mathbb{R} -embeddable almost disjoint families.
- Corson compacta.

Some classes spaces that are ω_1 -sequentially compact

The following are ω_1 -sequentially compact:

- Rosenthal compact spaces.
- \mathbb{R} -embeddable almost disjoint families.
- Corson compacta.
- Eberlein compacta defined from adequate families.

うして ふゆう ふほう ふほう うらつ

Some classes spaces that are ω_1 -sequentially compact

The following are ω_1 -sequentially compact:

- Rosenthal compact spaces.
- \mathbb{R} -embeddable almost disjoint families.
- Corson compacta.
- Eberlein compacta defined from adequate families.

Corollary

If a space in any of the previous classes has a semigroup structure with continuous multiplication, then it has a "nice" idempotent.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Angelic spaces and the Ramsey property

Definition

A space X is Angelic if relatively countably compact subsets are relatively compact and the closure of every relatively compact subspace is Fréchet.

Angelic spaces and the Ramsey property

Definition

A space X is Angelic if relatively countably compact subsets are relatively compact and the closure of every relatively compact subspace is Fréchet.

Definition (H. Knaust)

A space X has the Ramsey property if for every double sequence $\{x_{n,m} : n < m < \omega\}$ such that $\lim_{n \to \infty} \lim_{m \to \infty} x_{n,m} = x$, the function $f : [\omega]^2 \to X$ given by $f(\{n, m\}) = x_{n,m}$ also converges to x.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Angelic spaces with the Ramsey property

Theorem (Knaust)

Rosenthal and Valdivia compacta have the Ramsey property.

Angelic spaces with the Ramsey property

Theorem (Knaust)

Rosenthal and Valdivia compacta have the Ramsey property.

Rosenthal and Valdivia compactums are both Angelic spaces. Knaust asked whether all angelic spaces have the Ramsey property.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Angelic spaces with the Ramsey property

Theorem (Knaust)

Rosenthal and Valdivia compacta have the Ramsey property.

Rosenthal and Valdivia compactums are both Angelic spaces. Knaust asked whether all angelic spaces have the Ramsey property.

Theorem (CGLMST)

There is (in ZFC) an angelic space without the Ramsey property.

Definitions	Some results	Examples	Some applications
What's next?			

 Can we construct our examples of α-sequentially compact spaces that are not β-sequentially compact in ZFC?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Can we construct our examples of α-sequentially compact spaces that are not β-sequentially compact in ZFC?
- What kind of angelic spaces have the Ramsey property? or even better, are ω_1 -sequentially compact?

うして ふゆう ふほう ふほう うらつ

- Can we construct our examples of α-sequentially compact spaces that are not β-sequentially compact in ZFC?
- What kind of angelic spaces have the Ramsey property? or even better, are ω_1 -sequentially compact?
- Applications to topological groups.

- Can we construct our examples of α-sequentially compact spaces that are not β-sequentially compact in ZFC?
- What kind of angelic spaces have the Ramsey property? or even better, are ω_1 -sequentially compact?
- Applications to topological groups.
- Applications to Banach spaces

うして ふゆう ふほう ふほう うらつ

- Can we construct our examples of α-sequentially compact spaces that are not β-sequentially compact in ZFC?
- What kind of angelic spaces have the Ramsey property? or even better, are ω_1 -sequentially compact?
- Applications to topological groups.
- Applications to Banach spaces
- (Currently working on) High dimensional versions of other kind of compactness and convergence.

References

- 1 César Corral, Osvaldo Guzmán, and Carlos López-Callejas. "High-dimensional sequential compactness" Fundamenta Mathematicae (2023): 1-34.
- 2 César Corral, Osvaldo Guzmán, Carlos López-Callejas, Pourya Memarpanahi, Paul Szeptycki, and Stevo Todorčević. "Infinite dimensional sequential compactness: Sequential compactness based on barriers." arXiv preprint arXiv:2309.04397 (2023).
- 3 Wiesław Kubiś, and Paul Szeptycki. "On a topological Ramsey theorem." Canadian Mathematical Bulletin 66.1 (2023): 156-165.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Thank you!