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Outline of part I.

Introduction to topological dynamics.

Construction of the Samuel compactification and the
universal minimal flow — with lots of exercises :)

m First-order structures and Fralssé classes

m The Samuel compactification of Aut(K).
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G - (Hausdorfl) topological group. Identity denoted by eq. Ng
denotes a base of open symmetric neighborhoods of eg.
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G - (Hausdorfl) topological group. Identity denoted by eq. Ng
denotes a base of open symmetric neighborhoods of eg.

A right G-flow is a compact (Hausdorff) space and a continuous
map X X G — X satisfying z-eqg =x and (z-g)-h=x-gh
whenever x € X and g,h € G.
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A right G-flow is a compact (Hausdorff) space and a continuous
map X X G — X satisfying z-eqg =x and (z-g)-h=x-gh
whenever x € X and g,h € G.

If X,Y are G-flows, a G-map 7: X — Y is a map which is
continuous and G-equivariant, i.e. 7(x - g) = w(z)-g. We call =
a factor map if it is surjective.
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G - (Hausdorfl) topological group. Identity denoted by eq. Ng
denotes a base of open symmetric neighborhoods of eg.

A right G-flow is a compact (Hausdorff) space and a continuous
map X X G — X satisfying z-eqg =x and (z-g)-h=x-gh
whenever x € X and g,h € G.

If X,Y are G-flows, a G-map 7: X — Y is a map which is
continuous and G-equivariant, i.e. 7(x - g) = w(z)-g. We call =
a factor map if it is surjective.

A subflow of X is a non-empty, closed, G-invariant subspace.
An orbit of X is a subset of the form = - G := {zg: g € G} for
some x € X.
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A G-flow X is minimal if the only subflow of X is X itself.
Equivalently, X is minimal iff every orbit is dense.
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Definition
A G-flow X is minimal if the only subflow of X is X itself.
Equivalently, X is minimal iff every orbit is dense.

By Zorn’s lemma, every G-flow contains a minimal subflow.
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Definition
A G-flow X is minimal if the only subflow of X is X itself.
Equivalently, X is minimal iff every orbit is dense.

By Zorn’s lemma, every G-flow contains a minimal subflow.

Fact (Ellis 1960)

Every topological group admits a universal minimal flow, a
minimal G-flow which factors onto every other minimal G-flow.
Such a flow is unique up to isomorphism, and denoted M(G).
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Goal for next few slides: Construct M(G)
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We first build the Samuel compactification of G (Samuel 1948).
Our approach is due to (Kocak-Strauss 1997).

Given p C P(G), we say that p has the near finite intersection
property (NFIP) if whenever F' € [p]<“, and U € N, we have
Nger SU # 0. We call p a near ultrafilter on G if it is maximal
under inclusion with respect to having the NFIP.
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Goal for next few slides: Construct M(G)

We first build the Samuel compactification of G (Samuel 1948).
Our approach is due to (Kocak-Strauss 1997).

Given p C P(G), we say that p has the near finite intersection
property (NFIP) if whenever F' € [p]<“, and U € N, we have
Nger SU # 0. We call p a near ultrafilter on G if it is maximal
under inclusion with respect to having the NFIP.

Let Sa(G) denote the set of near ultrafilters on G. Note that for
G discrete, we have Sa(G) = G, the set of ultrafilters on G.
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Fact (Exercise 1)

Fix p € Sa(G).
If SC G and S € p, then there is U € Ng with SU & p.

Andy Zucker BRD dynamics I



Fact (Exercise 1)

Fix p € Sa(G).
If SC G and S € p, then there is U € Ng with SU & p.

If Sep,n<w,and Sy, ...,S,—1 €S with |
S, then for some i < n, S; € p.

i<n Si dense in
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Fact (Exercise 1)

Fix p € Sa(G).
If SC G and S € p, then there is U € Ng with SU & p.

If Se€p,n<w,and Sp,..., -1 € S with {J;_,, S; dense in
S, then for some i < n, S; € p.

Given S C G, let Cg = {p € Sa(G) : S € p}, Ng = Sa(G) \ Cs.
Note Ng N Ny = Ngyur. Equip Sa(G) with the topology given
by basis {Ng : S C G not dense}.
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Fact (Exercise 1)

Fix p € Sa(G).
If SC G and S € p, then there is U € Ng with SU & p.

If Se€p,n<w,and Sp,..., -1 € S with {J;_,, S; dense in
S, then for some i < n, S; € p.

Given S C G, let Cg = {p € Sa(G) : S € p}, Ng = Sa(G) \ Cs.
Note Ng N Ny = Ngyur. Equip Sa(G) with the topology given
by basis {Ng : S C G not dense}.

Fact (Exercise 2)

This topology is compact Hausdorft.
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G acts on Sa(G) as expected; if p € Sa(G), g € G, and S C G,
we set S € pg iff Sg~! € p.
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G acts on Sa(G) as expected; if p € Sa(G), g € G, and S C G,
we set S € pg iff Sg~! € p.

Fact (Exercise 3)

This action is continuous, i.e. Sa(G) is a G-flow.
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G acts on Sa(G) as expected; if p € Sa(G), g € G, and S C G,
we set S € pg iff Sg~! € p.

Fact (Exercise 3)

This action is continuous, i.e. Sa(G) is a G-flow.

For each g € G, set §:={S C G : g€ S} € Sa(q).
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G acts on Sa(G) as expected; if p € Sa(G), g € G, and S C G,
we set S € pg iff Sg~! € p.

Fact (Exercise 3)

This action is continuous, i.e. Sa(G) is a G-flow.

For each g € G, set §:={S C G : g€ S} € Sa(q).

Fact (Exercise 4)

The map g — g is a homeomorphism onto its image. Hence we
drop the g notation and simply identify G C Sa(G).
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Theorem

Whenever X is a G-flow and x € X, there is a (unique) G-map
Azt Sa(G) — X satisfying Az(eq) = .
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Theorem

Whenever X is a G-flow and x € X, there is a (unique) G-map
Az Sa(G) — X satisfying Az(eq) = x.

Proof sketch.

Define A\, where given p € Sa(G), we let A;(p) be the unique
member of (ge, - S.

Andy Zucker BRD dynamics I



Theorem

Whenever X is a G-flow and x € X, there is a (unique) G-map
Az Sa(G) — X satisfying Az(eq) = x.

Proof sketch.

Define A\, where given p € Sa(G), we let A;(p) be the unique
member of (ge, - S.

The proof that this set has at most one member uses Exercise
1.1, and the proof that there is at least one member uses
Exercise 1.2.

Andy Zucker BRD dynamics I



Theorem

Whenever X is a G-flow and x € X, there is a (unique) G-map
Az Sa(G) — X satisfying Az(eq) = x.

Proof sketch.

Define A\, where given p € Sa(G), we let A;(p) be the unique
member of (ge, - S.

The proof that this set has at most one member uses Exercise
1.1, and the proof that there is at least one member uses
Exercise 1.2.

For continuity, if A C X is open, then

A HA) = U{N{geG: zgex\B} : B € X open and B C A}.

T

Az is clearly G-equivariant. O
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To build a universal minimal flow, let M C Sa(G) be any
minimal subflow. If X is a minimal G-flow, pick any = € X.
Then A\y|psr: M — X is a G-map. As X is minimal, it must be
onto, i.e. a factor map.

Andy Zucker BRD dynamics I



To build a universal minimal flow, let M C Sa(G) be any
minimal subflow. If X is a minimal G-flow, pick any = € X.
Then A\y|psr: M — X is a G-map. As X is minimal, it must be
onto, i.e. a factor map.

Uniqueness of M(G) is a bit trickier. The classical proof involves
endowing Sa(G) with the structure of a compact left-topological
semigroup to show that any minimal M C Sa(G) is coalescent,
meaning that any G-map from M to M is an isomorphism.
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To build a universal minimal flow, let M C Sa(G) be any
minimal subflow. If X is a minimal G-flow, pick any = € X.
Then A\y|psr: M — X is a G-map. As X is minimal, it must be
onto, i.e. a factor map.

Uniqueness of M(G) is a bit trickier. The classical proof involves
endowing Sa(G) with the structure of a compact left-topological
semigroup to show that any minimal M C Sa(G) is coalescent,
meaning that any G-map from M to M is an isomorphism.

(Gutman-Li 2013) provides a direct argument that any universal
minimal flow M is coalescent (idea: if not, build a really long
inverse limit, using universality to keep construction going. This
inverse limit is still minimal, but has too large cardinality).
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A relational language is a set £ = {R; : i € I} of relation
symbols. Each R; comes with an arity 1 < n; < w.
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A relational language is a set £ = {R; : i € I} of relation
symbols. Each R; comes with an arity 1 < n; < w.

An L-structure A = (A, (R®*);er) is a set A and for each i € I,
a distinguished subset R;A* C A™. Typically denote structures

in bold and use the un-bold letter for the underlying set.
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A relational language is a set £ = {R; : i € I} of relation
symbols. Each R; comes with an arity 1 < n; < w.

An L-structure A = (A, (R®*);er) is a set A and for each i € I,
a distinguished subset R;A* C A™. Typically denote structures
in bold and use the un-bold letter for the underlying set.

If A, B are L-structures, an embedding of A into B is a map
f: A — B such that for each i € I and (ag, ..., an,—1) =€ A™,
we have (ag, ..., an,—1) € R* & (f(ao), ..., f(an,—1)) € RE.
Emb(A,B) — embeddings A to B.

Andy Zucker BRD dynamics I



A relational language is a set £ = {R; : i € I} of relation
symbols. Each R; comes with an arity 1 < n; < w.

An L-structure A = (A, (R®*);er) is a set A and for each i € I,
a distinguished subset R;A* C A™. Typically denote structures
in bold and use the un-bold letter for the underlying set.

If A, B are L-structures, an embedding of A into B is a map
f: A — B such that for each i € I and (ag, ..., an,—1) =€ A™,
we have (ag, ..., an,—1) € R* & (f(ao), ..., f(an,—1)) € RE.
Emb(A,B) — embeddings A to B.

Surjective embeddings are called isomorphisms, and an
isomorphism from A to A is an automorphism. Write Aut(A)
for the group of automorphisms of A. A is a substructure of B
if A C B and the inclusion is an embedding.
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Write Fin(L£) for the class of finite £-structures. Fix a

countable £ and a countably infinite L-structure K. We set
Age(K) = {A € Fin(£) : Emb(A,K) # 0}.
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Write Fin(£L) for the class of finite L-structures. Fix a
countable £ and a countably infinite L-structure K. We set
Age(K) = {A € Fin(£) : Emb(A,K) # 0}.

Definition
We say that K is ultrahomogeneous if whenever A € Age(K)
and fo, f1 € Emb(A,K), there is g € Aut(K) with go fo = fi.
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Write Fin(£L) for the class of finite L-structures. Fix a
countable £ and a countably infinite L-structure K. We set

Age(K) = {A € Fin(£) : Emb(A,K) # 0}.

Definition
We say that K is ultrahomogeneous if whenever A € Age(K)
and fo, f1 € Emb(A,K), there is g € Aut(K) with go fo = fi.

A weaker-looking, but equivalent property:

Fact (Exercise 5)

K is ultrahomogeneous iff K has the extension property
(ExtP): whenever whenever A C B € Age(K) and
f € Emb(A,K), there is g € Emb(B, K) with g|a = f.
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Definition

A Fraissé class of L-structures is a class K C Fin(£) which is
closed under isomorphism, contains countably many
isomorphism types, contains arbitrarily large finite L-structures,
and satisfies the following three properties:
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Definition

A Fraissé class of L-structures is a class K C Fin(£) which is
closed under isomorphism, contains countably many
isomorphism types, contains arbitrarily large finite L-structures,
and satisfies the following three properties:

m Hereditary Property (HP): Be K and ACB = A € K.
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A Fraissé class of L-structures is a class K C Fin(£) which is
closed under isomorphism, contains countably many
isomorphism types, contains arbitrarily large finite L-structures,
and satisfies the following three properties:

m Hereditary Property (HP): Be K and ACB = A € K.

m Joint Embedding Property: If A, B € K, then there is
C € K with both Emb(A, C) and Emb(B, C) non-empty.
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Definition

A Fraissé class of L-structures is a class K C Fin(£) which is
closed under isomorphism, contains countably many
isomorphism types, contains arbitrarily large finite L-structures,
and satisfies the following three properties:

m Hereditary Property (HP): Be K and ACB = A € K.
m Joint Embedding Property: If A, B € K, then there is
C € K with both Emb(A, C) and Emb(B, C) non-empty.

m Amalgamation Property: If A;B,C € K, f € Emb(A, B),
and g € Emb(A, C), then there are D € K,
r € Emb(B,D), and s € Emb(C,D) with ro f =sog.
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Definition

A Fraissé class of L-structures is a class K C Fin(£) which is
closed under isomorphism, contains countably many
isomorphism types, contains arbitrarily large finite L-structures,
and satisfies the following three properties:

m Hereditary Property (HP): Be K and ACB = A € K.
m Joint Embedding Property: If A, B € K, then there is
C € K with both Emb(A, C) and Emb(B, C) non-empty.

m Amalgamation Property: If A;B,C € K, f € Emb(A, B),
and g € Emb(A, C), then there are D € K,
r € Emb(B,D), and s € Emb(C,D) with ro f =sog.

Fact (Exercise 6)

If K is a countably infinite, ultrahomogeneous L-structure, then
Age(K) is a Fraissé class. Call such K Fraissé structures.
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Theorem (Fraissé 1954)

If K is a Fraissé class, then there is a Fraissé structure K such
that Age(K) = K. Such a K is unique up to isomorphism.
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Theorem (Fraissé 1954)

If K is a Fraissé class, then there is a Fraissé structure K such
that Age(K) = K. Such a K is unique up to isomorphism.

From now on, fix a Fraissé structure K. Given A € Age(K),
write Emba for Emb(A, K).
[K]<“ := finite substructures of K.
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Theorem (Fraissé 1954)

If K is a Fraissé class, then there is a Fraissé structure K such
that Age(K) = K. Such a K is unique up to isomorphism.

From now on, fix a Fraissé structure K. Given A € Age(K),
write Emba for Emb(A, K).
[K]<“ := finite substructures of K.

View G := Aut(K) as a topological group by setting
NG = {Stab(A) : A € [K|<“}. Sometimes called the pointwise
convergence topology. Write Ua for Stab(A)
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Which topological groups have the form Aut(K) for a Fraissé
structure K7 These are all closed subgroups of S, the group of
all permutations of w with the pointwise convergence topology.
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Which topological groups have the form Aut(K) for a Fraissé
structure K7 These are all closed subgroups of S, the group of
all permutations of w with the pointwise convergence topology.

Fact (Exercise 7)

If G is a closed subgroup of S, then there is a countable
relational language £ and a Fraissé L-structure on underlying
set w such that G = Aut(K).
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Which topological groups have the form Aut(K) for a Fraissé
structure K7 These are all closed subgroups of S, the group of
all permutations of w with the pointwise convergence topology.

Fact (Exercise 7)

If G is a closed subgroup of S, then there is a countable
relational language £ and a Fraissé L-structure on underlying
set w such that G = Aut(K).

By a result of (Becker-Kechris 1994), the topological groups
isomorphic to closed subgroups of S, are exactly those Polish
groups which are non-Archimedean, i.e. admit a base at eq of
open subgroups.
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Key consequence of ultrahomogeneity: Given A € [K]<%,
one-one correspondence between G/Ua and Emba .
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Key consequence of ultrahomogeneity: Given A € [K]<%,

one-one correspondence between G/Ua and Emba .

If S C G, we can thus identify SUA with the subset
{f € Emba :3g € S with g|]a = f}.
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Key consequence of ultrahomogeneity: Given A € [K]<%,
one-one correspondence between G/Ua and Emba .

If S C G, we can thus identify SUA with the subset
{f € Embya : 3¢ € S with g|a = f}.

In particular, whenever p € Sa(G), we have
pla :={SUa : S € p} € fEmba. Hence we can identify

Sa(G) = I&HIBEmbA

The inverse limit is with respect to the natural maps
SEmbg — SEmba whenever A C B € [K]<%.
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Key consequence of ultrahomogeneity: Given A € [K]<%,
one-one correspondence between G/Ua and Emba .

If S C G, we can thus identify SUA with the subset
{f € Embya : 3¢ € S with g|a = f}.

In particular, whenever p € Sa(G), we have
pla :={SUa : S € p} € fEmba. Hence we can identify

Sa(G) = I&HIBEmbA

The inverse limit is with respect to the natural maps
SEmbg — SEmba whenever A C B € [K]<%.

Given p € Sa(G), g € G, A € [K]<¥, and S C Emba, we have
S e (pg)laiff {fog™':feS}epla.
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