
Big Ramsey degrees, structures, dynamics I

Andy Zucker
Department of Pure Mathematics

University of Waterloo

January/February 2024
Winter School

Hejnice, Czech Republic

Andy Zucker BRD dynamics I



Outline of part I.

Introduction to topological dynamics.

Construction of the Samuel compactification and the
universal minimal flow – with lots of exercises :)

First-order structures and Fräıssé classes

The Samuel compactification of Aut(K).
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The Samuel compactification of Aut(K).

Andy Zucker BRD dynamics I



Outline of part I.

Introduction to topological dynamics.

Construction of the Samuel compactification and the
universal minimal flow – with lots of exercises :)

First-order structures and Fräıssé classes
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G - (Hausdorff) topological group. Identity denoted by eG. NG

denotes a base of open symmetric neighborhoods of eG.

A right G-flow is a compact (Hausdorff) space and a continuous
map X ×G→ X satisfying x · eG = x and (x · g) · h = x · gh
whenever x ∈ X and g, h ∈ G.

If X,Y are G-flows, a G-map π : X → Y is a map which is
continuous and G-equivariant, i.e. π(x · g) = π(x) · g. We call π
a factor map if it is surjective.

A subflow of X is a non-empty, closed, G-invariant subspace.
An orbit of X is a subset of the form x ·G := {xg : g ∈ G} for
some x ∈ X.
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Definition

A G-flow X is minimal if the only subflow of X is X itself.
Equivalently, X is minimal iff every orbit is dense.

By Zorn’s lemma, every G-flow contains a minimal subflow.

Fact (Ellis 1960)

Every topological group admits a universal minimal flow, a
minimal G-flow which factors onto every other minimal G-flow.
Such a flow is unique up to isomorphism, and denoted M(G).
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Goal for next few slides: Construct M(G)

We first build the Samuel compactification of G (Samuel 1948).
Our approach is due to (Koçak-Strauss 1997).

Given p ⊆ P(G), we say that p has the near finite intersection
property (NFIP) if whenever F ∈ [p]<ω, and U ∈ NG, we have⋂

S∈F SU 6= ∅. We call p a near ultrafilter on G if it is maximal
under inclusion with respect to having the NFIP.

Let Sa(G) denote the set of near ultrafilters on G. Note that for
G discrete, we have Sa(G) = βG, the set of ultrafilters on G.
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Fact (Exercise 1)

Fix p ∈ Sa(G).

1 If S ⊆ G and S 6∈ p, then there is U ∈ NG with SU 6∈ p.

2 If S ∈ p, n < ω, and S0, ..., Sn−1 ⊆ S with
⋃

i<n Si dense in
S, then for some i < n, Si ∈ p.

Given S ⊆ G, let CS = {p ∈ Sa(G) : S ∈ p}, NS = Sa(G) \ CS .
Note NS ∩NT = NS∪T . Equip Sa(G) with the topology given
by basis {NS : S ⊆ G not dense}.

Fact (Exercise 2)

This topology is compact Hausdorff.
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G acts on Sa(G) as expected; if p ∈ Sa(G), g ∈ G, and S ⊆ G,
we set S ∈ pg iff Sg−1 ∈ p.

Fact (Exercise 3)

This action is continuous, i.e. Sa(G) is a G-flow.

For each g ∈ G, set g̃ := {S ⊆ G : g ∈ S} ∈ Sa(G).

Fact (Exercise 4)

The map g → g̃ is a homeomorphism onto its image. Hence we
drop the g̃ notation and simply identify G ⊆ Sa(G).
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Theorem

Whenever X is a G-flow and x ∈ X, there is a (unique) G-map
λx : Sa(G)→ X satisfying λx(eG) = x.

Proof sketch.

Define λx where given p ∈ Sa(G), we let λx(p) be the unique
member of

⋂
S∈p x · S.

The proof that this set has at most one member uses Exercise
1.1, and the proof that there is at least one member uses
Exercise 1.2.

For continuity, if A ⊆ X is open, then

λ−1x (A) =
⋃
{N{g∈G:xg∈X\B} : B ⊆ X open and B ⊆ A}.

λx is clearly G-equivariant.
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To build a universal minimal flow, let M ⊆ Sa(G) be any
minimal subflow. If X is a minimal G-flow, pick any x ∈ X.
Then λx|M : M → X is a G-map. As X is minimal, it must be
onto, i.e. a factor map.

Uniqueness of M(G) is a bit trickier. The classical proof involves
endowing Sa(G) with the structure of a compact left-topological
semigroup to show that any minimal M ⊆ Sa(G) is coalescent,
meaning that any G-map from M to M is an isomorphism.

(Gutman-Li 2013) provides a direct argument that any universal
minimal flow M is coalescent (idea: if not, build a really long
inverse limit, using universality to keep construction going. This
inverse limit is still minimal, but has too large cardinality).
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A relational language is a set L = {Ri : i ∈ I} of relation
symbols. Each Ri comes with an arity 1 ≤ ni < ω.

An L-structure A = 〈A, (RA
i )i∈I〉 is a set A and for each i ∈ I,

a distinguished subset RA
i ⊆ Ani . Typically denote structures

in bold and use the un-bold letter for the underlying set.

If A,B are L-structures, an embedding of A into B is a map
f : A→ B such that for each i ∈ I and (a0, ..., ani−1) =∈ Ani ,
we have (a0, ..., ani−1) ∈ RA

i ⇔ (f(a0), ..., f(ani−1)) ∈ RB
i .

Emb(A,B) – embeddings A to B.

Surjective embeddings are called isomorphisms, and an
isomorphism from A to A is an automorphism. Write Aut(A)
for the group of automorphisms of A. A is a substructure of B
if A ⊆ B and the inclusion is an embedding.
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Write Fin(L) for the class of finite L-structures. Fix a
countable L and a countably infinite L-structure K. We set
Age(K) = {A ∈ Fin(L) : Emb(A,K) 6= ∅}.

Definition

We say that K is ultrahomogeneous if whenever A ∈ Age(K)
and f0, f1 ∈ Emb(A,K), there is g ∈ Aut(K) with g ◦ f0 = f1.

A weaker-looking, but equivalent property:

Fact (Exercise 5)

K is ultrahomogeneous iff K has the extension property
(ExtP): whenever whenever A ⊆ B ∈ Age(K) and
f ∈ Emb(A,K), there is g ∈ Emb(B,K) with g|A = f .
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Definition

A Fräıssé class of L-structures is a class K ⊆ Fin(L) which is
closed under isomorphism, contains countably many
isomorphism types, contains arbitrarily large finite L-structures,
and satisfies the following three properties:

Hereditary Property (HP): B ∈ K and A ⊆ B⇒ A ∈ K.

Joint Embedding Property: If A,B ∈ K, then there is
C ∈ K with both Emb(A,C) and Emb(B,C) non-empty.

Amalgamation Property: If A,B,C ∈ K, f ∈ Emb(A,B),
and g ∈ Emb(A,C), then there are D ∈ K,
r ∈ Emb(B,D), and s ∈ Emb(C,D) with r ◦ f = s ◦ g.

Fact (Exercise 6)

If K is a countably infinite, ultrahomogeneous L-structure, then
Age(K) is a Fräıssé class. Call such K Fräıssé structures.
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Theorem (Fräıssé 1954)

If K is a Fräıssé class, then there is a Fräıssé structure K such
that Age(K) = K. Such a K is unique up to isomorphism.

From now on, fix a Fräıssé structure K. Given A ∈ Age(K),
write EmbA for Emb(A,K).
[K]<ω := finite substructures of K.

View G := Aut(K) as a topological group by setting
NG = {Stab(A) : A ∈ [K]<ω}. Sometimes called the pointwise
convergence topology. Write UA for Stab(A)
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Which topological groups have the form Aut(K) for a Fräıssé
structure K? These are all closed subgroups of S∞, the group of
all permutations of ω with the pointwise convergence topology.

Fact (Exercise 7)

If G is a closed subgroup of S∞, then there is a countable
relational language L and a Fräıssé L-structure on underlying
set ω such that G = Aut(K).

By a result of (Becker-Kechris 1994), the topological groups
isomorphic to closed subgroups of S∞ are exactly those Polish
groups which are non-Archimedean, i.e. admit a base at eG of
open subgroups.
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Key consequence of ultrahomogeneity: Given A ∈ [K]<ω,
one-one correspondence between G/UA and EmbA.

If S ⊆ G, we can thus identify SUA with the subset
{f ∈ EmbA : ∃ g ∈ S with g|A = f}.

In particular, whenever p ∈ Sa(G), we have
p|A := {SUA : S ∈ p} ∈ βEmbA. Hence we can identify

Sa(G) ∼= lim←−βEmbA.

The inverse limit is with respect to the natural maps
βEmbB → βEmbA whenever A ⊆ B ∈ [K]<ω.

Given p ∈ Sa(G), g ∈ G, A ∈ [K]<ω, and S ⊆ EmbA, we have
S ∈ (pg)|A iff {f ◦ g−1 : f ∈ S} ∈ p|gA.
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