Big Ramsey degrees, structures, dynamics III

Andy Zucker Department of Pure Mathematics University of Waterloo

January/February 2024 Winter School Hejnice, Czech Republic

■ Big Ramsey degrees: history and examples.

- Big Ramsey degrees: history and examples.
- Big Ramsey structures.

- Big Ramsey degrees: history and examples.
- Big Ramsey structures.
- Completion flows.

- Big Ramsey degrees: history and examples.
- Big Ramsey structures.
- Completion flows.
- A dynamical object without BRS? When BRD is infinite?

Throughout, \mathcal{L} denotes a relational language, \mathcal{K} a Fraïssé class of \mathcal{L} -structures, $\mathbf{K} = \text{Flim}(\mathcal{K})$.

Definition

Given \mathcal{L} -structures $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$ and $0 < k, r < \omega$, we write $\mathbf{C} \rightarrow (\mathbf{B})_{r,k}^{\mathbf{A}}$ if whenever $\gamma \colon \operatorname{Emb}(\mathbf{A}, \mathbf{C}) \rightarrow r$ is a coloring, there is $x \in \operatorname{Emb}(\mathbf{B}, \mathbf{C})$ with $|\{\gamma(x \circ f) : f \in \operatorname{Emb}(\mathbf{A}, \mathbf{B})\}| \leq k$.

Throughout, \mathcal{L} denotes a relational language, \mathcal{K} a Fraïssé class of \mathcal{L} -structures, $\mathbf{K} = \text{Flim}(\mathcal{K})$.

Definition

Given \mathcal{L} -structures $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$ and $0 < k, r < \omega$, we write $\mathbf{C} \rightarrow (\mathbf{B})_{r,k}^{\mathbf{A}}$ if whenever $\gamma \colon \operatorname{Emb}(\mathbf{A}, \mathbf{C}) \rightarrow r$ is a coloring, there is $x \in \operatorname{Emb}(\mathbf{B}, \mathbf{C})$ with $|\{\gamma(x \circ f) : f \in \operatorname{Emb}(\mathbf{A}, \mathbf{B})\}| \leq k$.

For instance, given $\mathbf{A} \in \mathcal{K}$, we have $\operatorname{SRD}(\mathbf{A}, \mathcal{K}) = t < \omega$ iff for every $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and $0 < r < \omega$, there is $\mathbf{B} \leq \mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \to (\mathbf{B})_{r,t}^{\mathbf{A}}$. Throughout, \mathcal{L} denotes a relational language, \mathcal{K} a Fraïssé class of \mathcal{L} -structures, $\mathbf{K} = \text{Flim}(\mathcal{K})$.

Definition

Given \mathcal{L} -structures $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$ and $0 < k, r < \omega$, we write $\mathbf{C} \rightarrow (\mathbf{B})_{r,k}^{\mathbf{A}}$ if whenever $\gamma \colon \operatorname{Emb}(\mathbf{A}, \mathbf{C}) \rightarrow r$ is a coloring, there is $x \in \operatorname{Emb}(\mathbf{B}, \mathbf{C})$ with $|\{\gamma(x \circ f) : f \in \operatorname{Emb}(\mathbf{A}, \mathbf{B})\}| \leq k$.

For instance, given $\mathbf{A} \in \mathcal{K}$, we have $\operatorname{SRD}(\mathbf{A}, \mathcal{K}) = t < \omega$ iff for every $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and $0 < r < \omega$, there is $\mathbf{B} \leq \mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \to (\mathbf{B})_{r,t}^{\mathbf{A}}$.

Equivalently, this happens iff for every such **B** and r, we have $\mathbf{K} \to (\mathbf{B})_{r,t}^{\mathbf{A}}$.

Fix a countably infinite \mathcal{L} -structure **M** and some finite $\mathbf{A} \leq \mathbf{M}$. The **big Ramsey degree** of **A** in **M**, denoted BRD(\mathbf{A}, \mathbf{M}), is the least $t < \omega$ (if it exists) so that for every $0 < r < \omega$, we have $\mathbf{M} \to (\mathbf{M})_{r,t}^{\mathbf{A}}$. Otherwise put BRD(\mathbf{A}, \mathbf{M}) = ∞ .

Fix a countably infinite \mathcal{L} -structure **M** and some finite $\mathbf{A} \leq \mathbf{M}$. The **big Ramsey degree** of **A** in **M**, denoted BRD(\mathbf{A}, \mathbf{M}), is the least $t < \omega$ (if it exists) so that for every $0 < r < \omega$, we have $\mathbf{M} \to (\mathbf{M})_{r,t}^{\mathbf{A}}$. Otherwise put BRD(\mathbf{A}, \mathbf{M}) = ∞ .

If \mathcal{K} is a Fraïssé class with limit \mathbf{K} and $\mathbf{A} \in \mathcal{K}$, we can write $BRD(\mathbf{A}, \mathcal{K})$ for $BRD(\mathbf{A}, \mathbf{K})$. Say \mathcal{K} has finite BRD if $BRD(\mathbf{A}, \mathcal{K})$ is always finite.

Fix a countably infinite \mathcal{L} -structure **M** and some finite $\mathbf{A} \leq \mathbf{M}$. The **big Ramsey degree** of **A** in **M**, denoted BRD(\mathbf{A}, \mathbf{M}), is the least $t < \omega$ (if it exists) so that for every $0 < r < \omega$, we have $\mathbf{M} \to (\mathbf{M})_{r,t}^{\mathbf{A}}$. Otherwise put BRD(\mathbf{A}, \mathbf{M}) = ∞ .

If \mathcal{K} is a Fraïssé class with limit \mathbf{K} and $\mathbf{A} \in \mathcal{K}$, we can write $BRD(\mathbf{A}, \mathcal{K})$ for $BRD(\mathbf{A}, \mathbf{K})$. Say \mathcal{K} has finite BRD if $BRD(\mathbf{A}, \mathcal{K})$ is always finite.

M need not be ultrahomogeneous! If $\mathbf{M} = \langle \omega, \langle \rangle$, the ordinary infinite Ramsey theorem can be phrased as saying that for any finite linear order **A**, we have BRD(**A**, **M**) = 1.

Fix a countably infinite \mathcal{L} -structure **M** and some finite $\mathbf{A} \leq \mathbf{M}$. The **big Ramsey degree** of **A** in **M**, denoted BRD(\mathbf{A}, \mathbf{M}), is the least $t < \omega$ (if it exists) so that for every $0 < r < \omega$, we have $\mathbf{M} \to (\mathbf{M})_{r,t}^{\mathbf{A}}$. Otherwise put BRD(\mathbf{A}, \mathbf{M}) = ∞ .

If \mathcal{K} is a Fraïssé class with limit \mathbf{K} and $\mathbf{A} \in \mathcal{K}$, we can write $BRD(\mathbf{A}, \mathcal{K})$ for $BRD(\mathbf{A}, \mathbf{K})$. Say \mathcal{K} has finite BRD if $BRD(\mathbf{A}, \mathcal{K})$ is always finite.

M need not be ultrahomogeneous! If $\mathbf{M} = \langle \omega, \langle \rangle$, the ordinary infinite Ramsey theorem can be phrased as saying that for any finite linear order **A**, we have BRD(\mathbf{A}, \mathbf{M}) = 1.

For Fraissé classes, (Hjorth 2008) shows that $BRD(\mathbf{A}, \mathcal{K}) \equiv 1$ implies $Aut(\mathbf{K})$ trivial. So no "Big Ramsey Property."

Definition

Fix a countably infinite \mathcal{L} -structure **M** and some finite $\mathbf{A} \leq \mathbf{M}$.

Definition

Fix a countably infinite \mathcal{L} -structure **M** and some finite $\mathbf{A} \leq \mathbf{M}$.

A subset $S \subseteq \text{Emb}(\mathbf{A}, \mathbf{M})$ is large if there is $\eta \in \text{Emb}(\mathbf{M}, \mathbf{M})$ with $\eta \circ \text{Emb}(\mathbf{A}, \mathbf{M}) \subseteq S$.

Definition

Fix a countably infinite \mathcal{L} -structure **M** and some finite $\mathbf{A} \leq \mathbf{M}$.

- A subset $S \subseteq \text{Emb}(\mathbf{A}, \mathbf{M})$ is large if there is $\eta \in \text{Emb}(\mathbf{M}, \mathbf{M})$ with $\eta \circ \text{Emb}(\mathbf{A}, \mathbf{M}) \subseteq S$.
- 2 A subset $T \subseteq \text{Emb}(\mathbf{A}, \mathbf{M})$ is unavoidable if $\text{Emb}(\mathbf{A}, \mathbf{M}) \setminus S$ is not large.

Definition

Fix a countably infinite \mathcal{L} -structure **M** and some finite $\mathbf{A} \leq \mathbf{M}$.

- A subset $S \subseteq \text{Emb}(\mathbf{A}, \mathbf{M})$ is large if there is $\eta \in \text{Emb}(\mathbf{M}, \mathbf{M})$ with $\eta \circ \text{Emb}(\mathbf{A}, \mathbf{M}) \subseteq S$.
- 2 A subset $T \subseteq \text{Emb}(\mathbf{A}, \mathbf{M})$ is unavoidable if $\text{Emb}(\mathbf{A}, \mathbf{M}) \setminus S$ is not large.
- 3 A finite coloring of Emb(A, M) is unavoidable if every color class is unavoidable.

Definition

Fix a countably infinite \mathcal{L} -structure **M** and some finite $\mathbf{A} \leq \mathbf{M}$.

- A subset $S \subseteq \text{Emb}(\mathbf{A}, \mathbf{M})$ is large if there is $\eta \in \text{Emb}(\mathbf{M}, \mathbf{M})$ with $\eta \circ \text{Emb}(\mathbf{A}, \mathbf{M}) \subseteq S$.
- 2 A subset $T \subseteq \text{Emb}(\mathbf{A}, \mathbf{M})$ is unavoidable if $\text{Emb}(\mathbf{A}, \mathbf{M}) \setminus S$ is not large.
- 3 A finite coloring of Emb(A, M) is unavoidable if every color class is unavoidable.

In particular, note that if $t < \omega$, BRD(\mathbf{A}, \mathbf{M}) $\geq t$ iff there is an unavoidable *t*-coloring of Emb(\mathbf{A}, \mathbf{M}).

Consider $\mathbf{K} = \langle \mathbb{Q}, \langle \rangle$. (Sierpiński 1933) proves that $BRD(2, \mathbb{Q}) \geq 2$.

Consider $\mathbf{K} = \langle \mathbb{Q}, \langle \rangle$. (Sierpiński 1933) proves that $BRD(2, \mathbb{Q}) \geq 2$.

Enumerate $\mathbb{Q} = \{q_n : n < \omega\}$. Identify $[\mathbb{Q}]^2$ with $\text{Emb}(2, \mathbb{Q})$. Given $q_m < q_n \in \mathbb{Q}$, color $\{q_m, q_n\}$ depending on whether m < n or n < m.

Consider $\mathbf{K} = \langle \mathbb{Q}, \langle \rangle$. (Sierpiński 1933) proves that $BRD(2, \mathbb{Q}) \geq 2$.

Enumerate $\mathbb{Q} = \{q_n : n < \omega\}$. Identify $[\mathbb{Q}]^2$ with $\text{Emb}(2, \mathbb{Q})$. Given $q_m < q_n \in \mathbb{Q}$, color $\{q_m, q_n\}$ depending on whether m < n or n < m.

Fact (Exercise 1)

This 2-coloring of $\text{Emb}(2, \mathbb{Q})$ is unavoidable.

- 17 ► - 1 =

Laver (unpublished, early 1970s) proves that $BRD(n, \mathbb{Q})$ is finite for every $n < \omega$ using what would more-or-less become Milliken's tree theorem (Milliken 1979).

Laver (unpublished, early 1970s) proves that $BRD(n, \mathbb{Q})$ is finite for every $n < \omega$ using what would more-or-less become Milliken's tree theorem (Milliken 1979).

(D. Devlin 1979) characterizes the exact value of $BRD(n, \mathbb{Q})$ for every $n < \omega$. This is the sequence of odd tangent numbers, which goes 1, 2, 16, 272, ...

Laver (unpublished, early 1970s) proves that $BRD(n, \mathbb{Q})$ is finite for every $n < \omega$ using what would more-or-less become Milliken's tree theorem (Milliken 1979).

(D. Devlin 1979) characterizes the exact value of $BRD(n, \mathbb{Q})$ for every $n < \omega$. This is the sequence of odd tangent numbers, which goes 1, 2, 16, 272, ...

More informative than these numbers are the objects that they count, which are trees I like to call Devlin trees (see also *Joyce trees*)

伺下 イヨト イヨト

æ

- A Devlin tree is a subtree $T \subseteq 2^{<\omega}$ satisfying:
 - **1** Every $n < \omega$ with $T(n) \neq \emptyset$ has exactly one "interesting event," the choices being:

- A Devlin tree is a subtree $T \subseteq 2^{<\omega}$ satisfying:
 - **1** Every $n < \omega$ with $T(n) \neq \emptyset$ has exactly one "interesting event," the choices being:
 - A splitting node, some $t \in T(n)$ with $\{t^{0}, t^{1}\} \subseteq T(n+1)$. All $s \in T(n) \setminus \{t\}$ extend by 0.

- A Devlin tree is a subtree $T \subseteq 2^{<\omega}$ satisfying:
 - **1** Every $n < \omega$ with $T(n) \neq \emptyset$ has exactly one "interesting event," the choices being:
 - A splitting node, some $t \in T(n)$ with $\{t^0, t^1\} \subseteq T(n+1)$. All $s \in T(n) \setminus \{t\}$ extend by 0.
 - A coding node, some $t \in T$ which terminates. All $s \in T(n) \setminus \{t\}$ extend by 0.

- A Devlin tree is a subtree $T \subseteq 2^{<\omega}$ satisfying:
 - Every $n < \omega$ with $T(n) \neq \emptyset$ has exactly one "interesting event," the choices being:
 - A splitting node, some $t \in T(n)$ with $\{t^{(n)}, t^{(n)}\} \subseteq T(n+1)$. All $s \in T(n) \setminus \{t\}$ extend by 0.
 - A coding node, some $t \in T$ which terminates. All $s \in T(n) \setminus \{t\}$ extend by 0.
 - **2** Coding nodes are upwards cofinal.

Definition

- A Devlin tree is a subtree $T \subseteq 2^{<\omega}$ satisfying:
 - Every $n < \omega$ with $T(n) \neq \emptyset$ has exactly one "interesting event," the choices being:
 - A splitting node, some $t \in T(n)$ with $\{t^0, t^1\} \subseteq T(n+1)$. All $s \in T(n) \setminus \{t\}$ extend by 0.

• A coding node, some $t \in T$ which terminates. All $s \in T(n) \setminus \{t\}$ extend by 0.

2 Coding nodes are upwards cofinal.

 $BRD(n, \mathbb{Q}) =$ the number of Devlin trees with n coding nodes.

- A small sample of BRD history after Devlin:
 - (Sauer 2006): The class of finite graphs has finite BRD. Uses Milliken theorem.

- A small sample of BRD history after Devlin:
 - (Sauer 2006): The class of finite graphs has finite BRD. Uses Milliken theorem.
 - (Laflamme-Sauer-Vuksanovic 2006): Exact characterization of BRD in class of finite graphs. Not numerical, but in terms of objects I call LSV trees. Exact same as Devlin trees, but for coding levels, the other nodes can choose one of 0 or 1 to extend. See (Larson 2008) for numbers.

- A small sample of BRD history after Devlin:
 - (Sauer 2006): The class of finite graphs has finite BRD. Uses Milliken theorem.
 - (Laflamme-Sauer-Vuksanovic 2006): Exact characterization of BRD in class of finite graphs. Not numerical, but in terms of objects I call LSV trees. Exact same as Devlin trees, but for coding levels, the other nodes can choose one of 0 or 1 to extend. See (Larson 2008) for numbers.
 - (Dobrinen 2020): The class of finite triangle-free graphs has finite BRD. Required new techniques using coding trees and forcing inspired by Harrington's proof of Milliken's theorem. Similar techniques for k-clique free.

- A small sample of BRD history after Devlin:
 - (Sauer 2006): The class of finite graphs has finite BRD. Uses Milliken theorem.
 - (Laflamme-Sauer-Vuksanovic 2006): Exact characterization of BRD in class of finite graphs. Not numerical, but in terms of objects I call LSV trees. Exact same as Devlin trees, but for coding levels, the other nodes can choose one of 0 or 1 to extend. See (Larson 2008) for numbers.
 - (Dobrinen 2020): The class of finite triangle-free graphs has finite BRD. Required new techniques using coding trees and forcing inspired by Harrington's proof of Milliken's theorem. Similar techniques for k-clique free.
 - (Hubička 2020+) The class of finite posets has finite BRD. Uses Carlson-Simpson theorem. Forcing-free proof for triangle-free graphs.

 (Z. 2022): All finitely-constrained binary free amalgamation classes. These are classes in a finite relational language with only unary and binary symbols defined by forbidding a finite set of finite irreducible structures, e.g. finite k-clique-free graphs, finite directed graphs forbidding cyclic triangles, finite graphs with red/blue edges forbidding monochromatic triangles, etc. Generalized and streamlined Dobrinen's techniques by introducing aged coding trees.

- (Z. 2022): All finitely-constrained binary free amalgamation classes. These are classes in a finite relational language with only unary and binary symbols defined by forbidding a finite set of finite irreducible structures, e.g. finite k-clique-free graphs, finite directed graphs forbidding cyclic triangles, finite graphs with red/blue edges forbidding monochromatic triangles, etc. Generalized and streamlined Dobrinen's techniques by introducing aged coding trees.
- (Balko-Chodounský-Dobrinen-Hubička-Konečný-Vena-Z. 2022+) Exact characterization of BRD for finitely-constrained binary free amalgamation classes. Again by defining suitable tree-like objects, but now with a third "interesting event," an age change.

Recall that if each $\mathbf{A} \in \mathcal{K}$ has $\text{SRD}(\mathbf{A}, \mathcal{K}) = t_{\mathbf{A}} < \omega$, then there are $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ a syndetic $t_{\mathbf{A}}$ -coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$.

Recall that if each $\mathbf{A} \in \mathcal{K}$ has $\text{SRD}(\mathbf{A}, \mathcal{K}) = t_{\mathbf{A}} < \omega$, then there are $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ a syndetic $t_{\mathbf{A}}$ -coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$.

Question: If each $\mathbf{A} \in \mathcal{K}$ has BRD $(\mathbf{A}, \mathcal{K}) = t_{\mathbf{A}} < \omega$, then are there $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ an unavoidable $t_{\mathbf{A}}$ -coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$?

Recall that if each $\mathbf{A} \in \mathcal{K}$ has $\text{SRD}(\mathbf{A}, \mathcal{K}) = t_{\mathbf{A}} < \omega$, then there are $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ a syndetic $t_{\mathbf{A}}$ -coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$.

Question: If each $\mathbf{A} \in \mathcal{K}$ has BRD $(\mathbf{A}, \mathcal{K}) = t_{\mathbf{A}} < \omega$, then are there $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ an unavoidable $t_{\mathbf{A}}$ -coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$?

Problem: Colorings in orbit closure of unavoidable $t_{\mathbf{A}}$ -coloring need not be unavoidable $t_{\mathbf{A}}$ -colorings!

When we can't prove something, just define it:

Definition (Z. 2019)

We say that \mathcal{K} admits a **big Ramsey structure** if \mathcal{K} has finite BRDs and there are $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ an unavoidable BRD(\mathbf{A}, \mathcal{K})-coloring with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ when $\mathbf{A} \leq \mathbf{B}$.

When we can't prove something, just define it:

Definition (Z. 2019)

We say that \mathcal{K} admits a **big Ramsey structure** if \mathcal{K} has finite BRDs and there are $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ an unavoidable BRD(\mathbf{A}, \mathcal{K})-coloring with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ when $\mathbf{A} \leq \mathbf{B}$.

Examples: Literally every example where BRD have been fully characterized!

When we can't prove something, just define it:

Definition (Z. 2019)

We say that \mathcal{K} admits a **big Ramsey structure** if \mathcal{K} has finite BRDs and there are $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ an unavoidable BRD(\mathbf{A}, \mathcal{K})-coloring with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ when $\mathbf{A} \leq \mathbf{B}$.

Examples: Literally every example where BRD have been fully characterized!

Question: Why? For Fraïssé classes, does finite BRDs imply existence of BRS?

The dream: To each topological group G, assign a G-flow D(G) characterized by a suitable universal property up to isomorphism. When $G = Aut(\mathbf{K})$, then D(G) should be metrizable iff \mathcal{K} has finite big Ramsey degrees.

The dream: To each topological group G, assign a G-flow D(G) characterized by a suitable universal property up to isomorphism. When $G = Aut(\mathbf{K})$, then D(G) should be metrizable iff \mathcal{K} has finite big Ramsey degrees.

First attempt: completion flows. To each topological group, let \hat{G} denote its left completion. Always a monoid containing G.

The dream: To each topological group G, assign a G-flow D(G) characterized by a suitable universal property up to isomorphism. When $G = Aut(\mathbf{K})$, then D(G) should be metrizable iff \mathcal{K} has finite big Ramsey degrees.

First attempt: completion flows. To each topological group, let \hat{G} denote its left completion. Always a monoid containing G.

Examples: For G locally compact, $\widehat{G} = G$. For $G = \operatorname{Aut}(\mathbf{K})$, we have $\widehat{G} \cong \operatorname{Emb}_{\mathbf{K}}$.

Whenever X is a G-flow, the action extends to a continuous monoid action $X \times \widehat{G} \to X$.

Whenever X is a G-flow, the action extends to a continuous monoid action $X \times \hat{G} \to X$.

Definition

A completion flow is a G-flow X containing a point $x \in X$ with the property that for any $\eta \in \widehat{G}$, then $x \cdot \eta$ has dense orbit. Whenever X is a G-flow, the action extends to a continuous monoid action $X \times \widehat{G} \to X$.

Definition

A completion flow is a G-flow X containing a point $x \in X$ with the property that for any $\eta \in \widehat{G}$, then $x \cdot \eta$ has dense orbit.

Examples: All minimal flows, but can be non-minimal. For instance, the orbit closure of Devlin trees coding \mathbb{Q} . More generally, the orbit closure of any big Ramsey structure.

Suppose $G = Aut(\mathbf{K})$ and \mathcal{K} admits a big Ramsey structure. Then there exists a universal completion flow, a completion flow which factors onto all others. This flow is unique up to isomorphism.

Suppose $G = Aut(\mathbf{K})$ and \mathcal{K} admits a big Ramsey structure. Then there exists a universal completion flow, a completion flow which factors onto all others. This flow is unique up to isomorphism.

Drawbacks:

• Want something that works for finite BRD without necessarily assuming a BRS.

Suppose $G = Aut(\mathbf{K})$ and \mathcal{K} admits a big Ramsey structure. Then there exists a universal completion flow, a completion flow which factors onto all others. This flow is unique up to isomorphism.

Drawbacks:

- Want something that works for finite BRD without necessarily assuming a BRS.
- **2** Unclear if universal completion flows exist for general topological groups.

Suppose $G = Aut(\mathbf{K})$ and \mathcal{K} admits a big Ramsey structure. Then there exists a universal completion flow, a completion flow which factors onto all others. This flow is unique up to isomorphism.

Drawbacks:

- Want something that works for finite BRD without necessarily assuming a BRS.
- **2** Unclear if universal completion flows exist for general topological groups.
- **3** Even if G has a universal completion flow, metrizability is used in the proof of uniqueness.

The compact left-topological semigroup structure on \widehat{G} gives us a left action of \widehat{G} on Sa(G) which is not jointly continuous, but for each $\eta \in \widehat{G}$, $\lambda_{\eta} \colon \text{Sa}(G) \to \text{Sa}(G)$ is an injective G-map. Write $\eta \cdot \text{Sa}(G)$ for the image G-flow.

The compact left-topological semigroup structure on \widehat{G} gives us a left action of \widehat{G} on Sa(G) which is not jointly continuous, but for each $\eta \in \widehat{G}$, $\lambda_{\eta} \colon \text{Sa}(G) \to \text{Sa}(G)$ is an injective G-map. Write $\eta \cdot \text{Sa}(G)$ for the image G-flow.

We consider subflows $X \subseteq \operatorname{Sa}(G)$ minimal with respect to the property that for some net $(\eta_i)_{i \in I}$ from $\operatorname{Sa}(G)$, $X = \lim_i \eta_i \cdot \operatorname{Sa}(G)$ in the Vietoris topology. In BRS case, this recovers the universal completion flow.

The compact left-topological semigroup structure on \widehat{G} gives us a left action of \widehat{G} on Sa(G) which is not jointly continuous, but for each $\eta \in \widehat{G}$, $\lambda_{\eta} \colon \text{Sa}(G) \to \text{Sa}(G)$ is an injective G-map. Write $\eta \cdot \text{Sa}(G)$ for the image G-flow.

We consider subflows $X \subseteq \operatorname{Sa}(G)$ minimal with respect to the property that for some net $(\eta_i)_{i \in I}$ from $\operatorname{Sa}(G)$, $X = \lim_i \eta_i \cdot \operatorname{Sa}(G)$ in the Vietoris topology. In BRS case, this recovers the universal completion flow.

Problem: Such X likely not unique up to isomorphism in general. But they are unique up to weak equivalence.

Definition (Z. 2024+)

Given a topological group G and G-flows X and Y, we say that X is weakly contained in Y if there are a G-flow Z and a net $(X_i)_{i \in I}$ of subflows of Z, all $X_i \cong X$, and $\lim_i X_i$ exists and is isomorphic to Y. Weak equivalence is then just weak containments in each direction.

Definition (Z. 2024+)

Given a topological group G and G-flows X and Y, we say that X is weakly contained in Y if there are a G-flow Z and a net $(X_i)_{i \in I}$ of subflows of Z, all $X_i \cong X$, and $\lim_i X_i$ exists and is isomorphic to Y. Weak equivalence is then just weak containments in each direction.

Subtlety: Not at all clear that weak containment is a pre-order or that weak equivalence is an equivalence relation! Exhibiting large families of topological groups and G-flows for which this holds takes significant work.

Thanks!

Andy Zucker BRD dynamics III

- 4 回 ト - 4 回 ト - 4 回 ト

æ