
Baire ∆1-spaces and Asplund spaces Ck(X ) over

∆1-spaces X

JERZY KA�KOL

A. MICKIEWICZ UNIVERSITY, POZNA�

Set Theory and Topology, Hejnice, Jan. 27 � Feb. 3,

2024

JERZY KA�KOL Baire ∆1-spaces and Asplund spaces Ck (X ) over ∆1-spaces X



Let's put together some equivalent conditions describing
Banach spaces E which are Asplund spaces.

Theorem 1 (Deville�Godefroy�Zizler, Asplund,
Namioka�Phelps)

For a Banach space E the following are equivalent:

1 E is an Asplund space.

2 Every separable Banach subspace of E has separable dual.

3 Every equivalent norm on E is Fréchet di�erentiable at
some point of E .

4 The dual of E is a (DA)-space.
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1 A topological space X is scattered if each nonempty
subset A of X contains an isolated point in A.

Theorem 2 (Rudin)

If K is a scattered compact space, then the dual C (K )′ is
isometric to ℓ1(|K |).

Theorem 3 (Namioka�Phelps)

A compact space K is scattered i� C (K ) is Asplund.

Theorem 4 (Jayne�Rogers�Ribarska, Namioka)

A Banach space E is Asplund i� (BE ′ ,w ∗) is fragmented by
the metric generated by the dual norm.
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1 Let X be a Tychono� space. We shall say that a Ck(X )

(with the compact-open topology) is an Asplund space if
every separable Banach subspace of Ck(X ) has separable
dual.

Problem 5
Characterize Ck(X ) as being an Asplund space by a suitable
property of a Tychono� space X .

2 We extend Namioka-Phelps theorem for several classes of
non-compact Tychono� spaces (including ω-bounded
spaces) X . The concept of ∆1-spaces recently introduced
has been shown to be applicable for this research.

3 Similar locally convex versions of other Banach spaces
properties (like (NP)-property) were introduced and
studied by Komisarchik and Megrelishvili (2023).
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1 A topological space X is ω-bounded if every countable
subset of X is relatively compact.

2 ω-bounded ⇒ countably compact ⇒ pseudocompact.
3 X is pseudocompact if every continuous real-valued

function on X is bounded.
4 Every ω-bounded space X is Warner bounded, i.e. for

each sequence (Gn)n of pairwise disjoint open sets there
exists compact K ⊂ X with {m ∈ ω : K ∩ Gm ̸= ∅} is
in�nite.

5 Ck(X ) has a fundamental sequence of bounded sets i� X

is Warner bounded (Warner).
6 ω-bounded ⇒ Warner bounded; the converse fails as the

space βN \ {p} for p ∈ N \ N shows.
7 If X is k-scattered, then Ck(X ) is a (df )-space (in sense

of Jarchow) i� X is ω-bounded (Mazon).
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Theorem 6 (Ka�kol�Kurek�Leiderman)

Let X be ω-bounded or �ech-complete. TFAE:

1 X is scattered.

2 Every compact subset of X is scattered.

3 X is a ∆1-space.

4 Ck(X ) is Asplund.

5 Ck(X ) does not contain a copy of ℓ1.

Recall the following two concepts; some discussion below.

De�nition 7 (Ka�kol�Leiderman)

A topological space X is a ∆-space (∆1-space) if for every
decreasing sequence (Dn)n of (countable) subsets of X with⋂

n Dn = ∅, there is a decreasing sequence (Vn)n of open
subsets of X , Dn ⊂ Vn for every n ∈ ω and

⋂
n Vn = ∅.
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Theorem 8 (Ka�kol�Kurek�Leiderman)

A pseudocompact X is a ∆1-space i� every countable set is
scattered. If X is a Cech-complete space, then X is scattered
i� X is in ∆1.

Corollary 9

Let X be a compact space. The following assertions are
equivalent: (i) The space X is a ∆1-space. (ii) The space X is
scattered. (iii) The space Ck(X ) is an Asplund space.

Problem 10
Let X be a compact space. Find a "nice" property P on C (X )

or C (X )′ under which the following statement holds true. X is
a ∆-space i� C (X ) is Asplund and C (X ) (or C (X )′) satis�es
property P .
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1 The class of �ech-complete spaces is "disjoint" from the
class of ω-bounded spaces, so both cases are mutually
complementary describing the Asplund property for
Ck(X ).

2 In Theorem 6 the assumption on X cannot be removed.
Indeed, Juhasz and van Mill constructed a countably
compact (not ω-bounded and) not scattered space
X ⊂ βω \ ω with all countable subsets scattered, so every
compact subset of X is scattered.

3 Nevertheless, the discussed space X is not Warner
bounded but it is a ∆1-space.
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Theorem 6 motivates the following sharper example due to
Marciszewski.

Example 11

There exists a Warner bounded set X such that X is not
ω-bounded and every compact subset of X is scattered but X
is not scattered.
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1 De�nition of a ∆-set in R due to Reed, van Douwen

.

2 Q-set X ⊂ R: each subset of X is Gδ.

3 X ⊂ R is a λ-set if each countable subset of X is Gδ in X .

4 Q-set ⇒ ∆-set ⇒ λ-set ⇒ ∆1-set.

5 If X is an uncountable Q-set, then |X | < c ; so under
(CH) there are no uncountable Q-sets (Hausdor�).

6 (MA) ∧(∼ (CH)): X ⊂ R of cardinality less than c is a
Q-set (Martin-Solovay (1970), M.E. Rudin (1977)).

7 Uncountable λ-sets in ZFC exist (Kuratowski), so
uncountable separable metrizable ∆1-spaces exist in ZFC.

8 No ∆-set X has cardinality c (Przymusi«ski (1977)).
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1 Whether it is consistent that there is a ∆-set which is not
a Q-set seems to be still not well understood.

2 Let's recall a few facts about ∆-spaces (J.K-Leiderman):

3 Every metrizable scattered space is a ∆-space.

4 Compact ∆-spaces are scattered but [0, ω1] is not in ∆.

5 A compact Eberlein space is a ∆-space i� it is scattered.

6 Every pseudocompact ∆1-space with countable tightness
is scattered (J.K.-Kurka-Leiderman)

.
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On ω-resolvable ∆-spaces and ∆1-spaces

1 X is crowded, if X does not admit isolated points; X is
resolvable (ω-resolvable), if it can be partitioned into 2
(countably many) dense subsets (Hewitt, Ceder).

2 El'kin and Malykhin published a number of papers on
these subjects and their connections with various
topological problems.

3 One of the problems considered by Malykhin refers to the
existence of irresolvable spaces (i.e. crowded not
resolvable) satisfying the Baire Category Theorem. Under
L=V (i.e. every set is constructible) there is no Baire
irresolvable space (Kunen-Szyma«ski-Tall).

4 (V=L) ⇒ (AC) ∧ (GCH).
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1 Above results may suggest: In which classes of spaces the
(hereditary) Baire property of a ∆1-space X implies that
X is scattered or has isolated points?

2 Every crowded regular countably compact space is
ω-resolvable (Comfort).

Proposition 12 (Szeptycki�Leiderman)

If X is Baire and ω-resolvable, then X is not a ∆-space.
Hence, a crowded Lindelöf Baire space is not a ∆-space.

Problem 13 (Leiderman-Szeptycki)

Does every Baire ∆-space have an isolated point?

3 Consider some cases for which this problem has a positive
answer.
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Hence, a crowded Lindelöf Baire space is not a ∆-space.

Problem 13 (Leiderman-Szeptycki)

Does every Baire ∆-space have an isolated point?

3 Consider some cases for which this problem has a positive
answer.
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1 Under Souslin hypothesis (SH) (i.e. there are no Souslin
lines) if X is crowded and Baire with the cellularity
c(X ) ≤ ℵ0, then X is ω-resolvable (Casarrubias-Segura,
Hernandez-Hernandez, Tamaris-Mascar) (Recall that
(MA) ∧ (∼ (CH)) ⇒ (SH).)

Corollary 14

(SH) If X is a Baire space with c(X ) ≤ ℵ0 and X is a
∆-space, then X has isolated points.

2 The axiom of constructibility, V = L, implies that every
Baire space without isolated points is ω-resolvable
(Pavlov). Hence (under V = L) every ∆-space which is
Baire has isolated points.
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1 (under (MA)) the following statement holds
(Casarrubias-Segura, Hernandez-Hernandez,
Tamaris-Mascar): Crowded X is ω-resolvable if it
satis�es one of the following properties P :

2 X contains a π-network |U| < c of in�nite sets.

3 χ(X ) < c.

4 X is a Baire space and c(X ) ≤ ℵ0.

Corollary 15

(MA) If X is a Baire space which is a ∆-space and that
satis�es one of the mentioned above properties P , then X has
isolated points.
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1 By Casarrubias it follows that every crowded Baire
topological space with countable tightness is ω-resolvable
space. This implies that:

Corollary 16

Every Baire space which is a ∆-space with countable tightness
has isolated points.

2 Every regular countably compact space without isolated
points is ω-resolvable (Comfort). This implies:

Example 17

There exist crowded countably compact ∆1-spaces not
∆-spaces which are ω-resolvable.
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1 This shows that extending Proposition 12 to ∆1-spaces
requires some extra assumption on a Baire space X .

2 Recall that every ω-bounded space is countably compact
and every ω-bounded space that is a ∆1-space is
scattered.

Problem 18 (J.K.-Leiderman-Tkachuk)

Does a metrizable Baire ∆1-space admit isolated points?

3 Dealing with ∆1-spaces we propose the following
extension of Proposition 12 as follows.

Theorem 19 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a
∆1-space. Hence, a separable Baire space which is a ∆1-space
has isolated points.

4 Separability of X cannot be removed.

JERZY KA�KOL Baire ∆1-spaces and Asplund spaces Ck (X ) over ∆1-spaces X



1 This shows that extending Proposition 12 to ∆1-spaces
requires some extra assumption on a Baire space X .

2 Recall that every ω-bounded space is countably compact
and every ω-bounded space that is a ∆1-space is
scattered.

Problem 18 (J.K.-Leiderman-Tkachuk)

Does a metrizable Baire ∆1-space admit isolated points?

3 Dealing with ∆1-spaces we propose the following
extension of Proposition 12 as follows.

Theorem 19 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a
∆1-space. Hence, a separable Baire space which is a ∆1-space
has isolated points.

4 Separability of X cannot be removed.

JERZY KA�KOL Baire ∆1-spaces and Asplund spaces Ck (X ) over ∆1-spaces X



1 This shows that extending Proposition 12 to ∆1-spaces
requires some extra assumption on a Baire space X .

2 Recall that every ω-bounded space is countably compact
and every ω-bounded space that is a ∆1-space is
scattered.

Problem 18 (J.K.-Leiderman-Tkachuk)

Does a metrizable Baire ∆1-space admit isolated points?

3 Dealing with ∆1-spaces we propose the following
extension of Proposition 12 as follows.

Theorem 19 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a
∆1-space. Hence, a separable Baire space which is a ∆1-space
has isolated points.

4 Separability of X cannot be removed.

JERZY KA�KOL Baire ∆1-spaces and Asplund spaces Ck (X ) over ∆1-spaces X



1 This shows that extending Proposition 12 to ∆1-spaces
requires some extra assumption on a Baire space X .

2 Recall that every ω-bounded space is countably compact
and every ω-bounded space that is a ∆1-space is
scattered.

Problem 18 (J.K.-Leiderman-Tkachuk)

Does a metrizable Baire ∆1-space admit isolated points?

3 Dealing with ∆1-spaces we propose the following
extension of Proposition 12 as follows.

Theorem 19 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a
∆1-space. Hence, a separable Baire space which is a ∆1-space
has isolated points.

4 Separability of X cannot be removed.

JERZY KA�KOL Baire ∆1-spaces and Asplund spaces Ck (X ) over ∆1-spaces X



1 This shows that extending Proposition 12 to ∆1-spaces
requires some extra assumption on a Baire space X .

2 Recall that every ω-bounded space is countably compact
and every ω-bounded space that is a ∆1-space is
scattered.

Problem 18 (J.K.-Leiderman-Tkachuk)

Does a metrizable Baire ∆1-space admit isolated points?

3 Dealing with ∆1-spaces we propose the following
extension of Proposition 12 as follows.

Theorem 19 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a
∆1-space. Hence, a separable Baire space which is a ∆1-space
has isolated points.

4 Separability of X cannot be removed.

JERZY KA�KOL Baire ∆1-spaces and Asplund spaces Ck (X ) over ∆1-spaces X



1 This shows that extending Proposition 12 to ∆1-spaces
requires some extra assumption on a Baire space X .

2 Recall that every ω-bounded space is countably compact
and every ω-bounded space that is a ∆1-space is
scattered.

Problem 18 (J.K.-Leiderman-Tkachuk)

Does a metrizable Baire ∆1-space admit isolated points?

3 Dealing with ∆1-spaces we propose the following
extension of Proposition 12 as follows.

Theorem 19 (J.K.-Leiderman-Tkachuk)

If X is a separable crowded Baire space, then X is not a
∆1-space. Hence, a separable Baire space which is a ∆1-space
has isolated points.

4 Separability of X cannot be removed.JERZY KA�KOL Baire ∆1-spaces and Asplund spaces Ck (X ) over ∆1-spaces X



1 There exist crowded countably compact spaces X whose
all closed separable subsets admit isolated points.

Problem 20 (J.K.-Leiderman-Tkachuk)

Are separable countably compact spaces X scattered if every
countable subset of X is scattered?

2 Examples of count. comp. spaces (Example 17) used
weak P-points (are not in the closure of any countable set
to which do not belong). Separable spaces lack weak
P-points, so this procedure may fail for separable spaces.

Problem 21
Do there exist Hausdor� non-compact separable countably
compact (even �rst countable) ∆1-spaces?

3 Do there exist in (ZFC) non-normal separable �rst
countable countably compact Hausdor� spaces (Nyikos)?
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