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Injective Banach spaces
Definition

A Banach space E is injective if, for every Banach space X and
every subspace Y ⊂ X , every operator T : Y → E extends to an
operator T ′ : X → E .

Recall that, given a set Γ, we can form the following spaces.
• ℓ∞(Γ) is the space of all bounded functions f : Γ → R.
• c0(Γ) is the space of all functions f : Γ → R such that, for all
ε > 0, the set

{γ ∈ Γ | |f (γ)| > ε}
is finite.

ℓ∞ = ℓ∞(N), c0 = c0(N)

Fact

A Banach space E is injective iff it is a complemented subspace of
ℓ∞(Γ) for some set Γ, i.e., ℓ∞(Γ) ∼= E

⊕
X for some space X .



Injective Banach spaces
Definition

A Banach space E is injective if, for every Banach space X and
every subspace Y ⊂ X , every operator T : Y → E extends to an
operator T ′ : X → E .

Recall that, given a set Γ, we can form the following spaces.

• ℓ∞(Γ) is the space of all bounded functions f : Γ → R.
• c0(Γ) is the space of all functions f : Γ → R such that, for all
ε > 0, the set

{γ ∈ Γ | |f (γ)| > ε}
is finite.

ℓ∞ = ℓ∞(N), c0 = c0(N)

Fact

A Banach space E is injective iff it is a complemented subspace of
ℓ∞(Γ) for some set Γ, i.e., ℓ∞(Γ) ∼= E

⊕
X for some space X .



Injective Banach spaces
Definition

A Banach space E is injective if, for every Banach space X and
every subspace Y ⊂ X , every operator T : Y → E extends to an
operator T ′ : X → E .

Recall that, given a set Γ, we can form the following spaces.
• ℓ∞(Γ) is the space of all bounded functions f : Γ → R.

• c0(Γ) is the space of all functions f : Γ → R such that, for all
ε > 0, the set

{γ ∈ Γ | |f (γ)| > ε}
is finite.

ℓ∞ = ℓ∞(N), c0 = c0(N)

Fact

A Banach space E is injective iff it is a complemented subspace of
ℓ∞(Γ) for some set Γ, i.e., ℓ∞(Γ) ∼= E

⊕
X for some space X .



Injective Banach spaces
Definition

A Banach space E is injective if, for every Banach space X and
every subspace Y ⊂ X , every operator T : Y → E extends to an
operator T ′ : X → E .

Recall that, given a set Γ, we can form the following spaces.
• ℓ∞(Γ) is the space of all bounded functions f : Γ → R.
• c0(Γ) is the space of all functions f : Γ → R such that, for all
ε > 0, the set

{γ ∈ Γ | |f (γ)| > ε}
is finite.

ℓ∞ = ℓ∞(N), c0 = c0(N)

Fact

A Banach space E is injective iff it is a complemented subspace of
ℓ∞(Γ) for some set Γ, i.e., ℓ∞(Γ) ∼= E

⊕
X for some space X .



Injective Banach spaces
Definition

A Banach space E is injective if, for every Banach space X and
every subspace Y ⊂ X , every operator T : Y → E extends to an
operator T ′ : X → E .

Recall that, given a set Γ, we can form the following spaces.
• ℓ∞(Γ) is the space of all bounded functions f : Γ → R.
• c0(Γ) is the space of all functions f : Γ → R such that, for all
ε > 0, the set

{γ ∈ Γ | |f (γ)| > ε}
is finite.

ℓ∞ = ℓ∞(N), c0 = c0(N)

Fact

A Banach space E is injective iff it is a complemented subspace of
ℓ∞(Γ) for some set Γ, i.e., ℓ∞(Γ) ∼= E

⊕
X for some space X .



Injective Banach spaces
Definition

A Banach space E is injective if, for every Banach space X and
every subspace Y ⊂ X , every operator T : Y → E extends to an
operator T ′ : X → E .

Recall that, given a set Γ, we can form the following spaces.
• ℓ∞(Γ) is the space of all bounded functions f : Γ → R.
• c0(Γ) is the space of all functions f : Γ → R such that, for all
ε > 0, the set

{γ ∈ Γ | |f (γ)| > ε}
is finite.

ℓ∞ = ℓ∞(N), c0 = c0(N)

Fact

A Banach space E is injective iff it is a complemented subspace of
ℓ∞(Γ) for some set Γ,

i.e., ℓ∞(Γ) ∼= E
⊕

X for some space X .



Injective Banach spaces
Definition

A Banach space E is injective if, for every Banach space X and
every subspace Y ⊂ X , every operator T : Y → E extends to an
operator T ′ : X → E .

Recall that, given a set Γ, we can form the following spaces.
• ℓ∞(Γ) is the space of all bounded functions f : Γ → R.
• c0(Γ) is the space of all functions f : Γ → R such that, for all
ε > 0, the set

{γ ∈ Γ | |f (γ)| > ε}
is finite.

ℓ∞ = ℓ∞(N), c0 = c0(N)

Fact

A Banach space E is injective iff it is a complemented subspace of
ℓ∞(Γ) for some set Γ, i.e., ℓ∞(Γ) ∼= E

⊕
X for some space X .



Injective dimension

The category of Banach spaces has enough injective objects: every
Banach space embeds as a closed subspace of an injective Banach
space.

Given a Banach space X , we can then form an injective
resolution of X , i.e., an exact sequence of maps

0 → X → E0 → E1 → E2 → · · ·

such that each Ei is injective. (Recall that exactness is the
requirement that the image of each map equals the kernel of the
following map.) The injective dimension of X is the least i ∈ N
such that there exists an injective resolution of the form

0 → X → E0 → · · · → Ei → 0 → · · ·

or ∞ if no such i exists.
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Question

What is the injective dimension of c0?

Proposition (Phillips)

c0 is not injective.

Proof sketch.

Consider the short exact sequence

0 → c0
ι−→ ℓ∞

π−→ ℓ∞/c0 → 0.

If c0 were injective, this sequence would split, i.e., there would be a
continuous linear map σ : ℓ∞/c0 → ℓ∞ such that π ◦ σ = id. Such
a map σ would select an element from each equivalence class in
ℓ∞/c0.
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Proof sketch (cont.)

Let A ⊆ [ω]ω be an uncountable almost disjoint family.

For each
A ∈ A, let 1A be its characteristic function. Then, for all finite
nonempty B ⊆ A, ∥∥∥∥∥∑

A∈B
[1A]

∥∥∥∥∥
ℓ∞/c0

= 1.

For each A ∈ A, fix mA ∈ A such that σ([1A])(mA) > 0.99. Find
an m ∈ ω and an uncountable A′ ⊆ A such that mA = m for all
A ∈ A′. Now, for all finite nonempty B ⊆ A′, we have

σ

(∑
A∈B

[1A]

)
(m) > 0.99|B|.

Thus, σ takes elements of the unit ball of ℓ∞/c0 to elements of ℓ∞

of arbitrarily high norm, contradicting the fact that σ is continuous
(and hence bounded).
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One more step
We can do better, using the following theorem of Rosenthal.

Theorem (Rosenthal)

If E is an injective Banach space, Γ is a set, and E contains a
subspace isomorphic to c0(Γ), then it contains a subspace
isomorphic to ℓ∞(Γ).

Corollary (Amir)

ℓ∞/c0 is not injective.

Proof.

In the notation of the previous proof, {[1A] | A ∈ A} generates a
copy of c0(A) in ℓ∞/c0. We can take |A| = 2ℵ0 . If ℓ∞/c0 were
injective, it would then contain a copy of ℓ∞(2ℵ0), but it is too
small for this.
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Injective dimension can be reformulated as follows.

Given any
injective resolution

0
ι−1−−→ X = E−1

ι0−→ E0
ι1−→ E1

ι2−→ · · · ,

the injective dimension of X is the least i such that Ei−1/im(ιi−1)
is injective.

Corollary

The injective dimension of c0 is at least 2.

Proof.

c0 has an injective resolution beginning

0 → c0 → ℓ∞ → · · · .
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Generalized AD families

Definition

Let K be a topological space (usually compact, Hausdorff, totally
disconnected, not extremally disconnected).

A generalized almost
disjoint family in K is a collection A of subsets of K such that:

1 For all finite, nonempty B ⊆ A, the set⋃
B

is a regular open subset of K that is not closed.

2 For all distinct A,B ∈ A, the set A ∩ B is closed.

If K = ω + 1, then a generalized almost disjoint family in K is
simply a classical (nontrivial) almost disjoint family A ⊆ [ω]ω.
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Function spaces

If K is a compact Hausdorff space, then C (K ) is the Banach space
of continuous functions from K to R.

Fact

If K is extremally disconnected, then C (K ) is injective.

If D is a dense subset of K , then C (K ) embeds as a closed
subspace of ℓ∞(D). This leads us to be interested in quotient
spaces of the form

ℓ∞(D)/C (K ).
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N∗

Recall that N∗ = βN \ N is the Čech-Stone remainder of N.

Concretely, this is the space of nonprincipal ultrafilters on ω.

Theorem (LH-Schrittesser)

If CH holds (or just b = c), then N∗ contains a generalized AD
family of cardinality 2ℵ1 .

Proof sketch.

Build a sequence ⟨ax | x ∈ <ω12⟩ of elements of [ω]ω such that

1 for all x ⊑ y ∈ <ω12, ax ⊊∗ ay ;

2 for all incompatible x , y ∈ <ω12, ax ∩ ay =∗ ax∧y ;

3 for all b ∈ [ω]ω, either

1 b ⊆∗ ax0 ∪ . . . ∪ axn for some x0, . . . , xn ∈ <ω12; or
2 for all x0, . . . , xn ∈ <ω12, there is y ∈ <ω12 incompatible with

each xi such that |ay ∩ (b \ (ax0 ∪ . . . ∪ axn)| = ℵ0.
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Proof sketch (cont.)

Now every branch f ∈ ω12 through <ω12 determines a
⊊∗-increasing sequence ⟨af ↾α | α < ω1⟩ of elements of [ω]ω.

Let
Af be the collection of all U ∈ N∗ for which there exists α < ω1

such that af ↾α ∈ U . Then {Af | f ∈ ω12} is a generalized almost
disjoint family.
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Back to c0

Fact

ℓ∞/c0 is isomorphic to C (N∗).

Also, N∗ has a dense subset D of cardinality 2ℵ0 . Therefore, c0 has
an injective resolution beginning

0 → c0
ι0−→ ℓ∞

ι1−→ ℓ∞(2ℵ0) → · · ·

such that
ℓ∞(2ℵ0)/im(ι1) ∼= ℓ∞(D)/C (N∗).

Thus, if ℓ∞(D)/C (N∗) is not injective, then the injective
dimension of c0 is at least 3.
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Theorem

If CH holds, then the injective dimension of c0 is at least 3.

Proof.

If CH holds, then N∗ contains a generalized AD family of size 2ℵ1 .
Thus, ℓ∞(D)/C (N∗) contains a copy of c0(2

ℵ1). If ℓ∞(D)/C (N∗)
were injective, then it would contain a copy of ℓ∞(2ℵ1), but it is
too small for this, since

|ℓ∞(2ℵ1)| = 22
ℵ1

but
|ℓ∞(D)/C (N∗)| = 22

ℵ0 .
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Thank you!


