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Throughout, L denotes a relational language, K a Fräıssé class
of L-structures, K = Flim(K).

Definition

Given L-structures A ≤ B ≤ C and 0 < k, r < ω, we write
C→ (B)Ar,k if whenever γ : Emb(A,C)→ r is a coloring, there
is x ∈ Emb(B,C) with |{γ(x ◦ f) : f ∈ Emb(A,B)}| ≤ k.

For instance, given A ∈ K, we have SRD(A,K) = t < ω iff for
every A ≤ B ∈ K and 0 < r < ω, there is B ≤ C ∈ K such that
C→ (B)Ar,t.

Equivalently, this happens iff for every such B and r, we have
K→ (B)Ar,t.

Andy Zucker BRD dynamics III



Throughout, L denotes a relational language, K a Fräıssé class
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Definition

Fix a countably infinite L-structure M and some finite A ≤M.
The big Ramsey degree of A in M, denoted BRD(A,M), is the
least t < ω (if it exists) so that for every 0 < r < ω, we have
M→ (M)Ar,t. Otherwise put BRD(A,M) =∞.

If K is a Fräıssé class with limit K and A ∈ K, we can write
BRD(A,K) for BRD(A,K). Say K has finite BRD if
BRD(A,K) is always finite.

M need not be ultrahomogeneous! If M = 〈ω,<〉, the ordinary
infinite Ramsey theorem can be phrased as saying that for any
finite linear order A, we have BRD(A,M) = 1.

For Fräıssé classes, (Hjorth 2008) shows that BRD(A,K) ≡ 1
implies Aut(K) trivial. So no “Big Ramsey Property.”
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Analogues of thick and syndetic for BRD:

Definition

Fix a countably infinite L-structure M and some finite A ≤M.

1 A subset S ⊆ Emb(A,M) is large if there is
η ∈ Emb(M,M) with η ◦ Emb(A,M) ⊆ S.

2 A subset T ⊆ Emb(A,M) is unavoidable if Emb(A,M) \ S
is not large.

3 A finite coloring of Emb(A,M) is unavoidable if every
color class is unavoidable.

In particular, note that if t < ω, BRD(A,M) ≥ t iff there is an
unavoidable t-coloring of Emb(A,M).
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Even for examples that were very simple when considering
small Ramsey degrees, things become much more complicated
for big Ramsey degrees.

Consider K = 〈Q, <〉. (Sierpiński 1933) proves that
BRD(2,Q) ≥ 2.

Enumerate Q = {qn : n < ω}. Identify [Q]2 with Emb(2,Q).
Given qm < qn ∈ Q, color {qm, qn} depending on whether m < n
or n < m.

Fact (Exercise 1)

This 2-coloring of Emb(2,Q) is unavoidable.
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BRD(2,Q) ≥ 2.

Enumerate Q = {qn : n < ω}. Identify [Q]2 with Emb(2,Q).
Given qm < qn ∈ Q, color {qm, qn} depending on whether m < n
or n < m.

Fact (Exercise 1)

This 2-coloring of Emb(2,Q) is unavoidable.

Andy Zucker BRD dynamics III



Remarkably enough, (Galvin 1968) proves that BRD(2,Q) = 2.

Laver (unpublished, early 1970s) proves that BRD(n,Q) is
finite for every n < ω using what would more-or-less become
Milliken’s tree theorem (Milliken 1979).

(D. Devlin 1979) characterizes the exact value of BRD(n,Q) for
every n < ω. This is the sequence of odd tangent numbers,
which goes 1, 2, 16, 272, ...

More informative than these numbers are the objects that they
count, which are trees I like to call Devlin trees (see also Joyce
trees)
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A subtree of 2<ω is a downwards closed subset. If T ⊆ 2<ω,
write T (n) := 2n ∩ T .

Definition

A Devlin tree is a subtree T ⊆ 2<ω satisfying:

1 Every n < ω with T (n) 6= ∅ has exactly one “interesting
event,” the choices being:

A splitting node, some t ∈ T (n) with
{t_0, t_1} ⊆ T (n+ 1). All s ∈ T (n) \ {t} extend by 0.
A coding node, some t ∈ T which terminates. All
s ∈ T (n) \ {t} extend by 0.

2 Coding nodes are upwards cofinal.

BRD(n,Q) = the number of Devlin trees with n coding nodes.
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A small sample of BRD history after Devlin:

(Sauer 2006): The class of finite graphs has finite BRD.
Uses Milliken theorem.

(Laflamme-Sauer-Vuksanovic 2006): Exact characterization
of BRD in class of finite graphs. Not numerical, but in
terms of objects I call LSV trees. Exact same as Devlin
trees, but for coding levels, the other nodes can choose one
of 0 or 1 to extend. See (Larson 2008) for numbers.

(Dobrinen 2020): The class of finite triangle-free graphs
has finite BRD. Required new techniques using coding
trees and forcing inspired by Harrington’s proof of
Milliken’s theorem. Similar techniques for k-clique free.

(Hubička 2020+) The class of finite posets has finite BRD.
Uses Carlson-Simpson theorem. Forcing-free proof for
triangle-free graphs.
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(Z. 2022): All finitely-constrained binary free
amalgamation classes. These are classes in a finite
relational language with only unary and binary symbols
defined by forbidding a finite set of finite irreducible
structures, e.g. finite k-clique-free graphs, finite directed
graphs forbidding cyclic triangles, finite graphs with
red/blue edges forbidding monochromatic triangles, etc.
Generalized and streamlined Dobrinen’s techniques by
introducing aged coding trees.

(Balko-Chodounský-Dobrinen-Hubička-Konečný-Vena-Z.
2022+) Exact characterization of BRD for
finitely-constrained binary free amalgamation classes.
Again by defining suitable tree-like objects, but now with a
third “interesting event,” an age change.
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Fix a Fräıssé class K with limit K. Recall that given
A ≤ B ∈ K and finite colorings γA, γB of EmbA,EmbB,
respectively, we say γA � γB iff whenever f ∈ Emb(A,B) and
x, y ∈ EmbB satisfy γB(x) = γB(y), then γA(x ◦ f) = γA(y ◦ f).

Recall that if each A ∈ K has SRD(A,K) = tA < ω, then there
are {γA : A ∈ [K]<ω} with each γA a syndetic tA-coloring and
with γA � γB whenever A ≤ B.

Question: If each A ∈ K has BRD(A,K) = tA < ω, then are
there {γA : A ∈ [K]<ω} with each γA an unavoidable
tA-coloring and with γA � γB whenever A ≤ B?

Problem: Colorings in orbit closure of unavoidable tA-coloring
need not be unavoidable tA-colorings!
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When we can’t prove something, just define it:

Definition (Z. 2019)

We say that K admits a big Ramsey structure if K has finite
BRDs and there are {γA : A ∈ [K]<ω} with each γA an
unavoidable BRD(A,K)-coloring with γA � γB when A ≤ B.

Examples: Literally every example where BRD have been fully
characterized!

Question: Why? For Fräıssé classes, does finite BRDs imply
existence of BRS?
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Question: Is there an analogue of KPT correspondence for big
Ramsey degrees?

The dream: To each topological group G, assign a G-flow D(G)
characterized by a suitable universal property up to
isomorphism. When G = Aut(K), then D(G) should be
metrizable iff K has finite big Ramsey degrees.

First attempt: completion flows. To each topological group, let
Ĝ denote its left completion. Always a monoid containing G.

Examples: For G locally compact, Ĝ = G. For G = Aut(K), we
have Ĝ ∼= EmbK.
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Ĝ denote its left completion. Always a monoid containing G.

Examples: For G locally compact, Ĝ = G. For G = Aut(K), we
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Whenever X is a G-flow, the action extends to a continuous
monoid action X × Ĝ→ X.

Definition

A completion flow is a G-flow X containing a point x ∈ X with
the property that for any η ∈ Ĝ, then x · η has dense orbit.

Examples: All minimal flows, but can be non-minimal. For
instance, the orbit closure of Devlin trees coding Q. More
generally, the orbit closure of any big Ramsey structure.

Andy Zucker BRD dynamics III



Whenever X is a G-flow, the action extends to a continuous
monoid action X × Ĝ→ X.
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Theorem (Z. 2019)

Suppose G = Aut(K) and K admits a big Ramsey structure.
Then there exists a universal completion flow, a completion flow
which factors onto all others. This flow is unique up to
isomorphism.

Drawbacks:

1 Want something that works for finite BRD without
necessarily assuming a BRS.

2 Unclear if universal completion flows exist for general
topological groups.

3 Even if G has a universal completion flow, metrizability is
used in the proof of uniqueness.
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Second attempt: Note that we can identify Ĝ ⊆ Sa(G) with
{p ∈ Sa(G) : ∀U∈NG ∃g∈G (gU ∈ p)}.

The compact left-topological semigroup structure on Ĝ gives us
a left action of Ĝ on Sa(G) which is not jointly continuous, but
for each η ∈ Ĝ, λη : Sa(G)→ Sa(G) is an injective G-map.
Write η·Sa(G) for the image G-flow.

We consider subflows X ⊆ Sa(G) minimal with respect to the
property that for some net (ηi)i∈I from Sa(G),
X = limi ηi·Sa(G) in the Vietoris topology. In BRS case, this
recovers the universal completion flow.

Problem: Such X likely not unique up to isomorphism in
general. But they are unique up to weak equivalence.
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for each η ∈ Ĝ, λη : Sa(G)→ Sa(G) is an injective G-map.
Write η·Sa(G) for the image G-flow.

We consider subflows X ⊆ Sa(G) minimal with respect to the
property that for some net (ηi)i∈I from Sa(G),
X = limi ηi·Sa(G) in the Vietoris topology. In BRS case, this
recovers the universal completion flow.

Problem: Such X likely not unique up to isomorphism in
general. But they are unique up to weak equivalence.

Andy Zucker BRD dynamics III



Definition (Z. 2024+)

Given a topological group G and G-flows X and Y , we say
thatX is weakly contained in Y if there are a G-flow Z and a
net (Xi)i∈I of subflows of Z, all Xi

∼= X, and limiXi exists and
is isomorphic to Y . Weak equivalence is then just weak
containments in each direction.

Subtlety: Not at all clear that weak containment is a pre-order
or that weak equivalence is an equivalence relation! Exhibiting
large families of topological groups and G-flows for which this
holds takes significant work.
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Thanks!
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