Big Ramsey degrees, structures, dynamics II

Andy Zucker Department of Pure Mathematics University of Waterloo

January/February 2024 Winter School Hejnice, Czech Republic

• Minimal subflows of Sa(G).

- Minimal subflows of Sa(G).
- The Ramsey property and small Ramsey degrees in Fraïssé classes.

- Minimal subflows of Sa(G).
- The Ramsey property and small Ramsey degrees in Fraïssé classes.
- Extreme amenability and KPT correspondence.

- Minimal subflows of Sa(G).
- The Ramsey property and small Ramsey degrees in Fraïssé classes.
- Extreme amenability and KPT correspondence.
- Metrizable universal minimal flows.

• G always denotes a (Hausdorff) topological group with identity e_G . \mathcal{N}_G denotes a base of symmetric identity neighborhoods.

- G always denotes a (Hausdorff) topological group with identity e_G . \mathcal{N}_G denotes a base of symmetric identity neighborhoods.
- Sa(G), the Samuel compactification of G, is the set of near ultrafilters on G, maximal $\mathbf{p} \subseteq \mathcal{P}(G)$ with the property that for any $F \in [\mathbf{p}]^{<\omega}$ and $U \in \mathcal{N}_G$, we have $\bigcap_{S \in F} SU \neq \emptyset$.

- G always denotes a (Hausdorff) topological group with identity e_G . \mathcal{N}_G denotes a base of symmetric identity neighborhoods.
- Sa(G), the Samuel compactification of G, is the set of near ultrafilters on G, maximal $\mathbf{p} \subseteq \mathcal{P}(G)$ with the property that for any $F \in [\mathbf{p}]^{<\omega}$ and $U \in \mathcal{N}_G$, we have $\bigcap_{S \in F} SU \neq \emptyset$.
- We set $N_S = \{ \mathbf{p} \in Sa(G) : S \notin \mathbf{p} \}$ and $C_S = \{ \mathbf{p} \in Sa(G) : S \in \mathbf{p} \}$. The topology on Sa(G) given by basis $\{N_S : S \subseteq G \text{ not dense} \}$ is compact Hausdorff.

- G always denotes a (Hausdorff) topological group with identity e_G . \mathcal{N}_G denotes a base of symmetric identity neighborhoods.
- Sa(G), the Samuel compactification of G, is the set of near ultrafilters on G, maximal $\mathbf{p} \subseteq \mathcal{P}(G)$ with the property that for any $F \in [\mathbf{p}]^{<\omega}$ and $U \in \mathcal{N}_G$, we have $\bigcap_{S \in F} SU \neq \emptyset$.
- We set $N_S = \{ \mathbf{p} \in \mathrm{Sa}(G) : S \notin \mathbf{p} \}$ and $C_S = \{ \mathbf{p} \in \mathrm{Sa}(G) : S \in \mathbf{p} \}$. The topology on $\mathrm{Sa}(G)$ given by basis $\{N_S : S \subseteq G \text{ not dense} \}$ is compact Hausdorff.
- G acts on Sa(G) in the natural way. Any minimal subflow of Sa(G) is isomorphic to the universal minimal flow M(G).

通 と く ヨ と く ヨ と …

Definition

A near filter on G is any $Q \subseteq \mathcal{P}(G) \setminus \{\emptyset\}$ satisfying: $\mathbf{I} \ G \in \mathbf{Q}.$

Definition

A near filter on G is any $\mathbb{Q} \subseteq \mathcal{P}(G) \setminus \{\emptyset\}$ satisfying: **1** $G \in \mathbb{Q}$. **2** If $F \in [\mathbb{Q}]^{<\omega}$ and $U \in \mathcal{N}_G$, then $\bigcap_{S \in F} SU \in \mathbb{Q}$.

Definition

A near filter on G is any $Q \subseteq \mathcal{P}(G) \setminus \{\emptyset\}$ satisfying:

- $\mathbf{1} \ G \in \mathsf{Q}.$
- **2** If $F \in [\mathbb{Q}]^{<\omega}$ and $U \in \mathcal{N}_G$, then $\bigcap_{S \in F} SU \in \mathbb{Q}$.
- **3** If $S \subseteq G$ satisfies $SU \in \mathsf{Q}$ for every $U \in \mathcal{N}_G$, then $S \in \mathsf{Q}$.

Definition

A near filter on G is any $\mathbb{Q} \subseteq \mathcal{P}(G) \setminus \{\emptyset\}$ satisfying: **1** $G \in \mathbb{Q}$. **2** If $F \in [\mathbb{Q}]^{<\omega}$ and $U \in \mathcal{N}_G$, then $\bigcap_{S \in F} SU \in \mathbb{Q}$. **3** If $S \subseteq G$ satisfies $SU \in \mathbb{Q}$ for every $U \in \mathcal{N}_G$, then $S \in \mathbb{Q}$.

Fact (Exercise 1)

There is a 1-1 correspondence between closed subsets of Sa(G) and near filters on G.

크

Definition

Call $S \subseteq G$ thick if for every $F \in [G]^{<\omega}$, we have $\bigcap_{f \in F} Sf^{-1} = \emptyset$. Equivalently, iff for every $F \in [G]^{<\omega}$, there is $g \in G$ with $gF \subseteq S$.

Definition

Call $S \subseteq G$ thick if for every $F \in [G]^{<\omega}$, we have $\bigcap_{f \in F} Sf^{-1} = \emptyset$. Equivalently, iff for every $F \in [G]^{<\omega}$, there is $g \in G$ with $gF \subseteq S$.

Call $S \subseteq G$ pre-thick if for every $U \in \mathcal{N}_G$, SU is thick.

Definition

Call $S \subseteq G$ thick if for every $F \in [G]^{<\omega}$, we have $\bigcap_{f \in F} Sf^{-1} = \emptyset$. Equivalently, iff for every $F \in [G]^{<\omega}$, there is $g \in G$ with $gF \subseteq S$.

Call $S \subseteq G$ pre-thick if for every $U \in \mathcal{N}_G$, SU is thick.

Fact (Exercise 2)

 $C_S \subseteq \text{Sa}(G)$ contains a subflow iff $S \subseteq G$ is pre-thick. In particular, S is pre-thick iff the collection $\{Sg : g \in G\}$ has the near FIP.

 $M \subseteq \text{Sa}(G)$ is a minimal subflow iff Q_M is a near filter which is maximal with respect to all members being pre-thick.

 $M \subseteq \operatorname{Sa}(G)$ is a minimal subflow iff Q_M is a near filter which is maximal with respect to all members being pre-thick.

Call these maximal pre-thick near filters.

 $M \subseteq \operatorname{Sa}(G)$ is a minimal subflow iff Q_M is a near filter which is maximal with respect to all members being pre-thick.

Call these maximal pre-thick near filters.

Proof sketch.

If Q is a near filter and some $S \in Q$ is not pre-thick, then C_S does not contain a subflow, so also $\bigcap_{S \in Q} C_S$ cannot contain a subflow.

 $M \subseteq \operatorname{Sa}(G)$ is a minimal subflow iff Q_M is a near filter which is maximal with respect to all members being pre-thick.

Call these maximal pre-thick near filters.

Proof sketch.

If Q is a near filter and some $S \in Q$ is not pre-thick, then C_S does not contain a subflow, so also $\bigcap_{S \in Q} C_S$ cannot contain a subflow.

If Q is a near filter all of whose members are pre-thick, first note that $\bigcap_{S \in \mathbb{Q}} C_S = \bigcap_{S \in \mathbb{Q}, U \in \mathcal{N}_G} C_{SU}$. Right hand side gives a directed intersection of compact sets containing subflows.

Definition

Fix \mathcal{L} -structures $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$ and $0 < r < \omega$. We write $\mathbf{C} \to (\mathbf{B})_r^{\mathbf{A}}$ if whenever $\gamma \colon \text{Emb}(\mathbf{A}, \mathbf{C}) \to r$ is a coloring, there is $x \in \text{Emb}(\mathbf{B}, \mathbf{C})$ with $|\{\gamma(x \circ f) : f \in \text{Emb}(\mathbf{A}, \mathbf{B})\}| = 1$.

Definition

Fix \mathcal{L} -structures $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$ and $0 < r < \omega$. We write $\mathbf{C} \rightarrow (\mathbf{B})_r^{\mathbf{A}}$ if whenever $\gamma \colon \text{Emb}(\mathbf{A}, \mathbf{C}) \rightarrow r$ is a coloring, there is $x \in \text{Emb}(\mathbf{B}, \mathbf{C})$ with $|\{\gamma(x \circ f) : f \in \text{Emb}(\mathbf{A}, \mathbf{B})\}| = 1$.

We say that **A** is a Ramsey object if for every $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and $0 < r < \omega$, there is $\mathbf{B} \leq \mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \to (\mathbf{B})_r^{\mathbf{A}}$. \mathcal{K} has the Ramsey property if every $\mathbf{A} \in \mathcal{K}$ is a Ramsey object.

Definition

Fix \mathcal{L} -structures $\mathbf{A} \leq \mathbf{B} \leq \mathbf{C}$ and $0 < r < \omega$. We write $\mathbf{C} \rightarrow (\mathbf{B})_r^{\mathbf{A}}$ if whenever $\gamma \colon \text{Emb}(\mathbf{A}, \mathbf{C}) \rightarrow r$ is a coloring, there is $x \in \text{Emb}(\mathbf{B}, \mathbf{C})$ with $|\{\gamma(x \circ f) : f \in \text{Emb}(\mathbf{A}, \mathbf{B})\}| = 1$.

We say that **A** is a Ramsey object if for every $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and $0 < r < \omega$, there is $\mathbf{B} \leq \mathbf{C} \in \mathcal{K}$ such that $\mathbf{C} \to (\mathbf{B})_r^{\mathbf{A}}$. \mathcal{K} has the Ramsey property if every $\mathbf{A} \in \mathcal{K}$ is a Ramsey object.

Fact (Exercise 3)

In the definition of RP, equivalent to only consider r = 2.

ъ

■ finite linear orders (Ramsey 1930)

- finite linear orders (Ramsey 1930)
- finite linearly ordered graphs (Abramson-Harrington 1978)

- finite linear orders (Ramsey 1930)
- finite linearly ordered graphs (Abramson-Harrington 1978)
- finite linearly ordered relational structures defined by forbidding a class of finite irreducible substructures (Nešetřil-Rödl 1983)

- finite linear orders (Ramsey 1930)
- finite linearly ordered graphs (Abramson-Harrington 1978)
- finite linearly ordered relational structures defined by forbidding a class of finite irreducible substructures (Nešetřil-Rödl 1983)
- finite anti-lexicographically ordered Boolean algebras (not relational) (Graham-Rothschild 1971)

Andy Zucker BRD dynamics II

Definition

Given $\mathbf{A} \in \mathcal{K}$, we call $T \subseteq \text{Emb}_{\mathbf{A}}$ thick if for any $\mathbf{B} \in \mathcal{K}$ with $\mathbf{A} \leq \mathbf{B}$, there is $x \in \text{Emb}_{\mathbf{B}}$ with $x \circ \text{Emb}(\mathbf{A}, \mathbf{B}) \subseteq T$.

Definition

Given $\mathbf{A} \in \mathcal{K}$, we call $T \subseteq \text{Emb}_{\mathbf{A}}$ thick if for any $\mathbf{B} \in \mathcal{K}$ with $\mathbf{A} \leq \mathbf{B}$, there is $x \in \text{Emb}_{\mathbf{B}}$ with $x \circ \text{Emb}(\mathbf{A}, \mathbf{B}) \subseteq T$.

Fact (Exercise 4)

 $\mathbf{A} \in \mathcal{K}$ is a Ramsey object iff for every $\mathbf{B} \in \mathcal{K}$, $0 < r < \omega$, thick $T \subseteq \text{Emb}_{\mathbf{A}}$, and coloring $\gamma \colon T \to r$, there is $x \in \text{Emb}_{\mathbf{B}}$ with $|\{\gamma(x \circ f) \colon f \in \text{Emb}(\mathbf{A}, \mathbf{B})\}| = 1.$

Definition

Given $\mathbf{A} \in \mathcal{K}$, we call $T \subseteq \text{Emb}_{\mathbf{A}}$ thick if for any $\mathbf{B} \in \mathcal{K}$ with $\mathbf{A} \leq \mathbf{B}$, there is $x \in \text{Emb}_{\mathbf{B}}$ with $x \circ \text{Emb}(\mathbf{A}, \mathbf{B}) \subseteq T$.

Fact (Exercise 4)

 $\mathbf{A} \in \mathcal{K}$ is a Ramsey object iff for every $\mathbf{B} \in \mathcal{K}$, $0 < r < \omega$, thick $T \subseteq \text{Emb}_{\mathbf{A}}$, and coloring $\gamma \colon T \to r$, there is $x \in \text{Emb}_{\mathbf{B}}$ with $|\{\gamma(x \circ f) : f \in \text{Emb}(\mathbf{A}, \mathbf{B})\}| = 1.$

Hence $A \in K$ is a Ramsey object iff the collection \mathcal{T}_A of thick subsets of Emb_A is a coideal.

If $S \subseteq G$, identify $SU_{\mathbf{A}}$ with $\{s|_{\mathbf{A}} : s \in S\} \subseteq \text{Emb}_{\mathbf{A}}$. Note that $SU_{\mathbf{A}} \subseteq G$ is thick iff $SU_{\mathbf{A}} \subseteq \text{Emb}_{\mathbf{A}}$ is.

If $S \subseteq G$, identify $SU_{\mathbf{A}}$ with $\{s|_{\mathbf{A}} : s \in S\} \subseteq \text{Emb}_{\mathbf{A}}$. Note that $SU_{\mathbf{A}} \subseteq G$ is thick iff $SU_{\mathbf{A}} \subseteq \text{Emb}_{\mathbf{A}}$ is.

Recall that we have $Sa(G) = \varprojlim \beta Emb_{\mathbf{A}}$.

If $S \subseteq G$, identify $SU_{\mathbf{A}}$ with $\{s|_{\mathbf{A}} : s \in S\} \subseteq \text{Emb}_{\mathbf{A}}$. Note that $SU_{\mathbf{A}} \subseteq G$ is thick iff $SU_{\mathbf{A}} \subseteq \text{Emb}_{\mathbf{A}}$ is.

Recall that we have $Sa(G) = \varprojlim \beta Emb_{\mathbf{A}}$.

Theorem (Kechris-Pestov-Todorčević 2005)

M(G) is a singleton, i.e. G is extremely amenable, iff K has the Ramsey Property.

If $S \subseteq G$, identify $SU_{\mathbf{A}}$ with $\{s|_{\mathbf{A}} : s \in S\} \subseteq \text{Emb}_{\mathbf{A}}$. Note that $SU_{\mathbf{A}} \subseteq G$ is thick iff $SU_{\mathbf{A}} \subseteq \text{Emb}_{\mathbf{A}}$ is.

Recall that we have $Sa(G) = \varprojlim \beta Emb_{\mathbf{A}}$.

Theorem (Kechris-Pestov-Todorčević 2005)

M(G) is a singleton, i.e. G is extremely amenable, iff K has the Ramsey Property.

Of course, this happens exactly when Sa(G) has a fixed point...

Suppose \mathcal{K} has the Ramsey Property. Fix finite $\mathbf{A}_0 \subseteq \mathbf{A}_1 \subseteq \cdots$ with $\bigcup_{n < \omega} \mathbf{A}_n = \mathbf{K}$. Write Emb_n , U_n , \mathcal{T}_n , etc. RP tells us that each \mathcal{T}_n is a coideal.

Suppose \mathcal{K} has the Ramsey Property. Fix finite $\mathbf{A}_0 \subseteq \mathbf{A}_1 \subseteq \cdots$ with $\bigcup_{n < \omega} \mathbf{A}_n = \mathbf{K}$. Write Emb_n , U_n , \mathcal{T}_n , etc. RP tells us that each \mathcal{T}_n is a coideal.

Inductively define $p_n \in \beta \text{Emb}_n$ as follows. Let $p_0 \subseteq \mathcal{T}_0$ be any ultrafilter.

Suppose \mathcal{K} has the Ramsey Property. Fix finite $\mathbf{A}_0 \subseteq \mathbf{A}_1 \subseteq \cdots$ with $\bigcup_{n < \omega} \mathbf{A}_n = \mathbf{K}$. Write Emb_n , U_n , \mathcal{T}_n , etc. RP tells us that each \mathcal{T}_n is a coideal.

Inductively define $p_n \in \beta \text{Emb}_n$ as follows. Let $p_0 \subseteq \mathcal{T}_0$ be any ultrafilter.

If thick ultrafilter p_n has been defined, first form the filter $q_{n+1} = \langle \{x \in \text{Emb}_{n+1} : x | \mathbf{A}_n \in S\} : S \in p_n \rangle$. Then $q_{n+1} \subseteq \mathcal{T}_{n+1}$ is a thick filter, and extends to an ultrafilter $p_{n+1} \subseteq \mathcal{T}_{n+1}$.

Suppose \mathcal{K} has the Ramsey Property. Fix finite $\mathbf{A}_0 \subseteq \mathbf{A}_1 \subseteq \cdots$ with $\bigcup_{n < \omega} \mathbf{A}_n = \mathbf{K}$. Write Emb_n , U_n , \mathcal{T}_n , etc. RP tells us that each \mathcal{T}_n is a coideal.

Inductively define $p_n \in \beta \text{Emb}_n$ as follows. Let $p_0 \subseteq \mathcal{T}_0$ be any ultrafilter.

If thick ultrafilter p_n has been defined, first form the filter $q_{n+1} = \langle \{x \in \text{Emb}_{n+1} : x | \mathbf{A}_n \in S\} : S \in p_n \rangle$. Then $q_{n+1} \subseteq \mathcal{T}_{n+1}$ is a thick filter, and extends to an ultrafilter $p_{n+1} \subseteq \mathcal{T}_{n+1}$.

Define $\mathbf{p} = \{S \subseteq G : \forall n < \omega (SU_n \in p_n)\}$. Then $\mathbf{p} \in Sa(G)$ and consists entirely of pre-thick sets.

Definition

Given $\mathbf{A} \in \mathcal{K}$, $S \subseteq \text{Emb}_{\mathbf{A}}$ is syndetic if $\text{Emb}_{\mathbf{A}} \setminus S$ is not thick.

Definition

Given $\mathbf{A} \in \mathcal{K}$, $S \subseteq \text{Emb}_{\mathbf{A}}$ is syndetic if $\text{Emb}_{\mathbf{A}} \setminus S$ is not thick.

Given $0 < r < \omega$, a coloring $\gamma \colon \text{Emb}_{\mathbf{A}} \to r$ is syndetic if $\gamma^{-1}(\{i\})$ is syndetic for every i < r.

Definition

Given $\mathbf{A} \in \mathcal{K}$, $S \subseteq \text{Emb}_{\mathbf{A}}$ is syndetic if $\text{Emb}_{\mathbf{A}} \setminus S$ is not thick.

Given $0 < r < \omega$, a coloring $\gamma \colon \text{Emb}_{\mathbf{A}} \to r$ is syndetic if $\gamma^{-1}(\{i\})$ is syndetic for every i < r.

Fact (Exercise 5)

If \mathcal{K} does not have RP, then for some $\mathbf{A} \in \mathcal{K}$, there is a syndetic 2-coloring of Emb_A. If $\gamma \in 2^{\text{Emb}_{\mathbf{A}}}$ is a syndetic coloring and G acts on $2^{\text{Emb}_{\mathbf{A}}}$ via $(\delta \cdot g)(f) = \delta(g \circ f)$, then $\overline{\gamma \cdot G}$ is a G-flow with no fixed points.

크

ъ

Definition

 $\mathbf{A} \in \mathcal{K}$ has finite small Ramsey degree if there is $t_{\mathbf{A}} < \omega$ such that for any $\mathbf{B} \in \mathcal{K}$ with $\mathbf{A} \leq \mathbf{B}$, $0 < r < \omega$, and coloring $\gamma \colon \text{Emb}_{\mathbf{A}} \to r$, there is $x \in \text{Emb}_{\mathbf{B}}$ with $|\{\gamma(x \circ f) : f \in \text{Emb}(\mathbf{A}, \mathbf{B})\}| \leq t_{\mathbf{A}}$. The least such $t_{\mathbf{A}}$ is called the small Ramsey degree (SRD) of \mathbf{A} .

Definition

 $\mathbf{A} \in \mathcal{K}$ has finite small Ramsey degree if there is $t_{\mathbf{A}} < \omega$ such that for any $\mathbf{B} \in \mathcal{K}$ with $\mathbf{A} \leq \mathbf{B}$, $0 < r < \omega$, and coloring $\gamma \colon \text{Emb}_{\mathbf{A}} \to r$, there is $x \in \text{Emb}_{\mathbf{B}}$ with $|\{\gamma(x \circ f) : f \in \text{Emb}(\mathbf{A}, \mathbf{B})\}| \leq t_{\mathbf{A}}$. The least such $t_{\mathbf{A}}$ is called the small Ramsey degree (SRD) of \mathbf{A} .

The definition can be completely finitized, but we go the other way: **A** has SRD $t_{\mathbf{A}}$ iff for any $0 < r < \omega$ and coloring $\gamma \colon \text{Emb}_{\mathbf{A}} \to r$, there is $I \subseteq r$ with $|I| \leq t_{\mathbf{A}}$ and $\gamma^{-1}(I)$ thick.

Definition

 $\mathbf{A} \in \mathcal{K}$ has finite small Ramsey degree if there is $t_{\mathbf{A}} < \omega$ such that for any $\mathbf{B} \in \mathcal{K}$ with $\mathbf{A} \leq \mathbf{B}$, $0 < r < \omega$, and coloring $\gamma \colon \text{Emb}_{\mathbf{A}} \to r$, there is $x \in \text{Emb}_{\mathbf{B}}$ with $|\{\gamma(x \circ f) : f \in \text{Emb}(\mathbf{A}, \mathbf{B})\}| \leq t_{\mathbf{A}}$. The least such $t_{\mathbf{A}}$ is called the small Ramsey degree (SRD) of \mathbf{A} .

The definition can be completely finitized, but we go the other way: **A** has SRD $t_{\mathbf{A}}$ iff for any $0 < r < \omega$ and coloring $\gamma \colon \text{Emb}_{\mathbf{A}} \to r$, there is $I \subseteq r$ with $|I| \leq t_{\mathbf{A}}$ and $\gamma^{-1}(I)$ thick.

In particular, there is a thick filter on $\text{Emb}_{\mathbf{A}}$ corresponding to a finite closed subset of $\beta \text{Emb}_{\mathbf{A}}$ of size exactly $t_{\mathbf{A}}$.

The following are equivalent. M(G) is metrizable.

크

・四・・モン・・モン

The following are equivalent.

- **1** M(G) is metrizable.
- **2** \mathcal{K} has finite small Ramsey degrees.

The following are equivalent.

- **1** M(G) is metrizable.
- **2** \mathcal{K} has finite small Ramsey degrees.
- **3** *K* admits a pre-compact, reasonable, minimal expansion class with the RP.

The following are equivalent.

- **1** M(G) is metrizable.
- **2** \mathcal{K} has finite small Ramsey degrees.
- **3** *K* admits a pre-compact, reasonable, minimal expansion class with the RP.

In this case, If $M \subseteq \operatorname{Sa}(G) = \varprojlim \beta \operatorname{Emb}_{\mathbf{A}}$ is any minimal subflow and $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, then $|\{\mathbf{p}|_{\mathbf{A}} : \mathbf{p} \in M\}| = t_{\mathbf{A}}$.

The following are equivalent.

- **1** M(G) is metrizable.
- **2** \mathcal{K} has finite small Ramsey degrees.
- **3** *K* admits a pre-compact, reasonable, minimal expansion class with the RP.

In this case, If $M \subseteq \operatorname{Sa}(G) = \lim_{i \to \infty} \beta \operatorname{Emb}_{\mathbf{A}}$ is any minimal subflow and $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, then $|\{\mathbf{p}|_{\mathbf{A}} : \mathbf{p} \in M\}| = t_{\mathbf{A}}$.

 $(3) \Rightarrow (1)$ appears in KPT. $(1) \Rightarrow (2)$ follows from considerations on the previous slide. For $(2) \Rightarrow (3)$ we present a variant of a simpler proof due to Nguyen Van Thé.

Definition

Given $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and finite colorings $\gamma_{\mathbf{A}}, \gamma_{\mathbf{B}}$ of $\text{Emb}_{\mathbf{A}}, \text{Emb}_{\mathbf{B}}$, respectively, we say $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ iff whenever $f \in \text{Emb}(\mathbf{A}, \mathbf{B})$ and $x, y \in \text{Emb}_{\mathbf{B}}$ satisfy $\gamma_{\mathbf{B}}(x) = \gamma_{\mathbf{B}}(y)$, then $\gamma_{\mathbf{A}}(x \circ f) = \gamma_{\mathbf{B}}(y \circ f)$.

Definition

Given $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and finite colorings $\gamma_{\mathbf{A}}, \gamma_{\mathbf{B}}$ of $\text{Emb}_{\mathbf{A}}, \text{Emb}_{\mathbf{B}}$, respectively, we say $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ iff whenever $f \in \text{Emb}(\mathbf{A}, \mathbf{B})$ and $x, y \in \text{Emb}_{\mathbf{B}}$ satisfy $\gamma_{\mathbf{B}}(x) = \gamma_{\mathbf{B}}(y)$, then $\gamma_{\mathbf{A}}(x \circ f) = \gamma_{\mathbf{B}}(y \circ f)$.

A rephrase of Ramsey degree: **A** has Ramsey degree $t_{\mathbf{A}}$ if this is least so that for any finite coloring γ of $\text{Emb}_{\mathbf{A}}$, there is $\gamma' \in \overline{\gamma \cdot G}$ which takes at most $t_{\mathbf{A}}$ values.

Definition

Given $\mathbf{A} \leq \mathbf{B} \in \mathcal{K}$ and finite colorings $\gamma_{\mathbf{A}}, \gamma_{\mathbf{B}}$ of $\text{Emb}_{\mathbf{A}}, \text{Emb}_{\mathbf{B}}$, respectively, we say $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ iff whenever $f \in \text{Emb}(\mathbf{A}, \mathbf{B})$ and $x, y \in \text{Emb}_{\mathbf{B}}$ satisfy $\gamma_{\mathbf{B}}(x) = \gamma_{\mathbf{B}}(y)$, then $\gamma_{\mathbf{A}}(x \circ f) = \gamma_{\mathbf{B}}(y \circ f)$.

A rephrase of Ramsey degree: **A** has Ramsey degree $t_{\mathbf{A}}$ if this is least so that for any finite coloring γ of Emb_A, there is $\gamma' \in \overline{\gamma \cdot G}$ which takes at most $t_{\mathbf{A}}$ values.

In particular, if $\mathbf{A} \in \mathcal{K}$ has small Ramsey degree $t_{\mathbf{A}}$, then there is a syndetic $t_{\mathbf{A}}$ -coloring of Emb_A.

Fact $((2) \Rightarrow (3)$ of theorem)

If each $\mathbf{A} \in \mathcal{K}$ has finite small Ramsey degree $t_{\mathbf{A}}$, then there are $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ a syndetic $t_{\mathbf{A}}$ -coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$.

æ

Fact $((2) \Rightarrow (3)$ of theorem)

If each $\mathbf{A} \in \mathcal{K}$ has finite small Ramsey degree $t_{\mathbf{A}}$, then there are $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ a syndetic $t_{\mathbf{A}}$ -coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$.

Key idea: Any coloring in the orbit closure of a syndetic *t*-coloring is still a syndetic *t*-coloring.

Fact $((2) \Rightarrow (3)$ of theorem)

If each $\mathbf{A} \in \mathcal{K}$ has finite small Ramsey degree $t_{\mathbf{A}}$, then there are $\{\gamma_{\mathbf{A}} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ with each $\gamma_{\mathbf{A}}$ a syndetic $t_{\mathbf{A}}$ -coloring and with $\gamma_{\mathbf{A}} \ll \gamma_{\mathbf{B}}$ whenever $\mathbf{A} \leq \mathbf{B}$.

Key idea: Any coloring in the orbit closure of a syndetic *t*-coloring is still a syndetic *t*-coloring.

Start with any collection $\{\gamma_{\mathbf{A}}^{0} : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$ of syndetic $t_{\mathbf{A}}$ -colorings. Enumerate all pairs from $[\mathbf{K}]^{<\omega}$ with $\mathbf{A} \leq \mathbf{B}$.

• For every $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, $\lim_k (\gamma_{\mathbf{A}}^n \cdot g_k)$ exists.

• For every $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, $\lim_k (\gamma_{\mathbf{A}}^n \cdot g_k)$ exists.

• $\lim_{k} (\delta \cdot g_k) := \delta'$ exists and takes at most $t_{\mathbf{B}_n}$ values.

• For every $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, $\lim_k (\gamma_{\mathbf{A}}^n \cdot g_k)$ exists.

• $\lim_{k} (\delta \cdot g_k) := \delta'$ exists and takes at most $t_{\mathbf{B}_n}$ values.

Note that δ' depends only on $\gamma_{\mathbf{B}_n}^{n+1}$. It follows that $\gamma_{\mathbf{B}_n}^{n+1} \ll \gamma_{\mathbf{A}_n}^{n+1}$.

• For every $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, $\lim_k (\gamma_{\mathbf{A}}^n \cdot g_k)$ exists.

• $\lim_{k} (\delta \cdot g_k) := \delta'$ exists and takes at most $t_{\mathbf{B}_n}$ values.

Note that δ' depends only on $\gamma_{\mathbf{B}_n}^{n+1}$. It follows that $\gamma_{\mathbf{B}_n}^{n+1} \ll \gamma_{\mathbf{A}_n}^{n+1}$.

Let $(\gamma_{\mathbf{A}})_{\mathbf{A}\in[\mathbf{K}]^{<\omega}} \in \prod_{\mathbf{A}\in[\mathbf{K}]^{<\omega}} t_{\mathbf{A}}^{\operatorname{Emb}_{\mathbf{A}}}$ be any limit point of the sequence $(\gamma_{\mathbf{A}}^{n})_{\mathbf{A}\in[\mathbf{K}]^{<\omega}}$. Each $\gamma_{\mathbf{A}}$ is in $\overline{\gamma_{\mathbf{A}}^{0} \cdot G}$, so is $t_{\mathbf{A}}$ -syndetic. As \ll is a closed condition, we get the result.