P-POINTS AND RELATED ULTRAFILTERS PART III

Juris Steprāns
York University

Winter School - January 2024

| U N I VERRS IT E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| UN I VEERES ITTY |

The goal of this last lecture is to explain some techniques of Shelah [3] for destroying some P-points while preserving others. Selective ultrafilters and the games considered in the first lecture will play a key role. Of course, it is not possible to preserve a single ultrafilter, but only an equivalence class of ultrafilters. The following definition will be used soon and makes this precise.

Definition 1

If \mathcal{U} and \mathcal{V} are ultrafilters define $\mathcal{U} \equiv_{\mathrm{RK}} \mathcal{V}$ if there is a bijection ψ such that $A \in \mathcal{V}$ if and only if $\psi^{-1}(A) \in \mathcal{U}$. Define $\mathcal{U} \leq R_{R K} \mathcal{V}$ if there is a function ψ such that $A \in \mathcal{U}$ if and only if $\psi^{-1}(A) \in \mathcal{V}$.

It is a nice exercise to show that if $\mathcal{U} \leq_{R K} \mathcal{V}$ and $\mathcal{V} \leq_{R K} \mathcal{U}$ then $\mathcal{U} \equiv_{\mathrm{RK}} \mathcal{V}$.

DEfinition 2

Given an ultrafilter \mathcal{U} define the partial order $\mathbb{P}(\mathcal{U})$ to consist of all trees \mathbb{T} such that $\mathbf{s u c c}_{\mathbb{T}}(\tau) \subseteq 2^{|\tau|}$ and for which there is $U \in \mathcal{U}$ such that

$$
\begin{align*}
(\forall \ell \in \omega)\left(\forall^{\infty} k \in U\right)\left(\forall t \in \operatorname{Lev}_{k}(\mathbb{T})\right)(& \forall h: \ell \rightarrow 2) \\
& \left(\exists f \in \operatorname{succ}_{\mathbb{T}}(t)\right) h \subseteq f . \tag{1}
\end{align*}
$$

The ordering on $\mathbb{P}(\mathcal{U})$ is inclusion.
If $G \subseteq \mathbb{P}(\mathcal{U})$ is generic then define B_{G} by $B_{G}(k)=f$ if and only if for every $\mathbb{T} \in G$ there is $t \in \mathbb{T}$ such that $t(k)=f$. Define a colouring $C_{G}:[\omega]^{2} \rightarrow 2$ by $\mathbb{C}_{G}(a)=B_{G}(\max (a))(\min (a))$.

YORK

LEMMA 1

If \mathcal{U} is a P-point then $\mathbb{P}(\mathcal{U})$ is proper and ω^{ω} bounding.

Proof.

Given $\mathbb{T} \in \mathbb{P}(\mathcal{U})$ and $\left\{D_{n}\right\}_{n \in \omega}$ that are dense subsets of $\mathbb{P}(\mathcal{U})$ construct a \mathcal{U}-P-tree T such that for each $\tau \in T$ there is $\mathbb{T}_{\tau} \in \mathbb{P}(\mathcal{U})$ and $A_{\tau} \in \mathcal{U}$ such that:

- $\mathbb{T}_{\varnothing}=\mathbb{T}$
- $\left(\forall k \in A_{\tau}\right)\left(\forall t \in \operatorname{Lev}_{k}\left(\mathbb{T}_{\tau}\right)\right)(\forall h:|\tau| \rightarrow 2)\left(\exists f \in \operatorname{succ}_{\mathbb{T}}(t)\right) h \subseteq$ f
- $\operatorname{succ}_{T}(\tau)=\left[A_{\tau}\right]^{<\aleph_{0}}$
- if $\tau \subseteq \sigma$ and $|\tau|=n+1$ and $k=\max (\tau(n))$ then $\mathbb{T}_{\sigma} \subseteq \mathbb{T}_{\tau}$ and $\operatorname{Lev}_{k}\left(\mathbb{T}_{\tau}\right)=\operatorname{Lev}_{k}\left(\mathbb{T}_{\sigma}\right)$
- if $|\tau|=n+1$ and $k=\max (\tau(n))$ and $t \in \operatorname{Lev}_{k}\left(\mathbb{T}_{\tau}\right)$ then $\mathbb{T}\langle t\rangle \in D_{n}$.

YORK】

Proof.

Since T is a \mathcal{U}-P-tree let B be a branch of T such that $\bigcup_{n} B(n) \in \mathcal{U}$ and let

$$
\mathbb{T}^{*}=\bigcup_{n} \operatorname{Lev}_{B(n)}\left(\mathbb{T}_{B \backslash(n+1)}\right)
$$

It is routine to check that $\mathbb{T}^{*} \in \mathbb{P}(\mathcal{U})$ and it has the desired properties.

Definition 3

Given $P:[\omega]^{2} \rightarrow 2$ a set $X \subseteq \omega$ will be said to be almost-J-homogeneous for P if for all $x \in X$ there are only finitely many $y \in X$ such that $P(x, y) \neq J$.

LEMMA 2

If \mathcal{U} is a P-point and $P:[\omega]^{2} \rightarrow 2$ then there is $J \in 2$ and a set $X \in \mathcal{U}$ that is almost-J-homogeneous for P.

Proof.

It is an exercise to see the same proof as for selective ultrafilters works.

LEMMA 3

If \mathcal{U} is a P-point and $J \in 2$ and \mathbb{Q} is a $\mathbb{P}(\mathcal{U})$ name for a partial order such that $\mathbf{1} \Vdash_{\mathbb{P}(\mathcal{U}) * \mathbb{Q}}$ " \mathbb{Q} is ω^{ω} bounding" and
$\mathbf{1} \Vdash_{\mathbb{P}(\mathcal{U}) * \mathbb{Q}}$ " \dot{X} is almost-J-homogeneous for $C_{\dot{G}}$ "
then there is $\mathbb{T} \in \mathbb{P}(\mathcal{U})$ and $A \in \mathcal{U}$ such that

$$
\mathbb{T} \Vdash_{\mathbb{P}(\mathcal{U}) * \mathbb{Q}} " A \cap \dot{X}=\varnothing \text { ". }
$$

Proof.

Assume that J, the almost homogeneous colour for \dot{X}, is 0 . If it happens that $\mathbf{1} \Vdash_{\mathbb{P}(\mathcal{U}) * \mathbb{Q}} "|\dot{X}|=\aleph_{0}$ " then the result is immediate, so let $\dot{\psi}$ be a $\mathbb{P}(\mathcal{U}) * \mathbb{Q}$ name such that

$$
\begin{align*}
& \mathbf{1} \Vdash_{\mathbb{P}(\mathcal{U}) * \mathbb{Q}} "(\forall k \in \omega)(\exists m \in \dot{X} \backslash k)(\forall \ell \in \dot{X}) \\
& \text { if } C_{\dot{G}}(m, \ell)=1 \text { then } \ell<\dot{\psi}(k) " . \tag{2}
\end{align*}
$$

Since $\mathbb{P}(\mathcal{U}) * \mathbb{Q}$ is ω^{ω}-bounding by Lemma 1 it is possible to find \mathbb{T} and $\Psi: \omega \rightarrow \omega$ such that

$$
\mathbb{T} \Vdash_{\mathbb{P}(\mathcal{U}) * \mathbb{Q}} "(\forall k \in \omega) \dot{\psi}(k) \leq \Psi(k) "
$$

Continuation of proof.

Find A such that:

- $A \in \mathcal{U}$ and A is enumerated in order by $\left\{a_{i}\right\}_{i \in \omega}$
- A witnesses that $\mathbb{T} \in \mathbb{P}(\mathcal{U})$ in the strong sense that if $t \in \operatorname{Lev}_{a_{n+1}} \mathbb{T}$ and $h: a_{n} \rightarrow 2$, then there is $f \in \operatorname{succ}_{\mathbb{T}}(t)$ such that $h \subseteq f$
- $\Psi\left(a_{n}\right)<a_{n+1}$ for all n.

For $t \in \operatorname{Lev}_{a_{i+2}}(\mathbb{T})$ let

$$
\mathcal{S}(t)=\left\{f \in \boldsymbol{\operatorname { s u c c }}_{\mathbb{T}}(t) \mid\left(\forall x \in\left[a_{i}, \Psi\left(a_{i}\right)\right)\right) f(x)=1\right\}
$$

and note that follows that if $t \in \operatorname{Lev}_{a_{i+2}}(\mathbb{T})$ and $h: a_{i} \rightarrow 2$ then there is $f \in \mathbf{s u c c}_{\mathbb{T}}(t)$ such that $h \subseteq f$ and $f(\ell)=1$ if $a_{i} \leq \ell<a_{i+1}$. Since $\Psi\left(a_{i}\right)<a_{i+1}$ it follows that $f \in \mathcal{S}(t)$.

$$
S=\left\{f \in \operatorname{suc}_{\pi}(t) \mid f r\left[a_{k_{1}} \Psi\left(a_{k}\right)\right) \equiv 1\right.
$$

π

Continuation of Proof.

Therefore if \mathbb{T}^{*} is defined by

$$
\mathbb{T}^{*}=\bigcap_{i \in \omega}\left(\bigcup_{t \in \operatorname{Lev}_{a_{i+2}}(\mathbb{T})} \bigcup_{f \in \mathcal{S}(t)} \mathbb{T}\left\langle t^{\frown} f\right\rangle\right)
$$

then $\mathbf{s u c c}_{\mathbb{T}^{*}}(t)=\mathcal{S}(t)$ for each $i \in \omega$ and $t \in \operatorname{Lev}_{a_{i+2}}(\mathbb{T})$. It follows that A witnesses that $\mathbb{T}^{*} \in \mathbb{P}(\mathcal{U})$.

Continuation of proof.

Finally, it suffices to show that if $k>0$ then $\mathbb{T}^{*} \Vdash_{\mathbb{P}(\mathcal{U})}$ " $a_{k} \notin \dot{X}$ ". In order to establish this, note that
$\mathbb{T}^{*} \Vdash{ }^{\Vdash}\left(\exists x \in \dot{X} \cap\left[a_{k-1}, \Psi\left(a_{k-1}\right)\right)\left(\forall y \in \dot{X} \backslash \Psi\left(a_{k-1}\right)\right) P(x, y)=0 "\right.$.
but this contradicts that if $t \in \operatorname{Lev}_{a_{k}}\left(\mathbb{T}^{*}\right)$ and $f \in \operatorname{succ}_{\mathbb{T}^{*}}(t)$ then $f \in \mathcal{S}(t)$ and so $f\left(\left\{x, a_{k}\right\}\right)=1$ for all $x \in\left[a_{k-1}, \Psi\left(a_{k-1}\right)\right]$.

This is exactly what is required since then

$$
\begin{align*}
T^{*} \Vdash_{\mathbb{P}(\mathcal{U})} " & \Psi\left(a_{k-1}\right)<a_{k} \\
& \&\left(\forall x \in \dot{X} \cap\left[a_{k-1}, \Psi\left(a_{k-1}\right)\right) P\left(x, a_{k}\right)=1 " .\right. \tag{3}
\end{align*}
$$

Corollary 1

If \mathcal{U} is a P-point and \mathbb{Q} is ω^{ω}-bounding then $\mathbb{P}(\mathcal{U}) * \mathbb{Q}$ does not preserve \mathcal{U}.

Proof.

If \mathcal{U} is a P -point then Lemma 1 establishes that and $\mathbb{P}(\mathcal{U})$ is proper and ω^{ω} bounding. One the other hand, it follows from Lemma 3 and Lemma 2 that \mathcal{U} is not a P-point after forcing with $\mathbb{P}(\mathcal{U}) * \mathbb{Q}$.

Using the corollary, countable support iteration over a model of $\diamond_{\omega_{2}}$ and standard forcing theorems produces a third model with no P-points. But our current goal is to get a model with a single P -point (up to RK equivalence).

DEFINITION 4

Let \mathcal{U} and \mathcal{V} be ultrafilters on ω. Say that T is a $(\mathcal{U}, \mathcal{V})$-SP-tree if for each $\tau \in T$ if

- τ is even then there is $A \in \mathcal{U}$ such that $\operatorname{succ}_{T}(\tau)=A$
- if τ is odd then there is $A \in \mathcal{V}$ such that $\operatorname{succ}_{T}(\tau)=[A]^{<\aleph_{0}}$
- $\min (A)>\tau(\ell)$ for all ℓ in the domain of τ. (" P " is for P-point and " S " is for selective.)

LEMMA 4

Let \mathcal{U} and \mathcal{V} be ultrafilters. The following are then equivalent:
(1) \mathcal{U} is selective and \mathcal{V} is a P-point and $\mathcal{U} \not \mathbb{Z}_{\mathrm{RK}} \mathcal{V}$
(2) Every $(\mathcal{U}, \mathcal{V})$-SP-tree has a branch B such that

- $\bigcup_{n \in \omega} B(2 n+1) \in \mathcal{V}$
- $\{B(2 n) \mid n \in \omega\} \in \mathcal{U}$.

Peoof. ©Jump to Applying Lemma 4.

To see that (2) implies (1) note first that (2) implies that \mathcal{U}-S-tree has a branch with range in \mathcal{U} and so \mathcal{U} is selective. It also follows from (2) that \mathcal{V}-P-tree has a branch B such that $\bigcup_{n} B(n) \in \mathcal{V}$ and so \mathcal{V} is a P-point.

To see that $\mathcal{U} \not \geq_{\mathrm{RK}} \mathcal{V}$ suppose that $F: \omega \rightarrow \omega$ witnesses that $\mathcal{U} \leq_{\mathrm{RK}} \mathcal{V}$. Let T be the $(\mathcal{V}, \mathcal{U})$-PS-tree such that:

- if $\tau \in T$ and $|\tau|=2 n$ is even then

$$
\boldsymbol{\operatorname { s u c c }}_{T}(\tau)=\omega \backslash F\left(\bigcup_{m \in n} \tau(2 m+1)\right)
$$

- if $\tau \in T$ and $|\tau|=2 n+1$ is even then

$$
\operatorname{succ}_{T}(\tau)=\left[\omega \backslash \bigcup_{m \leq n} F^{-1}(\tau(2 m))\right]^{<\aleph_{0}}
$$

It follows that if B is a branch of T it must be the case that

$$
F^{-1}\left(\{B(2 k)\}_{k \in \omega}\right) \cap \bigcup_{k \in \omega} B(2 k+1)=\varnothing
$$

and so either $\{B(2 k)\}_{k \in \omega} \notin \mathcal{U}$ or $\bigcup_{k \in \omega} B(2 k+1) \notin \mathcal{V}$.

SECOND PART OF PROOF.

To see that (1) implies (2) let T be a $(\mathcal{U}, \mathcal{V})$-SP-tree. For each $\tau \in T$ such that $|\tau|$ is odd let $W_{\tau} \in \mathcal{V}$ be such that $\boldsymbol{\operatorname { s u c c }}_{T}(\tau)=\left[W_{\tau}\right]^{<\aleph_{0}}$ and then find $W \in \mathcal{V}$ such that $W \subseteq * W_{\tau}$ for each $\tau \in T$ with $|\tau|$ odd.
Now define the partition $[\omega]^{4}=P_{0} \cup P_{1}$ by $\left\{\ell_{0}, \ell_{1}, \ell_{2}, \ell_{3}\right\} \in P_{0}$ if $\ell_{3} \in \boldsymbol{\operatorname { s u c c }}_{T}(\tau \upharpoonright(2 n+2))$ for every $\tau \in T$ for which there is $n \in \omega$ such that
(1) $\tau(2 n)=\ell_{0}$
(2) $\tau(2 n+1)=W \cap\left[\ell_{1}, \ell_{2}\right) \subseteq W_{\tau \mid 2 n+1}$.

Use that \mathcal{U} is selective find $Y \in \mathcal{U}$ and $J \in 2$ such that $[Y]^{4} \subseteq P_{J}$.

Continuation of PRoof.

The first thing to observe is that $J=0$. To see this let $\ell_{0} \in Y$ and let

$$
\mathcal{T}=\left\{\tau \in T\left|(\exists n) \tau(2 n)=\ell_{0} \quad \&\right| \tau \mid=2 n+1\right\}
$$

and then let $M>\ell_{0}$ be so large that $W \backslash M \subseteq W_{\tau}$ for all τ in the finite set \mathcal{T}. Then let $\ell_{1} \in Y$ and $\ell_{2} \in Y$ be such that $M<\ell_{1}<\ell_{2}$. Let

$$
\ell_{3} \in Y \cap \bigcap_{\tau \in \mathcal{T}} \operatorname{succ}_{T}\left(\tau^{\frown}\left(W \cap\left[\ell_{1}, \ell_{2}\right)\right)\right)
$$

Note that $W \cap\left[\ell_{1}, \ell_{2}\right) \in\left[W_{\tau}\right]^{\aleph_{0}}$ for each $\tau \in T$ and so $\boldsymbol{\operatorname { s u c c }}_{T}\left(\tau^{\frown}\left(W \cap\left[\ell_{1}, \ell_{2}\right)\right)\right)$ is defined. Hence $\left\{\ell_{0}, \ell_{1}, \ell_{2}, \ell_{3}\right\} \in P_{0}$ and so $J=0$.

Continuation of proof.

Let Y be enumerated in order as $\left\{y_{i}\right\}_{i \in \omega}$. Consider first the case that for every $Z \subseteq \omega$

$$
\begin{equation*}
\bigcup_{i \in Z}\left[y_{i-1}, y_{i+1}\right) \in \mathcal{V} \quad \text { if } \quad\left\{y_{i}\right\}_{i \in Z} \in \mathcal{U} \tag{4}
\end{equation*}
$$

Since $Y \in \mathcal{V}$ it follows that for some $J \in 3$ it must be the case $\left\{y_{3 i+J}\right\}_{i \geq 1} \in \mathcal{V}$ and hence $\bigcup_{i \geq 1}\left[y_{3 i+J-1}, y_{3 i+J+1}\right) \in \mathcal{V}$. To simplify notation, there is no harm in assuming that $J=0$. Then the mapping

$$
F: \bigcup_{i \geq 1}\left[y_{3 i-1}, y_{3 i+1}\right) \rightarrow\left\{y_{3 i}\right\}_{i \geq 1}
$$

defined by $F(k)=y_{3 i}$ if and only if $y_{3 i-1} \leq k<y_{3 i+1}$ witnesses that $\mathcal{U} \leq_{\mathrm{RK}} \mathcal{V}$ and there is nothing more to do.

Continuation of Proof.

Hence, it can be assumed that there is some $Z \subseteq \omega$ such that (4) fails. Let $\{z(i)\}_{i \in \omega}$ enumerate Z in order so that

$$
\left\{y_{z(i)}\right\}_{i \in \omega} \in \mathcal{U} \quad \text { and } \quad \bigcup_{i \in \omega}\left[y_{z(i)-1}, y_{z(i)+1}\right) \notin \mathcal{V}
$$

In other words, $\bigcup_{i \in \omega}\left[y_{z(i)+1}, y_{z(i+1)-1}\right) \in \mathcal{V}$ and it follows that

$$
D=W \cap \bigcup_{i \in \omega}\left(\left[y_{z(i)+1}, y_{z(i+1)-1}\right) \in \mathcal{V}\right.
$$

Continuation of proof.

Let B be defined for $i \in \omega$ by

$$
B(2 i)=y_{z(i)} \& B(2 i+1)=W \cap\left[y_{z(i)+1}, y_{z(i+1)-1}\right)
$$

Then $\{B(2 i)\}_{i \in \omega}=\left\{y_{z(i)}\right\}_{i \in \omega} \in \mathcal{U}$ and

$$
\bigcup_{i \in \omega} B(2 i+1)=\bigcup_{i \in \omega} W \cap\left[y_{z(i)+1}, y_{z(i+1)-1}\right)=D \in \mathcal{V}
$$

and so it suffices to show that $B \upharpoonright k \in T$ for all k.
To see that this is so use that Z is P_{0}-homogeneous.

UNIVERSITE
UNIVERSITY

Continuation of proof.

By dropping finitely many elements of Z it may be assumed that $y_{z(0)} \in \operatorname{succ}_{T}(\varnothing)$. Now suppose that $B \upharpoonright 2 n \in T$ and that $y(z(n)) \in \operatorname{succ}_{T}(B \upharpoonright 2 n)$. (This holds with $n=0$.) Then $\left\{y_{z(n)}, y_{z(n)+1}, y_{z(n+1)-1}, y_{z(n+1)}\right\} \in P_{0}$ and so

$$
W \cap\left[y_{z(n)+1}, y_{z(n+1)-1}\right) \subseteq W_{B \mid 2 n+1}
$$

and so

$$
B \upharpoonright(2 n+2)=(B \upharpoonright 2 n+1) \smile W \cap\left[y_{z(n)+1}, y_{z(n+1)-1}\right) \in T
$$

and so $y_{z(n+1)} \in \operatorname{succ}_{T}(B \upharpoonright(2 n+2))$ and so $B \upharpoonright(2 n+3) \in T$ as required to continue the induction.

Notation 1

If \mathcal{U} is an ultrafilter, \mathbb{P} is a partial order and \dot{A} a \mathbb{P}-name such that $1 \vdash_{\mathbb{P}}$ " $\dot{A} \subseteq \omega$ " then let $D(\dot{A}, \mathcal{U}, \mathbb{P})$ denote the set

$$
\begin{equation*}
\left\{r \in \mathbb{P} \mid(\exists Z \in \mathcal{U})(\forall n \in \omega)\left(\exists r_{n} \leq r\right) r_{n} \Vdash_{\mathbb{P}} " Z \cap n \subseteq \dot{A} \cap n^{\prime \prime}\right\} \tag{5}
\end{equation*}
$$

Lemma 5

If \mathcal{U} is an ultrafilter and \mathbb{P} a partial order and \dot{A} a \mathbb{P}-name such that $1 \vdash_{\mathbb{P}}$ " $\dot{A} \subseteq \omega$ " then

$$
D(\dot{A}, \mathcal{U}, \mathbb{P}) \cup D(\omega \backslash \dot{A}, \mathcal{U}, \mathbb{P})=\mathbb{P}
$$

This can be proved using a fake generic.

LEMMA 6

If \mathcal{U} is selective and \mathcal{V} is a P-point and $\mathcal{U} \not \mathbb{L R K}_{\mathrm{RK}} \mathcal{V}$ then forcing with $\mathbb{P}(\mathcal{V})$ preserves \mathcal{U}.

Proof.

By Lemma 4 the hypothesis implies that for every $(\mathcal{U}, \mathcal{V})$-SP-tree has a branch B such that

- $\bigcup_{n \in \omega} B(2 n+1) \in \mathcal{V}$
- $\{B(2 n) \mid n \in \omega\} \in \mathcal{U}$.

It will be shown that if $\mathbf{1} \Vdash_{\mathbb{P}(\mathcal{V})}$ " $\dot{X} \subseteq \omega$ " then there is some $A \in \mathcal{U}$ and $\mathbb{T} \in \mathbb{P}(\mathcal{V})$ such that either $\mathbb{T} \Vdash_{\mathbb{P}(\mathcal{V})}$ " $\dot{X} \supseteq A$ " or $\mathbb{T} \Vdash_{\mathbb{P}(\mathcal{V})}$ " $\dot{X} \cap A=\varnothing$ ". Using Lemma 5 and Notation 1 it is possible to find $\mathbb{T} \in \mathbb{P}(\mathcal{V})$ such that either $D(\dot{X}, \mathcal{U}, \mathbb{P}(\mathcal{V}))$ or $D(\omega \backslash \dot{X}, \mathcal{U}, \mathbb{P}(\mathcal{V}))$ is dense below \mathbb{T}; without loss of generality, assume that $D(\dot{X}, \mathcal{U}, \mathbb{P}(\mathcal{V}))$ is dense below \mathbb{T}.

Proof.

Construct a $(\mathcal{U}, \mathcal{V})$-SP-tree T such that for each $\tau \in T$ there is $\mathbb{T}_{\tau} \in \mathbb{P}(\mathcal{V})$ and A_{τ} such that
(1) $\mathbb{T}_{\varnothing}=\mathbb{T}$
(2) if $|\tau|$ is even then $\boldsymbol{s u c c}_{\mathbb{T}}(\tau)=A_{\tau} \in \mathcal{U}$
(3) if $|\tau|$ is odd then $\operatorname{succ}_{\mathbb{T}}(\tau)=\left[A_{\tau}\right]^{<\aleph_{0}}$ and $A_{\tau} \in \mathcal{V}$
(1) if $\tau \subseteq \sigma$ and $|\tau|=n+1$ and $k=\max (\tau(n))$ then $\mathbb{T}_{\sigma} \subseteq \mathbb{T}_{\tau}$ and $\operatorname{Lev}_{k}\left(\mathbb{T}_{\tau}\right)=\operatorname{Lev}_{k}\left(\mathbb{T}_{\sigma}\right)$
(0) if $|\tau|$ is odd and $k \in A_{\tau}$ then for all $\left.t \in \operatorname{Lev}_{k}\left(\mathbb{T}_{\tau}\right)\right)(\forall h:|\tau| \rightarrow 2)\left(\exists f \in \mathbf{s u c c}_{\mathbb{T}}(t)\right) h \subseteq f$
(0) if $|\tau|$ is even and $k \in A_{\tau}$ then $\mathbb{T}_{\tau-k} \Vdash_{\mathbb{P}(\mathcal{V})}$ " $k \in \dot{X}$ ".

Proof.

This is an induction similar to the proof of properness. For example, to see that (6) holds let $|\tau|=2 n$ and suppose that \mathbb{T}_{τ} is given. For $k=\max (\tau(2 n-1))$ and $t \in \operatorname{Lev}_{k}(\mathbb{T})$ use that $D(\dot{X}, \mathcal{U}, \mathbb{P}(\mathcal{V}))$ is dense below \mathbb{T} to find $A_{t}^{*} \in \mathcal{U}$ and a sequence $\left\{\mathbb{T}_{t, n}\right\}_{n \in A_{t}^{*}}$ such that $\mathbb{T}_{t, n} \Vdash_{\mathbb{P}(\mathcal{V})}$ " $n \in \dot{X}$ " for each $n \in A_{t}^{*}$. Then let

$$
A_{\tau}=\bigcap_{t \in \operatorname{Lev}_{k}(\mathbb{T})} A_{t}^{*}
$$

and for each $n \in A_{t}^{*}$

$$
\mathbb{T}_{\tau-n}=\bigcup_{t \in \operatorname{Lev}_{k}(\mathbb{T})} \mathbb{T}_{t, n}
$$

Proof.

Then T is a $(\mathcal{U}, \mathcal{V})$-SP-tree and so there is a branch B of T such that $A=\{B(2 n)\}_{n \in \omega} \in \mathcal{U}$ and $\bigcup_{n \in \omega} B(2 n+1) \in \mathcal{V}$. As in the proof of properness

$$
\mathbb{T}^{*}=\bigcup_{n} \operatorname{Lev}_{B(n)}\left(\mathbb{T}_{B \upharpoonright(n+1)}\right) \in \mathbb{P}(\mathcal{V})
$$

$\mathbb{T}^{*} \subseteq \mathbb{T}_{B \mid(2 n+1)}^{*}$ for each n and $\mathbb{T}_{B\lceil(2 n+1)}^{*} \Vdash_{\mathbb{P}(\mathcal{V})}$ " $B(2 n) \in \dot{X} "$. Hence $\mathbb{T}^{*} \Vdash_{\mathbb{P}(\mathcal{V})}$ " $A \subseteq \dot{X}$ ".

At this stage it is already possible to obtain a model of set theory with a unique selective ultrafilter. Start with a model of $\nabla_{\omega_{2}}$ and to select an arbitrary selective ultrafilter \mathcal{V} in this model. Then construct a countable support iteration of partial orders \mathbb{Q}_{ξ} of length ω_{2} such that each $\xi^{\text {th }}$ iterand is of the form $\mathbb{P}\left(\mathcal{U}_{\xi}\right)$ provided that the name \mathcal{U}_{ξ} is guessed by the $\diamond_{\omega_{2}}$ sequence and

$$
\mathbf{1} \Vdash_{\mathbb{Q}_{\xi}} " \mathcal{V}_{\xi} \text { is a P-point and } \mathcal{V} \not \mathbb{R K K} \mathcal{U}_{\xi} "
$$

Each \mathbb{Q}_{ξ} is proper and ω^{ω}-bounding. Hence, by Corollary 1 it follows that

$$
\mathbf{1} \Vdash_{\mathbb{Q}_{\omega_{2}}} " \mathcal{V}_{\xi} \text { is a not a P-point. " }
$$

Hence $1 \Vdash_{\mathbb{Q}_{\omega_{2}}}$ " if \mathcal{V}_{ξ} is a a P-point then $\mathcal{V} \leq_{R K} \mathcal{U}_{\xi}$ ".
Since selective ultrafilters are RK minimal it follows that \mathcal{V} is the only possible selective ultrafilter in the generic model obtained by forcing with $\mathbb{Q}_{\omega_{2}}$.

In order to get a single P -point, and not just a single selective ultrafilter, an argument is needed for destroying P-points \mathcal{V} such that $\mathcal{U} \leq_{\text {RK }} \mathcal{V}$ while preserving \mathcal{U} when \mathcal{U} is selective.
Constructing such a partial order and establishing its key properties with be the focus of the remainder of this lecture.

The following definition combines aspects of \mathcal{U}-P-trees and $(\mathcal{U}, \mathcal{V})$-SP-trees. Note that, unlike the case of $(\mathcal{U}, \mathcal{V})$-SP-trees, there is no difference between even and odd levels.

Definition 5

Let \mathcal{U} and \mathcal{V} be ultrafilters and $h: \omega \rightarrow \omega$ a finite-to-one function witnessing that $\mathcal{U} \leq \mathrm{RK} \mathcal{V}$. Define a tree T to be a $(\mathcal{U}, \mathcal{V}, h)$-SP-tree if for each $\tau \in T$ there are $A_{\tau} \in \mathcal{U}$ and $B_{\tau} \in \mathcal{V}$ such that

$$
\operatorname{succ}_{T}(\tau)=\left\{\left(n, h^{-1}\{n\} \cap B_{\tau}\right) \mid n \in A_{\tau}\right\} .
$$

LEMMA 7

Let \mathcal{U} be a selective ultrafilter and \mathcal{V} a P-point such that $h: \omega \rightarrow \omega$ a finite-to-one function witnessing that $\mathcal{U} \leq_{R K} \mathcal{V}$. Then for any $(\mathcal{U}, \mathcal{V}, h)$-SP-tree T there is a branch B such that letting $B(n)=\left(B_{0}(n), B_{1}(n)\right)$

$$
\left\{B_{0}(n) \mid n \in \omega\right\} \in \mathcal{U} \quad \& \quad \bigcup_{n} B_{1}(n) \in \mathcal{V}
$$

Proof.

This uses ideas similar to those of the proof of Lemma 4.

Definition 6

Let \mathcal{U} and \mathcal{V} be ultrafilters and $h: \omega \rightarrow \omega$ a finite-to-one function witnessing that $\mathcal{V} \leq_{\mathrm{RK}} \mathcal{U}$. Define the partial order $\mathbb{P}(\mathcal{V}, \mathcal{U}, h)$ to consist of trees \mathbb{T} such that

$$
\begin{equation*}
(\forall \tau \in \mathbb{T}) \operatorname{succ}_{\mathbb{T}}(\tau) \subseteq\left(2^{|\tau|}\right)^{h^{-1}(|\tau|)} \tag{6}
\end{equation*}
$$

and there are $A \in \mathcal{U}$ and $B \in \mathcal{V}$ such that for all $k \in \omega$

$$
\begin{align*}
& \left(\forall^{\infty} a \in A\right)\left(\forall t \in \operatorname{Lev}_{a}(\mathbb{T})\right)\left(\forall f: h^{-1}(a) \cap B \rightarrow 2^{k}\right) \\
& \quad\left(\exists g \in \operatorname{succ}_{\mathbb{T}}(t)\right)\left(\forall j \in h^{-1}(a) \cap B\right) f(j) \subseteq g(j) . \tag{7}
\end{align*}
$$

Define C_{G} by letting $F_{G}(k): h^{-1}(k) \rightarrow 2^{k}$ if for all $T \in G$ there is $t \in T$ such that $t(k)=F_{G}(k)$ and define

$$
C_{G}(\ell, j)= \begin{cases}F_{G}(h(\ell))(\ell)(j) & \text { if } j \in h(\ell) \\ 0 & \text { otherwise }\end{cases}
$$

π

LEMMA 8

If \mathcal{V} be a selective ultrafilter and \mathcal{U} a P-point such that $h: \omega \rightarrow \omega$ a function witnessing that $\mathcal{V} \leq_{\mathrm{RK}} \mathcal{U}$ then $\mathbb{P}(\mathcal{V}, \mathcal{U}, h)$ is proper and ω^{ω} bounding.

Proof.

This is shown by argument similar to those that establish that $\mathbb{P}(\mathcal{U})$ is proper and ω^{ω} bounding.

UNIVERSITE
\mathbf{U}

LEMMA 9

Suppose that

- \mathcal{U} is a selective ultrafilter
- \mathcal{V} is a P-point
- h a function witnessing that $\mathcal{V} \leq_{\mathrm{RK}} \mathcal{U}$
- $\mathcal{V} \neq \mathrm{RK} \mathcal{U}$
- $T \in \mathbb{P}(\mathcal{U}, \mathcal{V}, h)$
- $P: T \rightarrow 2$.

Then there is $T^{*} \subseteq T$ such that $T^{*} \in \mathbb{P}(\mathcal{U}, \mathcal{V}, h)$ and there is $W \in \mathcal{U}$ and $J \in 2$ such that

$$
(\forall w \in W)\left(\forall t \in \operatorname{Lev}_{w+1} T^{*}\right) P(t)=J
$$

A sketch of the proof of this lemma uses the following:

LEMMA 10

For arbitrary sets R and D if $R^{D}=P_{0} \cup P_{1}$ then there is $d \in D$ and a partition $D \backslash\{d\}=D_{0} \cup D_{1}$ such that for all $f: D_{i} \rightarrow R$ there is $f^{*} \in P_{i}$ such that $f \subseteq f^{*}$.

This lemma is used in the following context: \dot{X} is a name for a subset of ω and

- $\tau \in \mathbb{T}$ and $A \in \mathcal{U}$ and $B \in \mathcal{V}$ witness that $\mathbb{T} \in \mathbb{P}(\mathcal{U}, \mathcal{V}, h)$
- $\mathbb{T}\langle\tau \subset f\rangle \Vdash_{\mathbb{P}(\mathcal{U}, \mathcal{V}, h)}$ " $\chi_{\dot{\chi}}(|\tau|)=J_{f}$ " for $f \in \boldsymbol{\operatorname { s u c c }}_{\mathbb{T}}(\tau)$.

Let $D=h^{-1}(|\tau|) \cap B$ and $R=2^{|\tau|}$. Then for each $f \in R^{D}$ there is $g[f] \in \operatorname{succ}_{\mathbb{T}}(\tau)$ such that

$$
\left(\forall j \in h^{-1}(|\tau|) \cap B\right) \quad f(j) \subseteq g[f](j)
$$

Let $R^{D}=P_{0} \cup P_{1}$ be the partition defined by

$$
P_{i}=\left\{f \in R^{D} \mid J_{g[f]}=i\right\} .
$$

Lemma 10 then provides a partition

$$
h^{-1}(|\tau|) \cap B=D=D_{0} \cup D_{1} \cup\{d\}
$$

such that for all $f: D_{i} \rightarrow R$ there is $f^{*} \in P_{i}$ such that $f \subseteq f^{*}$. Letting D_{i}^{τ} denote D_{i} and d^{τ} denote d for a particular τ, an argument using Lemma 7 then yields $T^{*} \subseteq T$ such that $T^{*} \in \mathbb{P}(\mathcal{U}, \mathcal{V}, h)$ and $\bar{A} \in \mathcal{U}$ and $\bar{B} \in \mathcal{V}$ such that either:

- $D_{0}^{\tau} \supseteq h^{-1}(|\tau|) \cap \bar{B}$ for each $w \in W$ and $\tau \in \operatorname{Lev}_{w}\left(\mathbb{T}^{*}\right)$
- $D_{1}^{\tau} \supseteq h^{-1}(|\tau|) \cap \bar{B}$ for each $w \in W$ and $\tau \in \operatorname{Lev}_{w}\left(\mathbb{T}^{*}\right)$
- $\left\{d^{\tau}\right\}=h^{-1}(|\tau|) \cap \bar{B}$ for each $w \in W$ and $\tau \in \operatorname{Lev}_{v_{k}}\left(\mathbb{T}^{*}\right) \mathrm{RK}$

$$
R=2^{K}
$$

$$
\left\{f \in 2^{k}\right\}\left[\begin{array}{ll}
R=2^{n} \\
& \text { for } f \in 2^{k} \quad g[f] \in \operatorname{succ}_{\pi}(\tau) \\
& \pi\langle\tau\rangle^{\wedge} f \text { drides }|\tau| \in \dot{X}
\end{array}\right.
$$

$P_{0} \cup P_{1}$ is the resulting pardion

YORK

If $J \in 2$ is such that one of the first two possibilities holds for J then

$$
\begin{align*}
& (\forall k \in W)\left(\forall \tau \in \operatorname{Lev}_{k}\left(\mathbb{T}^{*}\right)\right)\left(\forall f: D_{J}^{\tau} \rightarrow 2^{|\tau|}\right) \\
& \quad\left(\exists g \in \operatorname{succ}_{\mathbb{T}^{*}}(\tau)\right)\left(\forall j \in D_{J}^{\tau}\right) f(j) \subset g(j) \tag{8}
\end{align*}
$$

and hence

$$
\begin{align*}
& (\forall k \in W)\left(\forall \tau \in \operatorname{Lev}_{k}\left(\mathbb{T}^{*}\right)\right)\left(\forall f: h^{-1}(|\tau|) \cap \bar{B} \rightarrow 2^{|\tau|}\right) \\
& \quad\left(\exists g \in \mathbf{s u c c}_{\mathbb{T}^{*}}(\tau)\right)\left(\forall j \in D_{J}^{\tau}\right) f(j) \subset g(j) \tag{9}
\end{align*}
$$

and so $\mathbb{T}^{*} \vdash_{\mathbb{P}(\mathcal{U}, \mathcal{V}, h)} \quad$ " $\left.\forall w \in W\right) \chi_{\dot{x}}(w)=J "$ as required.
The third possibility is ruled out by the hypothesis that $\mathcal{V} \neq \mathrm{RK} \mathcal{U}$.

The immediate corollary now is the following.

Corollary 2

If \mathcal{U} is a selective, \mathcal{V} is a P-point and h witnesses that $\mathcal{V} \leq_{R K} \mathcal{U}$ and $\mathbf{1} \Vdash_{\mathbb{P}(\mathcal{U}, \mathcal{V}, h)}$ " $\dot{X} \in \mathcal{U}^{+}$" then there is $\mathbb{T} \in \mathbb{P}(\mathcal{U}, \mathcal{V}, h)$ and $A \in \mathcal{U}$ such that

$$
\mathbb{T} \Vdash_{\mathbb{P}(\mathcal{U}, \mathcal{V}, h))} " A \subseteq \dot{X} "
$$

There is only one final piece of the puzzle needed and it is provided the next lemma, whose proof is similar to the corresponding result for $\mathbb{P}(\mathcal{U})$.

UNIVERSITE
UNIVERSITY

LEMMA 11

If \mathcal{U} is a selective, \mathcal{V} is a P-point and h witnesses that $\mathcal{V} \leq_{\mathrm{RK}} \mathcal{U}$ and $J \in 2$ and
$\mathbf{1} \Vdash_{\mathbb{P}(\mathcal{V}, \mathcal{U}, h)}$ " \dot{X} is almost-J-homogeneous for $C_{\dot{G}} "$
then there is $\mathbb{T} \in \mathbb{P}(\mathcal{V}, \mathcal{U}, h))$ and $E \in \mathcal{U}$ such that

$$
\mathbb{T} \Vdash_{\mathbb{P}(\mathcal{V}, \mathcal{U}, h))} " E \cap \dot{X}=\varnothing "
$$

A countable support iteration, starting with a model of $\nabla_{\omega_{2}}$ and a fixed selective ultrafilter \mathcal{U}, of partial orders $\mathbb{P}_{\xi} * \mathbb{Q}_{\xi}$ where

- $\mathbb{Q}_{\xi}=\mathbb{P}\left(\mathcal{V}_{\xi}\right)$ if $\rangle_{\omega_{2}}$ at ξ guesses \mathcal{V}_{ξ} and $\mathbf{1} \Vdash_{\mathbb{P}_{\xi}}$ " $\mathcal{U} \not Z_{\mathrm{RK}} \mathcal{V}_{\xi}$ "
- $\mathbb{Q}_{\xi}=\mathbb{P}\left(\mathcal{U}, \mathcal{V}_{\xi}, h\right)$ if $\diamond_{\omega_{2}}$ at ξ guesses \mathcal{V}_{ξ} and $\mathbf{1} \Vdash_{\mathbb{P}_{\xi}} " \mathcal{U} \leq_{\mathrm{RK}} \mathcal{V}_{\xi}$ ".
provides a model with a unique P -point.

Questions

It is not hard to modify this proof to get model of set theory with any specified number of RK-equivalence classes of P-points (but there is only homeomorphism class of P-points of character \aleph_{1}.)

Question 1

What RK structures are possible for the set of P-points?
Given that in the models discussed with some, but not many P-points, the P -points are all selective, one may ask whether it is possible to have P-points, but no selective ultrafilters.

Theorem 1 (Combining Kunen [2] And Dow [1])

In a model obtained by adding \aleph_{2} random reals to a model of
$V=L$ there are no selective ultrafilters, but there are P-points.

References I

國 Alan Dow．
P－filters and Cohen，random，and Laver forcing．
Topology Appl．，281：107200，16， 2020.
圊 Kenneth Kunen．
Some points in βN ．
Math．Proc．Cambridge Philos．Soc．，80（3）：385－398， 1976.
俥 Saharon Shelah．
Proper and improper forcing．
Perspectives in Mathematical Logic．Springer－Verlag，Berlin， second edition， 1998.

