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Definitions Some results Examples Some applications

High dimensional sequences

Definition
A sequence in X is a function f : ω → X .

An n-dimensional
sequence is a function f : [ω]n → X .

Definition
If M ∈ [ω]ω and f : [M]n → X , we say that f converges to x ∈ X if
for every x ∈ U ⊆ X open, there exists k ∈ ω such that
f ′′[M \ k]n ⊆ U.
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n-sequentially compact spaces

Definition (Kubis & Szeptycki)

A space X is n-sequentially compact, if for every function
f : [ω]n → X there is M ∈ [ω]ω such that f � [M]n converges to
some x ∈ X .

The case n = 2 was considered by M. Bojańczyk, E.
Kopczyński and S. Toruńczyk, where they show that compact
metric spaces are 2-sequentially compact and used this to
prove that compact metric semigroups have idempotents
naturally associated to the limits of a two dimensional
sequence f : [ω]2 → X .
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Barriers on ω

What is the natural equivalent to [ω]n for countable infinite
dimensions?

Definition
A family B ⊆ [ω]<ω is a barrier if

B is a ⊆-antichain and
for every M ∈ [ω]ω there exists b ∈ B an initial segment of M
(i.e., b v M).

We identify [ω]<ω with the set of increasing finite sequences of
natural numbers. Then let
T (B) = {s ∈ [ω]<ω : ∃b ∈ B (s ⊆ b)} ⊆ ω<ω.
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Barriers on ω

Definition
The rank of a barrier B, denoted by ρ(B), is the well founded rank
of ∅ in the tree T (B).

Examples of barriers

[ω]n is a barrier of rank n for every n ∈ ω .
S = {s ∈ [ω]<ω : |s| = ḿın(s) + 1} is a barrier of rank ω.

Given a barrier B on M ∈ [ω]ω and an infinite set N ∈ [M]ω, let
B|N = B ∩ P(N).
Notice that B|N is a barrier on N and ρ(B|N) ≤ ρ(B).
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Infinite dimensional sequential compactness

Definition
Let B be a barrier on M ∈ [ω]ω. A B-sequence in X is a function
f : B → X . We say that f converges to x ∈ X if for every
x ∈ U ⊆ X open, there exists k ∈ ω such that f [B|(M \ k)] ⊆ U.

Definition
A space is B-sequentially compact (for a barrier B on ω), if for
every B-sequence, there exists M ∈ [ω]ω such that f � (B|M)
converges to some x ∈ X . We say that X is α-sequentially compact
if it is B-sequentially compact for every barrier B on ω of rank α.
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Theorem (C., Guzmán, López-Callejas, Memarpanahi, Szeptycki,
Todorčević)

The following are equivalent:
X is α-sequentially compact,
X is B-sequentially compact for every “uniform” barrier of rank
α,
X is B-sequentially compact for some “uniform” barrier B of
rank α.

Uniformity is a combinatorial property for a barrier B, that ensures
that the rank of B does not decrease if we take an infinite
restriction B|M.
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Theorem
(Ramsey) Every finite space is n-sequentially compact for
every n ∈ ω.
(Nash-Williams) Every finite space is B-sequentially compact
for every barrier B.

Theorem (C., Guzmán, López-Callejas, Memarpanahi, Szeptycki,
Todorčević)

If α < β < ω1 and X is β-sequentially compact, then X is also
α-sequentially compact.

The case α, β ∈ ω was previously proved by Kubis and Szeptycki.
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Definition
If B is a barrier, then parB is the least size of a set of colorings of B
with no common almost monochromatic set.

The classical cardinal invariants coincide with this definition, i.e.,
parn = par[ω]n .

Theorem
(Blass) par1 = s,
(Blass) parn = par2 for every 1 < n ∈ ω,
(CGLMST) parB = par2 for every barrier B,
(Kubis & Szeptycki) par2 is the minimum κ such that 2κ is
not n-sequentially compact,
(CGLMST) par2 is the minimum κ such that 2κ is not
B-sequentially compact for every barrier B.
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ω1-sequentially compact spaces.

Notation: A space is ω1-sequentially compact if it is α-sequentially
compact for every α < ω1.

Theorem (CGLMST)

Every sequentially compact space of character less than b is
ω1-sequentially compact.

Again, the result for finite ordinals was previously proved by Kubis
and Szeptycki.

Theorem (C., Guzmán and López-Callejas)

The cardinal invariant b is characterized as the minimum character
of a sequentially compact space that is not 2-sequentially compact.
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Theorem (Todorčević)

Every compact bisequential space is ω1-sequentially compact.

Recall that X is bisequential at x if every ultrafilter converging to x
contains a countable family converging to x too. The space X is
bisequential if it is bisequential at every point.
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Theorem (Kubis & Szeptycki)

There is a sequentially compact space that is not 2-sequentially
compact.

Assuming the existence of a completely separable MAD family (e.g.,
under s ≤ a or c < ℵω), there is such an example that is Fréchet.
Under CH, for every n ∈ ω there is an n-sequentially compact space
that is not (n + 1)-sequentially compact.

Theorem (C., Guzmán, López-Callejas)

There is a Fréchet sequentially compact space that is not
2-sequentially compact. For every n ∈ ω, there is an n-sequentially
compact space that is not (n + 1)-sequentially compact if one
assumes any of the following:

b = c

♦(b) + d = ω1

s = b
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Theorem(CGLMST)

There is a compact and ω1-sequentially compact space that is not
bisequential.

Theorem(CGLMST)

Under b = c, there is, for each α < ω1, a space that is
β-sequentially compact for every β < α but fails to be
α-sequentially compact.

A more general result can be proved: There are two natural ideals
associated to a barrier B, namely FinB and Gc(B). Then if B and C
are two barriers and FINC �K Gc(B), there is a B-sequentially
compact space that is not C-sequentially compact.
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Some classes spaces that are ω1-sequentially compact

The following are ω1-sequentially compact:
Rosenthal compact spaces.

R-embeddable almost disjoint families.
Corson compacta.
Eberlein compacta defined from adequate families.

Corollary
If a space in any of the previous classes has a semigroup structure
with continuous multiplication, then it has a “nice” idempotent.
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Angelic spaces and the Ramsey property

Definition
A space X is Angelic if relatively countably compact subsets are
relatively compact and the closure of every relatively compact
subspace is Fréchet.

Definition (H. Knaust)

A space X has the Ramsey property if for every double sequence
{xn,m : n < m < ω} such that ĺımn→∞ ĺımm→∞ xn,m = x , the
function f : [ω]2 → X given by f ({n,m}) = xn,m also converges to
x .
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Angelic spaces with the Ramsey property

Theorem (Knaust)

Rosenthal and Valdivia compacta have the Ramsey property.

Rosenthal and Valdivia compactums are both Angelic spaces.
Knaust asked whether all angelic spaces have the Ramsey property.

Theorem (CGLMST)

There is (in ZFC) an angelic space without the Ramsey property.
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What’s next?

Can we construct our examples of α-sequentially compact
spaces that are not β-sequentially compact in ZFC?

What kind of angelic spaces have the Ramsey property? or
even better, are ω1-sequentially compact?
Applications to topological groups.
Applications to Banach spaces
(Currently working on) High dimensional versions of other kind
of compactness and convergence.



Definitions Some results Examples Some applications

What’s next?

Can we construct our examples of α-sequentially compact
spaces that are not β-sequentially compact in ZFC?
What kind of angelic spaces have the Ramsey property? or
even better, are ω1-sequentially compact?

Applications to topological groups.
Applications to Banach spaces
(Currently working on) High dimensional versions of other kind
of compactness and convergence.



Definitions Some results Examples Some applications

What’s next?

Can we construct our examples of α-sequentially compact
spaces that are not β-sequentially compact in ZFC?
What kind of angelic spaces have the Ramsey property? or
even better, are ω1-sequentially compact?
Applications to topological groups.

Applications to Banach spaces
(Currently working on) High dimensional versions of other kind
of compactness and convergence.



Definitions Some results Examples Some applications

What’s next?

Can we construct our examples of α-sequentially compact
spaces that are not β-sequentially compact in ZFC?
What kind of angelic spaces have the Ramsey property? or
even better, are ω1-sequentially compact?
Applications to topological groups.
Applications to Banach spaces

(Currently working on) High dimensional versions of other kind
of compactness and convergence.



Definitions Some results Examples Some applications

What’s next?

Can we construct our examples of α-sequentially compact
spaces that are not β-sequentially compact in ZFC?
What kind of angelic spaces have the Ramsey property? or
even better, are ω1-sequentially compact?
Applications to topological groups.
Applications to Banach spaces
(Currently working on) High dimensional versions of other kind
of compactness and convergence.



Definitions Some results Examples Some applications

References

1 César Corral, Osvaldo Guzmán, and Carlos López-Callejas.
“High-dimensional sequential compactness” Fundamenta
Mathematicae (2023): 1-34.

2 César Corral, Osvaldo Guzmán, Carlos López-Callejas, Pourya
Memarpanahi, Paul Szeptycki, and Stevo Todorčević. “Infinite
dimensional sequential compactness: Sequential compactness
based on barriers.” arXiv preprint arXiv:2309.04397 (2023).

3 Wiesław Kubiś, and Paul Szeptycki. “On a topological Ramsey
theorem.” Canadian Mathematical Bulletin 66.1 (2023):
156-165.



Definitions Some results Examples Some applications

Thank you!
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