Big Ramsey degrees, structures, dynamics I

Andy Zucker Department of Pure Mathematics University of Waterloo

January/February 2024 Winter School Hejnice, Czech Republic

■ Introduction to topological dynamics.

- Introduction to topological dynamics.
- Construction of the Samuel compactification and the universal minimal flow – with lots of exercises :)

- Introduction to topological dynamics.
- Construction of the Samuel compactification and the universal minimal flow – with lots of exercises :)
- First-order structures and Fraïssé classes

- Introduction to topological dynamics.
- Construction of the Samuel compactification and the universal minimal flow – with lots of exercises :)
- First-order structures and Fraïssé classes
- The Samuel compactification of $Aut(\mathbf{K})$.

A right G-flow is a compact (Hausdorff) space and a continuous map $X \times G \to X$ satisfying $x \cdot e_G = x$ and $(x \cdot g) \cdot h = x \cdot gh$ whenever $x \in X$ and $g, h \in G$.

A right G-flow is a compact (Hausdorff) space and a continuous map $X \times G \to X$ satisfying $x \cdot e_G = x$ and $(x \cdot g) \cdot h = x \cdot gh$ whenever $x \in X$ and $g, h \in G$.

If X, Y are G-flows, a G-map $\pi: X \to Y$ is a map which is continuous and G-equivariant, i.e. $\pi(x \cdot g) = \pi(x) \cdot g$. We call π a factor map if it is surjective.

A right G-flow is a compact (Hausdorff) space and a continuous map $X \times G \to X$ satisfying $x \cdot e_G = x$ and $(x \cdot g) \cdot h = x \cdot gh$ whenever $x \in X$ and $g, h \in G$.

If X, Y are G-flows, a G-map $\pi: X \to Y$ is a map which is continuous and G-equivariant, i.e. $\pi(x \cdot g) = \pi(x) \cdot g$. We call π a factor map if it is surjective.

A subflow of X is a non-empty, closed, G-invariant subspace. An orbit of X is a subset of the form $x \cdot G := \{xg : g \in G\}$ for some $x \in X$.

A G-flow X is minimal if the only subflow of X is X itself. Equivalently, X is minimal iff every orbit is dense.

A G-flow X is minimal if the only subflow of X is X itself. Equivalently, X is minimal iff every orbit is dense.

By Zorn's lemma, every G-flow contains a minimal subflow.

A G-flow X is minimal if the only subflow of X is X itself. Equivalently, X is minimal iff every orbit is dense.

By Zorn's lemma, every G-flow contains a minimal subflow.

Fact (Ellis 1960)

Every topological group admits a universal minimal flow, a minimal G-flow which factors onto every other minimal G-flow. Such a flow is unique up to isomorphism, and denoted M(G).

크

ъ

We first build the Samuel compactification of G (Samuel 1948). Our approach is due to (Koçak-Strauss 1997).

We first build the Samuel compactification of G (Samuel 1948). Our approach is due to (Koçak-Strauss 1997).

Given $\mathbf{p} \subseteq \mathcal{P}(G)$, we say that \mathbf{p} has the near finite intersection property (NFIP) if whenever $F \in [\mathbf{p}]^{<\omega}$, and $U \in \mathcal{N}_G$, we have $\bigcap_{S \in F} SU \neq \emptyset$. We call \mathbf{p} a near ultrafilter on G if it is maximal under inclusion with respect to having the NFIP.

We first build the Samuel compactification of G (Samuel 1948). Our approach is due to (Koçak-Strauss 1997).

Given $\mathbf{p} \subseteq \mathcal{P}(G)$, we say that \mathbf{p} has the near finite intersection property (NFIP) if whenever $F \in [\mathbf{p}]^{<\omega}$, and $U \in \mathcal{N}_G$, we have $\bigcap_{S \in F} SU \neq \emptyset$. We call \mathbf{p} a near ultrafilter on G if it is maximal under inclusion with respect to having the NFIP.

Let Sa(G) denote the set of near ultrafilters on G. Note that for G discrete, we have $Sa(G) = \beta G$, the set of ultrafilters on G.

Fix $\mathbf{p} \in \mathrm{Sa}(G)$. If $S \subseteq G$ and $S \notin \mathbf{p}$, then there is $U \in \mathcal{N}_G$ with $SU \notin \mathbf{p}$.

▲ 伊 ▶ ▲ 3

Fix $\mathbf{p} \in \mathrm{Sa}(G)$.

- **1** If $S \subseteq G$ and $S \notin p$, then there is $U \in \mathcal{N}_G$ with $SU \notin p$.
- **2** If $S \in p$, $n < \omega$, and $S_0, ..., S_{n-1} \subseteq S$ with $\bigcup_{i < n} S_i$ dense in S, then for some $i < n, S_i \in p$.

Fix $\mathbf{p} \in \mathrm{Sa}(G)$.

1 If $S \subseteq G$ and $S \notin p$, then there is $U \in \mathcal{N}_G$ with $SU \notin p$.

2 If $S \in p$, $n < \omega$, and $S_0, ..., S_{n-1} \subseteq S$ with $\bigcup_{i < n} S_i$ dense in S, then for some $i < n, S_i \in p$.

Given $S \subseteq G$, let $C_S = \{ \mathsf{p} \in \operatorname{Sa}(G) : S \in \mathsf{p} \}$, $N_S = \operatorname{Sa}(G) \setminus C_S$. Note $N_S \cap N_T = N_{S \cup T}$. Equip Sa(G) with the topology given by basis $\{N_S : S \subseteq G \text{ not dense} \}$.

Fix $\mathbf{p} \in \mathrm{Sa}(G)$.

1 If $S \subseteq G$ and $S \notin p$, then there is $U \in \mathcal{N}_G$ with $SU \notin p$.

2 If $S \in p$, $n < \omega$, and $S_0, ..., S_{n-1} \subseteq S$ with $\bigcup_{i < n} S_i$ dense in S, then for some $i < n, S_i \in p$.

Given $S \subseteq G$, let $C_S = \{ \mathsf{p} \in \operatorname{Sa}(G) : S \in \mathsf{p} \}$, $N_S = \operatorname{Sa}(G) \setminus C_S$. Note $N_S \cap N_T = N_{S \cup T}$. Equip Sa(G) with the topology given by basis $\{N_S : S \subseteq G \text{ not dense} \}$.

Fact (Exercise 2)

This topology is compact Hausdorff.

Fact (Exercise 3)

This action is continuous, i.e. Sa(G) is a G-flow.

Fact (Exercise 3)

This action is continuous, i.e. Sa(G) is a *G*-flow.

For each $g \in G$, set $\tilde{g} := \{S \subseteq G : g \in \overline{S}\} \in Sa(G)$.

Fact (Exercise 3)

This action is continuous, i.e. Sa(G) is a *G*-flow.

For each
$$g \in G$$
, set $\tilde{g} := \{S \subseteq G : g \in \overline{S}\} \in Sa(G)$.

Fact (Exercise 4)

The map $g \to \tilde{g}$ is a homeomorphism onto its image. Hence we drop the \tilde{g} notation and simply identify $G \subseteq \operatorname{Sa}(G)$.

Whenever X is a G-flow and $x \in X$, there is a (unique) G-map $\lambda_x \colon \operatorname{Sa}(G) \to X$ satisfying $\lambda_x(e_G) = x$.

▶ ★御▶ ★理▶ ★理▶ -

æ

Whenever X is a G-flow and $x \in X$, there is a (unique) G-map $\lambda_x \colon \operatorname{Sa}(G) \to X$ satisfying $\lambda_x(e_G) = x$.

Proof sketch.

Define λ_x where given $\mathbf{p} \in \mathrm{Sa}(G)$, we let $\lambda_x(\mathbf{p})$ be the unique member of $\bigcap_{S \in \mathbf{p}} \overline{x \cdot S}$.

Whenever X is a G-flow and $x \in X$, there is a (unique) G-map $\lambda_x \colon \operatorname{Sa}(G) \to X$ satisfying $\lambda_x(e_G) = x$.

Proof sketch.

Define λ_x where given $\mathbf{p} \in \mathrm{Sa}(G)$, we let $\lambda_x(\mathbf{p})$ be the unique member of $\bigcap_{S \in \mathbf{p}} \overline{x \cdot S}$.

The proof that this set has at most one member uses Exercise 1.1, and the proof that there is at least one member uses Exercise 1.2.

Whenever X is a G-flow and $x \in X$, there is a (unique) G-map $\lambda_x \colon \operatorname{Sa}(G) \to X$ satisfying $\lambda_x(e_G) = x$.

Proof sketch.

Define λ_x where given $\mathbf{p} \in \mathrm{Sa}(G)$, we let $\lambda_x(\mathbf{p})$ be the unique member of $\bigcap_{S \in \mathbf{p}} \overline{x \cdot S}$.

The proof that this set has at most one member uses Exercise 1.1, and the proof that there is at least one member uses Exercise 1.2.

For continuity, if $A \subseteq X$ is open, then

 $\lambda_x^{-1}(A) = \bigcup \{ N_{\{g \in G: \, xg \in X \setminus B\}} : B \subseteq X \text{ open and } \overline{B} \subseteq A \}.$

 λ_x is clearly *G*-equivariant.

To build a universal minimal flow, let $M \subseteq Sa(G)$ be any minimal subflow. If X is a minimal G-flow, pick any $x \in X$. Then $\lambda_x|_M \colon M \to X$ is a G-map. As X is minimal, it must be onto, i.e. a factor map. To build a universal minimal flow, let $M \subseteq \operatorname{Sa}(G)$ be any minimal subflow. If X is a minimal G-flow, pick any $x \in X$. Then $\lambda_x|_M \colon M \to X$ is a G-map. As X is minimal, it must be onto, i.e. a factor map.

Uniqueness of M(G) is a bit trickier. The classical proof involves endowing Sa(G) with the structure of a compact left-topological semigroup to show that any minimal $M \subseteq Sa(G)$ is coalescent, meaning that any *G*-map from *M* to *M* is an isomorphism. To build a universal minimal flow, let $M \subseteq \operatorname{Sa}(G)$ be any minimal subflow. If X is a minimal G-flow, pick any $x \in X$. Then $\lambda_x|_M \colon M \to X$ is a G-map. As X is minimal, it must be onto, i.e. a factor map.

Uniqueness of M(G) is a bit trickier. The classical proof involves endowing Sa(G) with the structure of a compact left-topological semigroup to show that any minimal $M \subseteq Sa(G)$ is coalescent, meaning that any *G*-map from *M* to *M* is an isomorphism.

(Gutman-Li 2013) provides a direct argument that any universal minimal flow M is coalescent (idea: if not, build a really long inverse limit, using universality to keep construction going. This inverse limit is still minimal, but has too large cardinality).

An \mathcal{L} -structure $\mathbf{A} = \langle A, (R_i^{\mathbf{A}})_{i \in I} \rangle$ is a set A and for each $i \in I$, a distinguished subset $R_i^{\mathbf{A}} \subseteq A^{n_i}$. Typically denote structures in **bold** and use the un-bold letter for the underlying set.

An \mathcal{L} -structure $\mathbf{A} = \langle A, (R_i^{\mathbf{A}})_{i \in I} \rangle$ is a set A and for each $i \in I$, a distinguished subset $R_i^{\mathbf{A}} \subseteq A^{n_i}$. Typically denote structures in **bold** and use the un-bold letter for the underlying set.

If \mathbf{A}, \mathbf{B} are \mathcal{L} -structures, an embedding of \mathbf{A} into \mathbf{B} is a map $f: A \to B$ such that for each $i \in I$ and $(a_0, ..., a_{n_i-1}) = \in A^{n_i}$, we have $(a_0, ..., a_{n_i-1}) \in R_i^{\mathbf{A}} \Leftrightarrow (f(a_0), ..., f(a_{n_i-1})) \in R_i^{\mathbf{B}}$. Emb (\mathbf{A}, \mathbf{B}) – embeddings \mathbf{A} to \mathbf{B} .

An \mathcal{L} -structure $\mathbf{A} = \langle A, (R_i^{\mathbf{A}})_{i \in I} \rangle$ is a set A and for each $i \in I$, a distinguished subset $R_i^{\mathbf{A}} \subseteq A^{n_i}$. Typically denote structures in **bold** and use the un-bold letter for the underlying set.

If \mathbf{A}, \mathbf{B} are \mathcal{L} -structures, an embedding of \mathbf{A} into \mathbf{B} is a map $f: A \to B$ such that for each $i \in I$ and $(a_0, ..., a_{n_i-1}) = \in A^{n_i}$, we have $(a_0, ..., a_{n_i-1}) \in R_i^{\mathbf{A}} \Leftrightarrow (f(a_0), ..., f(a_{n_i-1})) \in R_i^{\mathbf{B}}$. Emb (\mathbf{A}, \mathbf{B}) – embeddings \mathbf{A} to \mathbf{B} .

Surjective embeddings are called isomorphisms, and an isomorphism from \mathbf{A} to \mathbf{A} is an automorphism. Write $\operatorname{Aut}(\mathbf{A})$ for the group of automorphisms of \mathbf{A} . \mathbf{A} is a substructure of \mathbf{B} if $A \subseteq B$ and the inclusion is an embedding.

Write $\operatorname{Fin}(\mathcal{L})$ for the class of finite \mathcal{L} -structures. Fix a countable \mathcal{L} and a countably infinite \mathcal{L} -structure **K**. We set $\operatorname{Age}(\mathbf{K}) = \{\mathbf{A} \in \operatorname{Fin}(\mathcal{L}) : \operatorname{Emb}(\mathbf{A}, \mathbf{K}) \neq \emptyset\}.$

Write $\operatorname{Fin}(\mathcal{L})$ for the class of finite \mathcal{L} -structures. Fix a countable \mathcal{L} and a countably infinite \mathcal{L} -structure \mathbf{K} . We set $\operatorname{Age}(\mathbf{K}) = \{\mathbf{A} \in \operatorname{Fin}(\mathcal{L}) : \operatorname{Emb}(\mathbf{A}, \mathbf{K}) \neq \emptyset\}.$

Definition

We say that **K** is ultrahomogeneous if whenever $\mathbf{A} \in \text{Age}(\mathbf{K})$ and $f_0, f_1 \in \text{Emb}(\mathbf{A}, \mathbf{K})$, there is $g \in \text{Aut}(\mathbf{K})$ with $g \circ f_0 = f_1$. Write $\operatorname{Fin}(\mathcal{L})$ for the class of finite \mathcal{L} -structures. Fix a countable \mathcal{L} and a countably infinite \mathcal{L} -structure \mathbf{K} . We set $\operatorname{Age}(\mathbf{K}) = \{\mathbf{A} \in \operatorname{Fin}(\mathcal{L}) : \operatorname{Emb}(\mathbf{A}, \mathbf{K}) \neq \emptyset\}.$

Definition

We say that **K** is ultrahomogeneous if whenever $\mathbf{A} \in \text{Age}(\mathbf{K})$ and $f_0, f_1 \in \text{Emb}(\mathbf{A}, \mathbf{K})$, there is $g \in \text{Aut}(\mathbf{K})$ with $g \circ f_0 = f_1$.

A weaker-looking, but equivalent property:

Fact (Exercise 5)

K is ultrahomogeneous iff **K** has the extension property (ExtP): whenever whenever $\mathbf{A} \subseteq \mathbf{B} \in \text{Age}(\mathbf{K})$ and $f \in \text{Emb}(\mathbf{A}, \mathbf{K})$, there is $g \in \text{Emb}(\mathbf{B}, \mathbf{K})$ with $g|_{\mathbf{A}} = f$.

A Fraïssé class of \mathcal{L} -structures is a class $\mathcal{K} \subseteq \operatorname{Fin}(\mathcal{L})$ which is closed under isomorphism, contains countably many isomorphism types, contains arbitrarily large finite \mathcal{L} -structures, and satisfies the following three properties:

A Fraïssé class of \mathcal{L} -structures is a class $\mathcal{K} \subseteq \operatorname{Fin}(\mathcal{L})$ which is closed under isomorphism, contains countably many isomorphism types, contains arbitrarily large finite \mathcal{L} -structures, and satisfies the following three properties:

• Hereditary Property (HP): $\mathbf{B} \in \mathcal{K}$ and $\mathbf{A} \subseteq \mathbf{B} \Rightarrow \mathbf{A} \in \mathcal{K}$.

A Fraïssé class of \mathcal{L} -structures is a class $\mathcal{K} \subseteq \operatorname{Fin}(\mathcal{L})$ which is closed under isomorphism, contains countably many isomorphism types, contains arbitrarily large finite \mathcal{L} -structures, and satisfies the following three properties:

- Hereditary Property (HP): $\mathbf{B} \in \mathcal{K}$ and $\mathbf{A} \subseteq \mathbf{B} \Rightarrow \mathbf{A} \in \mathcal{K}$.
- Joint Embedding Property: If $\mathbf{A}, \mathbf{B} \in \mathcal{K}$, then there is $\mathbf{C} \in \mathcal{K}$ with both Emb (\mathbf{A}, \mathbf{C}) and Emb (\mathbf{B}, \mathbf{C}) non-empty.

A Fraïssé class of \mathcal{L} -structures is a class $\mathcal{K} \subseteq \operatorname{Fin}(\mathcal{L})$ which is closed under isomorphism, contains countably many isomorphism types, contains arbitrarily large finite \mathcal{L} -structures, and satisfies the following three properties:

- Hereditary Property (HP): $\mathbf{B} \in \mathcal{K}$ and $\mathbf{A} \subseteq \mathbf{B} \Rightarrow \mathbf{A} \in \mathcal{K}$.
- Joint Embedding Property: If $\mathbf{A}, \mathbf{B} \in \mathcal{K}$, then there is $\mathbf{C} \in \mathcal{K}$ with both Emb (\mathbf{A}, \mathbf{C}) and Emb (\mathbf{B}, \mathbf{C}) non-empty.
- Amalgamation Property: If $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}, f \in \text{Emb}(\mathbf{A}, \mathbf{B}),$ and $g \in \text{Emb}(\mathbf{A}, \mathbf{C})$, then there are $\mathbf{D} \in \mathcal{K},$ $r \in \text{Emb}(\mathbf{B}, \mathbf{D}),$ and $s \in \text{Emb}(\mathbf{C}, \mathbf{D})$ with $r \circ f = s \circ g$.

A Fraïssé class of \mathcal{L} -structures is a class $\mathcal{K} \subseteq \operatorname{Fin}(\mathcal{L})$ which is closed under isomorphism, contains countably many isomorphism types, contains arbitrarily large finite \mathcal{L} -structures, and satisfies the following three properties:

- Hereditary Property (HP): $\mathbf{B} \in \mathcal{K}$ and $\mathbf{A} \subseteq \mathbf{B} \Rightarrow \mathbf{A} \in \mathcal{K}$.
- Joint Embedding Property: If $\mathbf{A}, \mathbf{B} \in \mathcal{K}$, then there is $\mathbf{C} \in \mathcal{K}$ with both Emb (\mathbf{A}, \mathbf{C}) and Emb (\mathbf{B}, \mathbf{C}) non-empty.
- Amalgamation Property: If $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}, f \in \text{Emb}(\mathbf{A}, \mathbf{B}),$ and $g \in \text{Emb}(\mathbf{A}, \mathbf{C})$, then there are $\mathbf{D} \in \mathcal{K},$ $r \in \text{Emb}(\mathbf{B}, \mathbf{D}),$ and $s \in \text{Emb}(\mathbf{C}, \mathbf{D})$ with $r \circ f = s \circ g$.

Fact (Exercise 6)

If **K** is a countably infinite, ultrahomogeneous \mathcal{L} -structure, then $\operatorname{Age}(\mathbf{K})$ is a Fraïssé class. Call such **K** Fraïssé structures.

Theorem (Fraïssé 1954)

If \mathcal{K} is a Fraïssé class, then there is a Fraïssé structure \mathbf{K} such that $\operatorname{Age}(\mathbf{K}) = \mathcal{K}$. Such a \mathbf{K} is unique up to isomorphism.

Theorem (Fraïssé 1954)

If \mathcal{K} is a Fraïssé class, then there is a Fraïssé structure \mathbf{K} such that $Age(\mathbf{K}) = \mathcal{K}$. Such a \mathbf{K} is unique up to isomorphism.

From now on, fix a Fraïssé structure **K**. Given $\mathbf{A} \in \text{Age}(\mathbf{K})$, write $\text{Emb}_{\mathbf{A}}$ for $\text{Emb}(\mathbf{A}, \mathbf{K})$. $[\mathbf{K}]^{<\omega} := \text{finite substructures of } \mathbf{K}.$

Theorem (Fraïssé 1954)

If \mathcal{K} is a Fraïssé class, then there is a Fraïssé structure \mathbf{K} such that $Age(\mathbf{K}) = \mathcal{K}$. Such a \mathbf{K} is unique up to isomorphism.

From now on, fix a Fraïssé structure **K**. Given $\mathbf{A} \in \text{Age}(\mathbf{K})$, write $\text{Emb}_{\mathbf{A}}$ for $\text{Emb}(\mathbf{A}, \mathbf{K})$. $[\mathbf{K}]^{<\omega} := \text{finite substructures of } \mathbf{K}.$

View $G := \operatorname{Aut}(\mathbf{K})$ as a topological group by setting $\mathcal{N}_G = \{\operatorname{Stab}(\mathbf{A}) : \mathbf{A} \in [\mathbf{K}]^{<\omega}\}$. Sometimes called the pointwise convergence topology. Write $U_{\mathbf{A}}$ for $\operatorname{Stab}(\mathbf{A})$ Which topological groups have the form $\operatorname{Aut}(\mathbf{K})$ for a Fraïssé structure \mathbf{K} ? These are all closed subgroups of S_{∞} , the group of all permutations of ω with the pointwise convergence topology.

Which topological groups have the form $\operatorname{Aut}(\mathbf{K})$ for a Fraïssé structure \mathbf{K} ? These are all closed subgroups of S_{∞} , the group of all permutations of ω with the pointwise convergence topology.

Fact (Exercise 7)

If G is a closed subgroup of S_{∞} , then there is a countable relational language \mathcal{L} and a Fraïssé \mathcal{L} -structure on underlying set ω such that $G = \operatorname{Aut}(\mathbf{K})$. Which topological groups have the form $\operatorname{Aut}(\mathbf{K})$ for a Fraïssé structure \mathbf{K} ? These are all closed subgroups of S_{∞} , the group of all permutations of ω with the pointwise convergence topology.

Fact (Exercise 7)

If G is a closed subgroup of S_{∞} , then there is a countable relational language \mathcal{L} and a Fraïssé \mathcal{L} -structure on underlying set ω such that $G = \operatorname{Aut}(\mathbf{K})$.

By a result of (Becker-Kechris 1994), the topological groups isomorphic to closed subgroups of S_{∞} are exactly those Polish groups which are non-Archimedean, i.e. admit a base at e_G of open subgroups. Key consequence of ultrahomogeneity: Given $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, one-one correspondence between $G/U_{\mathbf{A}}$ and $\mathrm{Emb}_{\mathbf{A}}$.

Key consequence of ultrahomogeneity: Given $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, one-one correspondence between $G/U_{\mathbf{A}}$ and $\operatorname{Emb}_{\mathbf{A}}$.

If $S \subseteq G$, we can thus identify $SU_{\mathbf{A}}$ with the subset $\{f \in \operatorname{Emb}_{\mathbf{A}} : \exists g \in S \text{ with } g|_{\mathbf{A}} = f\}.$

Key consequence of ultrahomogeneity: Given $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, one-one correspondence between $G/U_{\mathbf{A}}$ and $\operatorname{Emb}_{\mathbf{A}}$.

If $S \subseteq G$, we can thus identify $SU_{\mathbf{A}}$ with the subset $\{f \in \operatorname{Emb}_{\mathbf{A}} : \exists g \in S \text{ with } g|_{\mathbf{A}} = f\}.$

In particular, whenever $\mathbf{p} \in \operatorname{Sa}(G)$, we have $\mathbf{p}|_{\mathbf{A}} := \{SU_{\mathbf{A}} : S \in \mathbf{p}\} \in \beta \operatorname{Emb}_{\mathbf{A}}$. Hence we can identify

 $\operatorname{Sa}(G) \cong \varprojlim \beta \operatorname{Emb}_{\mathbf{A}}.$

The inverse limit is with respect to the natural maps $\beta \text{Emb}_{\mathbf{B}} \rightarrow \beta \text{Emb}_{\mathbf{A}}$ whenever $\mathbf{A} \subseteq \mathbf{B} \in [\mathbf{K}]^{<\omega}$.

Key consequence of ultrahomogeneity: Given $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, one-one correspondence between $G/U_{\mathbf{A}}$ and $\operatorname{Emb}_{\mathbf{A}}$.

If $S \subseteq G$, we can thus identify $SU_{\mathbf{A}}$ with the subset $\{f \in \operatorname{Emb}_{\mathbf{A}} : \exists g \in S \text{ with } g|_{\mathbf{A}} = f\}.$

In particular, whenever $\mathbf{p} \in \operatorname{Sa}(G)$, we have $\mathbf{p}|_{\mathbf{A}} := \{SU_{\mathbf{A}} : S \in \mathbf{p}\} \in \beta \operatorname{Emb}_{\mathbf{A}}$. Hence we can identify

$$\operatorname{Sa}(G) \cong \varprojlim \beta \operatorname{Emb}_{\mathbf{A}}.$$

The inverse limit is with respect to the natural maps $\beta \text{Emb}_{\mathbf{B}} \rightarrow \beta \text{Emb}_{\mathbf{A}}$ whenever $\mathbf{A} \subseteq \mathbf{B} \in [\mathbf{K}]^{<\omega}$.

Given $\mathbf{p} \in \operatorname{Sa}(G)$, $g \in G$, $\mathbf{A} \in [\mathbf{K}]^{<\omega}$, and $S \subseteq \operatorname{Emb}_{\mathbf{A}}$, we have $S \in (\mathbf{p}g)|_{\mathbf{A}}$ iff $\{f \circ g^{-1} : f \in S\} \in \mathbf{p}|_{g\mathbf{A}}$.