Big Ramsey degrees, structures, dynamics III

Andy Zucker
Department of Pure Mathematics
University of Waterloo

January/February 2024 Winter School
Hejnice, Czech Republic

Outline of part III.
■ Big Ramsey degrees: history and examples.

Outline of part III.
■ Big Ramsey degrees: history and examples.

- Big Ramsey structures.

Outline of part III.

- Big Ramsey degrees: history and examples.
- Big Ramsey structures.
- Completion flows.

Outline of part III.
■ Big Ramsey degrees: history and examples.

- Big Ramsey structures.
- Completion flows.
- A dynamical object without BRS? When BRD is infinite?

Throughout, \mathcal{L} denotes a relational language, \mathcal{K} a Fraïssé class of \mathcal{L}-structures, $\mathbf{K}=\operatorname{Flim}(\mathcal{K})$.

Definition

Given \mathcal{L}-structures $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$ and $0<k, r<\omega$, we write $\mathbf{C} \rightarrow(\mathbf{B})_{r, k}^{\mathbf{A}}$ if whenever $\gamma: \operatorname{Emb}(\mathbf{A}, \mathbf{C}) \rightarrow r$ is a coloring, there is $x \in \operatorname{Emb}(\mathbf{B}, \mathbf{C})$ with $|\{\gamma(x \circ f): f \in \operatorname{Emb}(\mathbf{A}, \mathbf{B})\}| \leq k$.

Throughout, \mathcal{L} denotes a relational language, \mathcal{K} a Fraïssé class of \mathcal{L}-structures, $\mathbf{K}=\operatorname{Flim}(\mathcal{K})$.

Definition

Given \mathcal{L}-structures $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$ and $0<k, r<\omega$, we write $\mathbf{C} \rightarrow(\mathbf{B})_{r, k}^{\mathbf{A}}$ if whenever $\gamma: \operatorname{Emb}(\mathbf{A}, \mathbf{C}) \rightarrow r$ is a coloring, there is $x \in \operatorname{Emb}(\mathbf{B}, \mathbf{C})$ with $|\{\gamma(x \circ f): f \in \operatorname{Emb}(\mathbf{A}, \mathbf{B})\}| \leq k$.

For instance, given $\mathbf{A} \in \mathcal{K}$, we have $\operatorname{SRD}(\mathbf{A}, \mathcal{K})=t<\omega$ iff for every $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and $0<r<\omega$, there is $\mathbf{B} \leq \mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \rightarrow(\mathbf{B})_{r, t}^{\mathbf{A}}$.

Throughout, \mathcal{L} denotes a relational language, \mathcal{K} a Fraïssé class of \mathcal{L}-structures, $\mathbf{K}=\operatorname{Flim}(\mathcal{K})$.

Definition

Given \mathcal{L}-structures $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$ and $0<k, r<\omega$, we write $\mathbf{C} \rightarrow(\mathbf{B})_{r, k}^{\mathbf{A}}$ if whenever $\gamma: \operatorname{Emb}(\mathbf{A}, \mathbf{C}) \rightarrow r$ is a coloring, there is $x \in \operatorname{Emb}(\mathbf{B}, \mathbf{C})$ with $|\{\gamma(x \circ f): f \in \operatorname{Emb}(\mathbf{A}, \mathbf{B})\}| \leq k$.

For instance, given $\mathbf{A} \in \mathcal{K}$, we have $\operatorname{SRD}(\mathbf{A}, \mathcal{K})=t<\omega$ iff for every $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and $0<r<\omega$, there is $\mathbf{B} \leq \mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \rightarrow(\mathbf{B})_{r, t}^{\mathbf{A}}$.

Equivalently, this happens iff for every such \mathbf{B} and r, we have $\mathbf{K} \rightarrow(\mathbf{B})_{r, t}^{\mathbf{A}}$.

Definition

Fix a countably infinite \mathcal{L}-structure \mathbf{M} and some finite $\mathbf{A} \leq \mathbf{M}$. The big Ramsey degree of \mathbf{A} in \mathbf{M}, denoted $\operatorname{BRD}(\mathbf{A}, \mathbf{M})$, is the least $t<\omega$ (if it exists) so that for every $0<r<\omega$, we have $\mathbf{M} \rightarrow(\mathbf{M})_{r, t}^{\mathbf{A}}$. Otherwise put $\operatorname{BRD}(\mathbf{A}, \mathbf{M})=\infty$.

Definition

Fix a countably infinite \mathcal{L}-structure \mathbf{M} and some finite $\mathbf{A} \leq \mathbf{M}$. The big Ramsey degree of \mathbf{A} in \mathbf{M}, denoted $\operatorname{BRD}(\mathbf{A}, \mathbf{M})$, is the least $t<\omega$ (if it exists) so that for every $0<r<\omega$, we have $\mathbf{M} \rightarrow(\mathbf{M})_{r, t}^{\mathbf{A}}$. Otherwise put $\operatorname{BRD}(\mathbf{A}, \mathbf{M})=\infty$.
If \mathcal{K} is a Fraïssé class with limit \mathbf{K} and $\mathbf{A} \in \mathcal{K}$, we can write $\operatorname{BRD}(\mathbf{A}, \mathcal{K})$ for $\operatorname{BRD}(\mathbf{A}, \mathbf{K})$. Say \mathcal{K} has finite BRD if $\operatorname{BRD}(\mathbf{A}, \mathcal{K})$ is always finite.

Definition

Fix a countably infinite \mathcal{L}-structure \mathbf{M} and some finite $\mathbf{A} \leq \mathbf{M}$. The big Ramsey degree of \mathbf{A} in \mathbf{M}, denoted $\operatorname{BRD}(\mathbf{A}, \mathbf{M})$, is the least $t<\omega$ (if it exists) so that for every $0<r<\omega$, we have $\mathbf{M} \rightarrow(\mathbf{M})_{r, t}^{\mathbf{A}}$. Otherwise put $\operatorname{BRD}(\mathbf{A}, \mathbf{M})=\infty$.
If \mathcal{K} is a Fraïssé class with limit \mathbf{K} and $\mathbf{A} \in \mathcal{K}$, we can write $\operatorname{BRD}(\mathbf{A}, \mathcal{K})$ for $\operatorname{BRD}(\mathbf{A}, \mathbf{K})$. Say \mathcal{K} has finite BRD if $\operatorname{BRD}(\mathbf{A}, \mathcal{K})$ is always finite.
\mathbf{M} need not be ultrahomogeneous! If $\mathbf{M}=\langle\omega,\langle \rangle$, the ordinary infinite Ramsey theorem can be phrased as saying that for any finite linear order \mathbf{A}, we have $\operatorname{BRD}(\mathbf{A}, \mathbf{M})=1$.

Definition

Fix a countably infinite \mathcal{L}-structure \mathbf{M} and some finite $\mathbf{A} \leq \mathbf{M}$. The big Ramsey degree of \mathbf{A} in \mathbf{M}, denoted $\operatorname{BRD}(\mathbf{A}, \mathbf{M})$, is the least $t<\omega$ (if it exists) so that for every $0<r<\omega$, we have $\mathbf{M} \rightarrow(\mathbf{M})_{r, t}^{\mathbf{A}}$. Otherwise put $\operatorname{BRD}(\mathbf{A}, \mathbf{M})=\infty$.
If \mathcal{K} is a Fraïssé class with limit \mathbf{K} and $\mathbf{A} \in \mathcal{K}$, we can write $\operatorname{BRD}(\mathbf{A}, \mathcal{K})$ for $\operatorname{BRD}(\mathbf{A}, \mathbf{K})$. Say \mathcal{K} has finite BRD if $\operatorname{BRD}(\mathbf{A}, \mathcal{K})$ is always finite.
\mathbf{M} need not be ultrahomogeneous! If $\mathbf{M}=\langle\omega,\langle \rangle$, the ordinary infinite Ramsey theorem can be phrased as saying that for any finite linear order \mathbf{A}, we have $\operatorname{BRD}(\mathbf{A}, \mathbf{M})=1$.

For Fraïssé classes, (Hjorth 2008) shows that $\operatorname{BRD}(\mathbf{A}, \mathcal{K}) \equiv 1$ implies $\operatorname{Aut}(\mathbf{K})$ trivial. So no "Big Ramsey Property."

Analogues of thick and syndetic for BRD:

Analogues of thick and syndetic for BRD:

Definition

Fix a countably infinite \mathcal{L}-structure \mathbf{M} and some finite $\mathbf{A} \leq \mathbf{M}$.

Analogues of thick and syndetic for BRD:

Definition

Fix a countably infinite \mathcal{L}-structure \mathbf{M} and some finite $\mathbf{A} \leq \mathbf{M}$.
1 A subset $S \subseteq \operatorname{Emb}(\mathbf{A}, \mathbf{M})$ is large if there is $\eta \in \operatorname{Emb}(\mathbf{M}, \mathbf{M})$ with $\eta \circ \operatorname{Emb}(\mathbf{A}, \mathbf{M}) \subseteq S$.

Analogues of thick and syndetic for BRD:

Definition

Fix a countably infinite \mathcal{L}-structure \mathbf{M} and some finite $\mathbf{A} \leq \mathbf{M}$.
1 A subset $S \subseteq \operatorname{Emb}(\mathbf{A}, \mathbf{M})$ is large if there is $\eta \in \operatorname{Emb}(\mathbf{M}, \mathbf{M})$ with $\eta \circ \operatorname{Emb}(\mathbf{A}, \mathbf{M}) \subseteq S$.
2 A subset $T \subseteq \operatorname{Emb}(\mathbf{A}, \mathbf{M})$ is unavoidable if $\operatorname{Emb}(\mathbf{A}, \mathbf{M}) \backslash S$ is not large.

Analogues of thick and syndetic for BRD:

Definition

Fix a countably infinite \mathcal{L}-structure \mathbf{M} and some finite $\mathbf{A} \leq \mathbf{M}$.
1 A subset $S \subseteq \operatorname{Emb}(\mathbf{A}, \mathbf{M})$ is large if there is $\eta \in \operatorname{Emb}(\mathbf{M}, \mathbf{M})$ with $\eta \circ \operatorname{Emb}(\mathbf{A}, \mathbf{M}) \subseteq S$.
2 A subset $T \subseteq \operatorname{Emb}(\mathbf{A}, \mathbf{M})$ is unavoidable if $\operatorname{Emb}(\mathbf{A}, \mathbf{M}) \backslash S$ is not large.
3 A finite coloring of $\operatorname{Emb}(\mathbf{A}, \mathbf{M})$ is unavoidable if every color class is unavoidable.

Analogues of thick and syndetic for BRD:

Definition

Fix a countably infinite \mathcal{L}-structure \mathbf{M} and some finite $\mathbf{A} \leq \mathbf{M}$.
1 A subset $S \subseteq \operatorname{Emb}(\mathbf{A}, \mathbf{M})$ is large if there is $\eta \in \operatorname{Emb}(\mathbf{M}, \mathbf{M})$ with $\eta \circ \operatorname{Emb}(\mathbf{A}, \mathbf{M}) \subseteq S$.
2 A subset $T \subseteq \operatorname{Emb}(\mathbf{A}, \mathbf{M})$ is unavoidable if $\operatorname{Emb}(\mathbf{A}, \mathbf{M}) \backslash S$ is not large.
3 A finite coloring of $\operatorname{Emb}(\mathbf{A}, \mathbf{M})$ is unavoidable if every color class is unavoidable.

In particular, note that if $t<\omega, \operatorname{BRD}(\mathbf{A}, \mathbf{M}) \geq t$ iff there is an unavoidable t-coloring of $\operatorname{Emb}(\mathbf{A}, \mathbf{M})$.

Even for examples that were very simple when considering small Ramsey degrees, things become much more complicated for big Ramsey degrees.

Even for examples that were very simple when considering small Ramsey degrees, things become much more complicated for big Ramsey degrees.

Consider $\mathbf{K}=\langle\mathbb{Q},<\rangle$. (Sierpiński 1933) proves that $\operatorname{BRD}(2, \mathbb{Q}) \geq 2$.

Even for examples that were very simple when considering small Ramsey degrees, things become much more complicated for big Ramsey degrees.

Consider $\mathbf{K}=\langle\mathbb{Q},<\rangle$. (Sierpiński 1933) proves that $\operatorname{BRD}(2, \mathbb{Q}) \geq 2$.

Enumerate $\mathbb{Q}=\left\{q_{n}: n<\omega\right\}$. Identify $[\mathbb{Q}]^{2}$ with $\operatorname{Emb}(2, \mathbb{Q})$. Given $q_{m}<q_{n} \in \mathbb{Q}$, color $\left\{q_{m}, q_{n}\right\}$ depending on whether $m<n$ or $n<m$.

Even for examples that were very simple when considering small Ramsey degrees, things become much more complicated for big Ramsey degrees.

Consider $\mathbf{K}=\langle\mathbb{Q},<\rangle$. (Sierpiński 1933) proves that $\operatorname{BRD}(2, \mathbb{Q}) \geq 2$.

Enumerate $\mathbb{Q}=\left\{q_{n}: n<\omega\right\}$. Identify $[\mathbb{Q}]^{2}$ with $\operatorname{Emb}(2, \mathbb{Q})$. Given $q_{m}<q_{n} \in \mathbb{Q}$, color $\left\{q_{m}, q_{n}\right\}$ depending on whether $m<n$ or $n<m$.

Fact (Exercise 1)

This 2-coloring of $\operatorname{Emb}(2, \mathbb{Q})$ is unavoidable.

Remarkably enough, (Galvin 1968) proves that $\operatorname{BRD}(2, \mathbb{Q})=2$.

Remarkably enough, (Galvin 1968) proves that $\operatorname{BRD}(2, \mathbb{Q})=2$.
Laver (unpublished, early 1970s) proves that $\operatorname{BRD}(n, \mathbb{Q})$ is finite for every $n<\omega$ using what would more-or-less become Milliken's tree theorem (Milliken 1979).

Remarkably enough, (Galvin 1968) proves that $\operatorname{BRD}(2, \mathbb{Q})=2$.
Laver (unpublished, early 1970s) proves that $\operatorname{BRD}(n, \mathbb{Q})$ is finite for every $n<\omega$ using what would more-or-less become Milliken's tree theorem (Milliken 1979).
(D. Devlin 1979) characterizes the exact value of $\operatorname{BRD}(n, \mathbb{Q})$ for every $n<\omega$. This is the sequence of odd tangent numbers, which goes $1,2,16,272, \ldots$

Remarkably enough, (Galvin 1968) proves that $\operatorname{BRD}(2, \mathbb{Q})=2$.
Laver (unpublished, early 1970s) proves that $\operatorname{BRD}(n, \mathbb{Q})$ is finite for every $n<\omega$ using what would more-or-less become Milliken's tree theorem (Milliken 1979).
(D. Devlin 1979) characterizes the exact value of $\operatorname{BRD}(n, \mathbb{Q})$ for every $n<\omega$. This is the sequence of odd tangent numbers, which goes $1,2,16,272, \ldots$

More informative than these numbers are the objects that they count, which are trees I like to call Devlin trees (see also Joyce trees)

A subtree of $2^{<\omega}$ is a downwards closed subset. If $T \subseteq 2^{<\omega}$, write $T(n):=2^{n} \cap T$.

A subtree of $2^{<\omega}$ is a downwards closed subset. If $T \subseteq 2^{<\omega}$, write $T(n):=2^{n} \cap T$.

Definition

A Devlin tree is a subtree $T \subseteq 2^{<\omega}$ satisfying:
1 Every $n<\omega$ with $T(n) \neq \emptyset$ has exactly one "interesting event," the choices being:

A subtree of $2^{<\omega}$ is a downwards closed subset. If $T \subseteq 2^{<\omega}$, write $T(n):=2^{n} \cap T$.

Definition

A Devlin tree is a subtree $T \subseteq 2^{<\omega}$ satisfying:
1 Every $n<\omega$ with $T(n) \neq \emptyset$ has exactly one "interesting event," the choices being:

- A splitting node, some $t \in T(n)$ with $\left\{t \subset 0, t^{\curvearrowleft} 1\right\} \subseteq T(n+1)$. All $s \in T(n) \backslash\{t\}$ extend by 0 .

A subtree of $2^{<\omega}$ is a downwards closed subset. If $T \subseteq 2^{<\omega}$, write $T(n):=2^{n} \cap T$.

Definition

A Devlin tree is a subtree $T \subseteq 2^{<\omega}$ satisfying:
1 Every $n<\omega$ with $T(n) \neq \emptyset$ has exactly one "interesting event," the choices being:

- A splitting node, some $t \in T(n)$ with $\{t \frown 0, t \frown 1\} \subseteq T(n+1)$. All $s \in T(n) \backslash\{t\}$ extend by 0 .
- A coding node, some $t \in T$ which terminates. All $s \in T(n) \backslash\{t\}$ extend by 0 .

A subtree of $2^{<\omega}$ is a downwards closed subset. If $T \subseteq 2^{<\omega}$, write $T(n):=2^{n} \cap T$.

Definition

A Devlin tree is a subtree $T \subseteq 2^{<\omega}$ satisfying:
1 Every $n<\omega$ with $T(n) \neq \emptyset$ has exactly one "interesting event," the choices being:

- A splitting node, some $t \in T(n)$ with $\{t \frown 0, t \frown 1\} \subseteq T(n+1)$. All $s \in T(n) \backslash\{t\}$ extend by 0 .
- A coding node, some $t \in T$ which terminates. All $s \in T(n) \backslash\{t\}$ extend by 0.
2 Coding nodes are upwards cofinal.

A subtree of $2^{<\omega}$ is a downwards closed subset. If $T \subseteq 2^{<\omega}$, write $T(n):=2^{n} \cap T$.

Definition

A Devlin tree is a subtree $T \subseteq 2^{<\omega}$ satisfying:
1 Every $n<\omega$ with $T(n) \neq \emptyset$ has exactly one "interesting event," the choices being:

- A splitting node, some $t \in T(n)$ with $\{t \frown 0, t \frown 1\} \subseteq T(n+1)$. All $s \in T(n) \backslash\{t\}$ extend by 0 .
- A coding node, some $t \in T$ which terminates. All $s \in T(n) \backslash\{t\}$ extend by 0.
2 Coding nodes are upwards cofinal.
$\operatorname{BRD}(n, \mathbb{Q})=$ the number of Devlin trees with n coding nodes.

A small sample of BRD history after Devlin:
■ (Sauer 2006): The class of finite graphs has finite BRD. Uses Milliken theorem.

A small sample of BRD history after Devlin:

- (Sauer 2006): The class of finite graphs has finite BRD. Uses Milliken theorem.

■ (Laflamme-Sauer-Vuksanovic 2006): Exact characterization of BRD in class of finite graphs. Not numerical, but in terms of objects I call LSV trees. Exact same as Devlin trees, but for coding levels, the other nodes can choose one of 0 or 1 to extend. See (Larson 2008) for numbers.

A small sample of BRD history after Devlin:

- (Sauer 2006): The class of finite graphs has finite BRD. Uses Milliken theorem.

■ (Laflamme-Sauer-Vuksanovic 2006): Exact characterization of BRD in class of finite graphs. Not numerical, but in terms of objects I call LSV trees. Exact same as Devlin trees, but for coding levels, the other nodes can choose one of 0 or 1 to extend. See (Larson 2008) for numbers.

- (Dobrinen 2020): The class of finite triangle-free graphs has finite BRD. Required new techniques using coding trees and forcing inspired by Harrington's proof of Milliken's theorem. Similar techniques for k-clique free.

A small sample of BRD history after Devlin:

- (Sauer 2006): The class of finite graphs has finite BRD. Uses Milliken theorem.
- (Laflamme-Sauer-Vuksanovic 2006): Exact characterization of BRD in class of finite graphs. Not numerical, but in terms of objects I call LSV trees. Exact same as Devlin trees, but for coding levels, the other nodes can choose one of 0 or 1 to extend. See (Larson 2008) for numbers.
- (Dobrinen 2020): The class of finite triangle-free graphs has finite BRD. Required new techniques using coding trees and forcing inspired by Harrington's proof of Milliken's theorem. Similar techniques for k-clique free.
- (Hubička 2020+) The class of finite posets has finite BRD. Uses Carlson-Simpson theorem. Forcing-free proof for triangle-free graphs.

■ (Z. 2022): All finitely-constrained binary free amalgamation classes. These are classes in a finite relational language with only unary and binary symbols defined by forbidding a finite set of finite irreducible structures, e.g. finite k-clique-free graphs, finite directed graphs forbidding cyclic triangles, finite graphs with red/blue edges forbidding monochromatic triangles, etc. Generalized and streamlined Dobrinen's techniques by introducing aged coding trees.

- (Z. 2022): All finitely-constrained binary free amalgamation classes. These are classes in a finite relational language with only unary and binary symbols defined by forbidding a finite set of finite irreducible structures, e.g. finite k-clique-free graphs, finite directed graphs forbidding cyclic triangles, finite graphs with red/blue edges forbidding monochromatic triangles, etc. Generalized and streamlined Dobrinen's techniques by introducing aged coding trees.
■ (Balko-Chodounský-Dobrinen-Hubička-Konečný-Vena-Z. 2022+) Exact characterization of BRD for finitely-constrained binary free amalgamation classes. Again by defining suitable tree-like objects, but now with a third "interesting event," an age change.

Fix a Fraïssé class \mathcal{K} with limit K. Recall that given $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and finite colorings $\gamma_{\mathbf{A}}, \gamma_{\mathbf{B}}$ of $\mathrm{Emb}_{\mathbf{A}}, \operatorname{Emb}_{\mathbf{B}}$, respectively, we say $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ iff whenever $f \in \operatorname{Emb}(\mathbf{A}, \mathbf{B})$ and $x, y \in \operatorname{Emb}_{\mathbf{B}}$ satisfy $\gamma_{\mathbf{B}}(x)=\gamma_{\mathbf{B}}(y)$, then $\gamma_{\mathbf{A}}(x \circ f)=\gamma_{\mathbf{A}}(y \circ f)$.

Fix a Fraïssé class \mathcal{K} with limit K. Recall that given $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and finite colorings $\gamma_{\mathbf{A}}, \gamma_{\mathbf{B}}$ of $\mathrm{Emb}_{\mathbf{A}}, \operatorname{Emb}_{\mathbf{B}}$, respectively, we say $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ iff whenever $f \in \operatorname{Emb}(\mathbf{A}, \mathbf{B})$ and $x, y \in \operatorname{Emb}_{\mathbf{B}}$ satisfy $\gamma_{\mathbf{B}}(x)=\gamma_{\mathbf{B}}(y)$, then $\gamma_{\mathbf{A}}(x \circ f)=\gamma_{\mathbf{A}}(y \circ f)$.

Recall that if each $\mathbf{A} \in \mathcal{K}$ has $\operatorname{SRD}(\mathbf{A}, \mathcal{K})=t_{\mathbf{A}}<\omega$, then there are $\left\{\gamma_{\mathbf{A}}: \mathbf{A} \in[\mathbf{K}]^{<\omega}\right\}$ with each $\gamma_{\mathbf{A}}$ a syndetic $t_{\mathbf{A}}$-coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$.

Fix a Fraïssé class \mathcal{K} with limit K. Recall that given $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and finite colorings $\gamma_{\mathbf{A}}, \gamma_{\mathbf{B}}$ of $\mathrm{Emb}_{\mathbf{A}}, \operatorname{Emb}_{\mathbf{B}}$, respectively, we say $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ iff whenever $f \in \operatorname{Emb}(\mathbf{A}, \mathbf{B})$ and $x, y \in \operatorname{Emb}_{\mathbf{B}}$ satisfy $\gamma_{\mathbf{B}}(x)=\gamma_{\mathbf{B}}(y)$, then $\gamma_{\mathbf{A}}(x \circ f)=\gamma_{\mathbf{A}}(y \circ f)$.

Recall that if each $\mathbf{A} \in \mathcal{K}$ has $\operatorname{SRD}(\mathbf{A}, \mathcal{K})=t_{\mathbf{A}}<\omega$, then there are $\left\{\gamma_{\mathbf{A}}: \mathbf{A} \in[\mathbf{K}]^{<\omega}\right\}$ with each $\gamma_{\mathbf{A}}$ a syndetic $t_{\mathbf{A}}$-coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$.

Question: If each $\mathbf{A} \in \mathcal{K}$ has $\operatorname{BRD}(\mathbf{A}, \mathcal{K})=t_{\mathbf{A}}<\omega$, then are there $\left\{\gamma_{\mathbf{A}}: \mathbf{A} \in[\mathbf{K}]^{<\omega}\right\}$ with each $\gamma_{\mathbf{A}}$ an unavoidable $t_{\mathbf{A}}$-coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$?

Fix a Fraïssé class \mathcal{K} with limit K. Recall that given $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and finite colorings $\gamma_{\mathbf{A}}, \gamma_{\mathbf{B}}$ of $\operatorname{Emb}_{\mathbf{A}}, \operatorname{Emb}_{\mathbf{B}}$, respectively, we say $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ iff whenever $f \in \operatorname{Emb}(\mathbf{A}, \mathbf{B})$ and $x, y \in \operatorname{Emb}_{\mathbf{B}}$ satisfy $\gamma_{\mathbf{B}}(x)=\gamma_{\mathbf{B}}(y)$, then $\gamma_{\mathbf{A}}(x \circ f)=\gamma_{\mathbf{A}}(y \circ f)$.

Recall that if each $\mathbf{A} \in \mathcal{K}$ has $\operatorname{SRD}(\mathbf{A}, \mathcal{K})=t_{\mathbf{A}}<\omega$, then there are $\left\{\gamma_{\mathbf{A}}: \mathbf{A} \in[\mathbf{K}]^{<\omega}\right\}$ with each $\gamma_{\mathbf{A}}$ a syndetic $t_{\mathbf{A}}$-coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$.

Question: If each $\mathbf{A} \in \mathcal{K}$ has $\operatorname{BRD}(\mathbf{A}, \mathcal{K})=t_{\mathbf{A}}<\omega$, then are there $\left\{\gamma_{\mathbf{A}}: \mathbf{A} \in[\mathbf{K}]^{<\omega}\right\}$ with each $\gamma_{\mathbf{A}}$ an unavoidable $t_{\mathbf{A}}$-coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$?

Problem: Colorings in orbit closure of unavoidable $t_{\mathbf{A}}$-coloring need not be unavoidable $t_{\mathbf{A}}$-colorings!

When we can't prove something, just define it:

Definition (Z. 2019)

We say that \mathcal{K} admits a big Ramsey structure if \mathcal{K} has finite BRDs and there are $\left\{\gamma_{\mathbf{A}}: \mathbf{A} \in[\mathbf{K}]^{<\omega}\right\}$ with each $\gamma_{\mathbf{A}}$ an unavoidable $\operatorname{BRD}(\mathbf{A}, \mathcal{K})$-coloring with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ when $\mathbf{A} \leq \mathbf{B}$.

When we can't prove something, just define it:

Definition (Z. 2019)

We say that \mathcal{K} admits a big Ramsey structure if \mathcal{K} has finite BRDs and there are $\left\{\gamma_{\mathbf{A}}: \mathbf{A} \in[\mathbf{K}]^{<\omega}\right\}$ with each $\gamma_{\mathbf{A}}$ an unavoidable $\operatorname{BRD}(\mathbf{A}, \mathcal{K})$-coloring with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ when $\mathbf{A} \leq \mathbf{B}$.

Examples: Literally every example where BRD have been fully characterized!

When we can't prove something, just define it:

Definition (Z. 2019)

We say that \mathcal{K} admits a big Ramsey structure if \mathcal{K} has finite BRDs and there are $\left\{\gamma_{\mathbf{A}}: \mathbf{A} \in[\mathbf{K}]^{<\omega}\right\}$ with each $\gamma_{\mathbf{A}}$ an unavoidable $\operatorname{BRD}(\mathbf{A}, \mathcal{K})$-coloring with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ when $\mathbf{A} \leq \mathbf{B}$.

Examples: Literally every example where BRD have been fully characterized!

Question: Why? For Fraïssé classes, does finite BRDs imply existence of BRS?

Question: Is there an analogue of KPT correspondence for big Ramsey degrees?

Question: Is there an analogue of KPT correspondence for big Ramsey degrees?

The dream: To each topological group G, assign a G-flow $\mathrm{D}(G)$ characterized by a suitable universal property up to isomorphism. When $G=\operatorname{Aut}(\mathbf{K})$, then $\mathrm{D}(G)$ should be metrizable iff \mathcal{K} has finite big Ramsey degrees.

Question: Is there an analogue of KPT correspondence for big Ramsey degrees?

The dream: To each topological group G, assign a G-flow $\mathrm{D}(G)$ characterized by a suitable universal property up to isomorphism. When $G=\operatorname{Aut}(\mathbf{K})$, then $\mathrm{D}(G)$ should be metrizable iff \mathcal{K} has finite big Ramsey degrees.

First attempt: completion flows. To each topological group, let \widehat{G} denote its left completion. Always a monoid containing G.

Question: Is there an analogue of KPT correspondence for big Ramsey degrees?

The dream: To each topological group G, assign a G-flow $\mathrm{D}(G)$ characterized by a suitable universal property up to isomorphism. When $G=\operatorname{Aut}(\mathbf{K})$, then $\mathrm{D}(G)$ should be metrizable iff \mathcal{K} has finite big Ramsey degrees.

First attempt: completion flows. To each topological group, let \widehat{G} denote its left completion. Always a monoid containing G.

Examples: For G locally compact, $\widehat{G}=G$. For $G=\operatorname{Aut}(\mathbf{K})$, we have $\widehat{G} \cong \mathrm{Emb}_{\mathbf{K}}$.

Whenever X is a G-flow, the action extends to a continuous monoid action $X \times \widehat{G} \rightarrow X$.

Whenever X is a G-flow, the action extends to a continuous monoid action $X \times \widehat{G} \rightarrow X$.

Definition

A completion flow is a G-flow X containing a point $x \in X$ with the property that for any $\eta \in \widehat{G}$, then $x \cdot \eta$ has dense orbit.

Whenever X is a G-flow, the action extends to a continuous monoid action $X \times \widehat{G} \rightarrow X$.

Definition

A completion flow is a G-flow X containing a point $x \in X$ with the property that for any $\eta \in \widehat{G}$, then $x \cdot \eta$ has dense orbit.

Examples: All minimal flows, but can be non-minimal. For instance, the orbit closure of Devlin trees coding \mathbb{Q}. More generally, the orbit closure of any big Ramsey structure.

Theorem (Z. 2019)

Suppose $G=\operatorname{Aut}(\mathbf{K})$ and \mathcal{K} admits a big Ramsey structure. Then there exists a universal completion flow, a completion flow which factors onto all others. This flow is unique up to isomorphism.

Theorem (Z. 2019)

Suppose $G=\operatorname{Aut}(\mathbf{K})$ and \mathcal{K} admits a big Ramsey structure. Then there exists a universal completion flow, a completion flow which factors onto all others. This flow is unique up to isomorphism.

Drawbacks:
1 Want something that works for finite BRD without necessarily assuming a BRS.

Theorem (Z. 2019)

Suppose $G=\operatorname{Aut}(\mathbf{K})$ and \mathcal{K} admits a big Ramsey structure. Then there exists a universal completion flow, a completion flow which factors onto all others. This flow is unique up to isomorphism.

Drawbacks:
1 Want something that works for finite BRD without necessarily assuming a BRS.
2 Unclear if universal completion flows exist for general topological groups.

Theorem (Z. 2019)

Suppose $G=\operatorname{Aut}(\mathbf{K})$ and \mathcal{K} admits a big Ramsey structure. Then there exists a universal completion flow, a completion flow which factors onto all others. This flow is unique up to isomorphism.

Drawbacks:
1 Want something that works for finite BRD without necessarily assuming a BRS.
2 Unclear if universal completion flows exist for general topological groups.
3 Even if G has a universal completion flow, metrizability is used in the proof of uniqueness.

Second attempt: Note that we can identify $\widehat{G} \subseteq \operatorname{Sa}(G)$ with $\left\{\mathrm{p} \in \operatorname{Sa}(G): \forall U \in \mathcal{N}_{G} \exists g \in G(g U \in \mathrm{p})\right\}$.

Second attempt: Note that we can identify $\widehat{G} \subseteq \operatorname{Sa}(G)$ with $\left\{\mathrm{p} \in \operatorname{Sa}(G): \forall U \in \mathcal{N}_{G} \exists g \in G(g U \in \mathrm{p})\right\}$.

The compact left-topological semigroup structure on \widehat{G} gives us a left action of \widehat{G} on $\mathrm{Sa}(G)$ which is not jointly continuous, but for each $\eta \in \widehat{G}, \lambda_{\eta}: \mathrm{Sa}(G) \rightarrow \mathrm{Sa}(G)$ is an injective G-map. Write $\eta \cdot \mathrm{Sa}(G)$ for the image G-flow.

Second attempt: Note that we can identify $\widehat{G} \subseteq \operatorname{Sa}(G)$ with $\left\{\mathrm{p} \in \mathrm{Sa}(G): \forall U \in \mathcal{N}_{G} \exists g \in G(g U \in \mathrm{p})\right\}$.
The compact left-topological semigroup structure on \widehat{G} gives us a left action of \widehat{G} on $\mathrm{Sa}(G)$ which is not jointly continuous, but for each $\eta \in \widehat{G}, \lambda_{\eta}: \mathrm{Sa}(G) \rightarrow \mathrm{Sa}(G)$ is an injective G-map. Write $\eta \cdot \mathrm{Sa}(G)$ for the image G-flow.

We consider subflows $X \subseteq \operatorname{Sa}(G)$ minimal with respect to the property that for some net $\left(\eta_{i}\right)_{i \in I}$ from $\mathrm{Sa}(G)$, $X=\lim _{i} \eta_{i} \cdot \mathrm{Sa}(G)$ in the Vietoris topology. In BRS case, this recovers the universal completion flow.

Second attempt: Note that we can identify $\widehat{G} \subseteq \operatorname{Sa}(G)$ with $\left\{\mathrm{p} \in \mathrm{Sa}(G): \forall U \in \mathcal{N}_{G} \exists g \in G(g U \in \mathrm{p})\right\}$.
The compact left-topological semigroup structure on \widehat{G} gives us a left action of \widehat{G} on $\mathrm{Sa}(G)$ which is not jointly continuous, but for each $\eta \in \widehat{G}, \lambda_{\eta}: \mathrm{Sa}(G) \rightarrow \mathrm{Sa}(G)$ is an injective G-map. Write $\eta \cdot \mathrm{Sa}(G)$ for the image G-flow.

We consider subflows $X \subseteq \operatorname{Sa}(G)$ minimal with respect to the property that for some net $\left(\eta_{i}\right)_{i \in I}$ from $\mathrm{Sa}(G)$, $X=\lim _{i} \eta_{i} \cdot \mathrm{Sa}(G)$ in the Vietoris topology. In BRS case, this recovers the universal completion flow.

Problem: Such X likely not unique up to isomorphism in general. But they are unique up to weak equivalence.

Definition (Z. 2024+)

Given a topological group G and G-flows X and Y, we say that X is weakly contained in Y if there are a G-flow Z and a net $\left(X_{i}\right)_{i \in I}$ of subflows of Z, all $X_{i} \cong X$, and $\lim _{i} X_{i}$ exists and is isomorphic to Y. Weak equivalence is then just weak containments in each direction.

Definition (Z. 2024+)

Given a topological group G and G-flows X and Y, we say that X is weakly contained in Y if there are a G-flow Z and a net $\left(X_{i}\right)_{i \in I}$ of subflows of Z, all $X_{i} \cong X$, and $\lim _{i} X_{i}$ exists and is isomorphic to Y. Weak equivalence is then just weak containments in each direction.

Subtlety: Not at all clear that weak containment is a pre-order or that weak equivalence is an equivalence relation! Exhibiting large families of topological groups and G-flows for which this holds takes significant work.

Thanks!

