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Overview of lectures

1 Lecture 1 will be an elementary introduction to P-points.
Origins, characterizations, weaker and stronger properties.
Their existence will also be examined.

2 Lecture 2 will look at models of set theory without P-points.
One model, which seems to destroy only P-points and nothing
else, and another, that seems to be destroy many ultrafilters
related to P-points, will be examined.

3 Lecture 3 will look at destroying some P-points while
preserving others. Many questions remain open in this area.
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Introduction

In 1954 Gilman and Henriksen published a paper [7] on C (X ,R),
the ring of continuous functions from the completely regular
topological space X to the real numbers, in which they define a
point p in the space X to be a P-point if the only prime ideal
consisting of functions that vanish at p is the ideal of all functions
that vanish at p. They provide the following characterization of
P-points.

Theorem

For every point p ∈ X , the following statements are equivalent:

p is a P-point.

Every continuous function vanishing at p vanishes on a
neighbourhood of p.

Every countable intersection of neighbourhoods of p contains
a neighbourhood of p.

Juris Steprāns P-points



Definition

A filter F on a set X is a subset of P(X ) such that:

1 if A and B belong to F then A ∩ B ∈ F
2 if A ⊆ B and A ∈ F then B ∈ F .

I is an ideal on X if {X \ A | A ∈ I } is a filter on X . This filter
will be denoted by I∗ and, if F is a filter, then F∗ will denote its
corresponding ideal, known as the dual ideal. The notation F+

will be used to denote P(X ) \ F∗ and, I+ will denote (I∗)+.
The filter F will be said to be an ultrafilter on X if, in addition,
for every A ⊆ X either A ∈ F or X \ A ∈ F .

Proposition

A filter F on X is an ultrafilter if and only if it is a maximal filter.
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Definition

βN is the (compact) topological space of all ultrafilters on N
whose open sets are A∗ = {U ∈ βN | A ∈ U }. βN \ N is the
subset of βN consisting of ultrafilters that contain no finite set.

Note that the following are equivalent

U ∈ A∗ ∩ B∗

A ∈ U & B ∈ U

A ∩ B ∈ U

U ∈ (A ∩ B)∗
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Somewhat later than Gilman and Henriksen, Walter Rudin [13]
showed that βN \ N is not homogeneous assuming 2ℵ0 = ℵ1. His
strategy was the following:

Note that being a P-point in βN \ N is a topological property,
hence preserved by homeomorphisms.

Show that 2ℵ0 = ℵ1 implies that P-points exist in βN \ N.

Show that not all points in βN \ N are P-points.
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The first part of his strategy was to prove the following

Proposition

The P-points in βN \ N are those ultrafilters U satisfying: For
every countable family C ⊆ U there is A ∈ U such that
|A \ C | < ℵ0 for all C ∈ C.

We will take this as our definition of a P-point. Why is it
topological?

The family {C ∗}C∈C is a countable family of neighbourhoods
of the point U .

A∗ is a neighbourhood of the point U
A∗ ∩ βN \ N ⊆ C ∗ for all C ∈ C since V ∈ (A \ C )∗ only if
V ∈ N.

Juris Steprāns P-points



We will show a bit later that much weaker hypotheses than the
Continuum Hypothesis imply the existence of P-points, so we will
not examine Rudin’s proof here. The fact that non-P-points exist
does not require any extra set theoretic hypotheses. One way of
doing this goes back to Frolik [6].

Definition

If F is a filter on ω and Fi is a filter on Xi for each i ∈ ω then
define

∏
F Fi to be the filter on

∏
i∈ω Xi defined by

∏
F
Fi =

{
A ⊆

∏
i∈ω

Xi | {i ∈ ω | {x ∈ Xi | (i , x) ∈ A} ∈ Fi } ∈ F

}

In the special case that Fi = G for all i where G is a filter on ω the
notation F × G will be used for

∏
F Fi .
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It is routine to verify the following.

Proposition

If F is an ultrafilter on ω and each Fi is also an ultrafilter on Xi

for each i ∈ ω then
∏
F Fi is an ultrafilter on

∏
i∈ω Xi .

The next proposition uses the product construction to establish the
feature determining non-P-points, a feature that will be used
without further mention throughout much of this tutorial.

Proposition

If U is an ultrafilter on ω × ω such that FIN∗ × FIN∗ ⊆ U then U
is not a P-point.
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Notation

Define A ⊆∗ B if |A \ B| < ℵ0 and A ≡∗ B if A ⊆∗ B ⊆∗ A. Let
FIN be the ideal of finite subsets of ω.

Proof.

Let An = (ω \ n)× ω. It follows that An ∈ FIN∗ × FIN∗ for each n
and, hence An ∈ U for each n.

Now suppose that A ∈ U is such that A ⊆∗ An for each n. Since
{n} × ω ∩ An+1 = ∅ it follows that A ∩ ({n} × ω) is finite for each
n and, hence, that (ω × ω) \ A ∈ FIN∗ × FIN∗.

But this is impossible if U is a filter containing FIN∗ × FIN∗ and
A ∈ U .
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Rudin also showed that, assuming 2ℵ0 = ℵ1, for any two P-points
there is a homeomorphism of βN \ N taking one to the other. It is
important to note that here CH is essential.

Theorem (St.)

MA does not decide this.

To explain the greater generality of the result the following
definition should be recalled.

Definition

A base for a filter F is a set B ⊆ F such that for all A ∈ F there
is B ∈ B such that B ⊆ A. If this holds then the filter F is said to
be generated by B. The character of an ultrafilter is the least
cardinality of a base for it. For later use, u is the least cardinality
of the base of some ultrafilter.

Proposition

If U and V are P-points and both have character ℵ1 then there is a
homeomorphism of Φ of βN \ N such that Φ(U) = V.
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Juris Steprāns P-points



Proof.

Noting that βN \ N is the Stone space of P(N)/FIN and hence, it
suffices to find a Boolean algebraic isomorphism Ψ of P(N)/FIN
to itself such that Ψ([A]) ⊆ V if and only if A ∈ U where [X ]
denotes the ≡∗-equivalence class of X .

Using that both U and V are P-points of character ℵ1 it is possible
to find a base {Uξ}ξ∈ω1 for U and a base {Vξ}ξ∈ω1 for V such that
Uξ ⊆∗ Uη and Vξ ⊆∗ Vη if ξ ≥ η. Let Ūξ = ω \Uξ and V̄ξ = ω \Vξ

Next, construct by induction on ξ bijections ψξ : Ūξ → V̄ξ such
that ψξ ⊆∗ ψη if ξ ∈ η. Then define Ψ as follows:

Ψ([A]) =

{
[ψξ(A)] if ω \ A ⊇∗ Uξ
[ω \ ψξ(ω \ A)] if A ⊇∗ Uξ.
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Characterizations

The following can be found in Booth’s thesis [4].

Theorem

For any ultrafilter U the following are equivalent:

1 U is a P-point.

2 For any compact metric space X and a sequence {xn}n∈ω ⊆ X
there is U ∈ U such that {xn}n∈U is a convergent sequence.

3 For any sequence {xn}n∈ω ⊆ 2ω there is U ∈ U such that
{xn}n∈U is a convergent sequence in 2ω with the product
topology.
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Proof.

To see that Condition 1 implies Condition 2 let {xn}n∈ω be a
sequence in the compact metric space X . For each n let Bn be
finite cover of X consisting of balls of diameter less than 1/n. It
follows that there is Bn ∈ Bn such that
An = {k ∈ ω | xk ∈ Bn } ∈ U . Let A ∈ U be such that A ⊆∗ An

for all n. Then {xn}n∈A is a Cauchy sequence and hence, since X
is compact, this sequence converges.
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Proof.

That Condition 2 implies Condition 3 is immediate.

To see that Condition 3 implies Condition 1 let An ∈ U for n ∈ ω.
Define Fn : ω → 2 by Fn(m) = 1 if and only if n ∈ Am and let
A ∈ U be such that limn∈A Fn = F for some F ∈ 2ω. It remains to
show that A ⊆∗ Am for each m. If this fails for some m then there
are infinitely many n ∈ A such that Fn(m) = 0. However,
A ∩ Am ∈ U and so there are infinitley many n such that
Fn(m) = 1. This contradicts that limn∈A Fn = F .
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A strikingly different characterization of P-points using an infinite
game is attributed to Galvin and McKenzie by Shelah in Chapter VI
of [14]. This characterization is especially useful in forcing
arguments because the game can be used to simulate a generic set.

Definition

For any ultrafilter U define the game ap(U) as follows. Player 1
and Player 2 take turns making moves for ω innings. At Inning K
Player 1 plays AK ∈ U and Player 2 plays aK ∈ [AK ]<ℵ0 . At the
end of ω moves Player 2 is declared the winner if

⋃
k∈ω ak ∈ U .

Lemma

If U is an ultrafilter then the following are equivalent:

1 U is a P-point

2 Player 1 does not have a winning strategy in the game ap(U).
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To avoid technical discussions of what a strategy is, it will be
convenient to rephrase this lemma using the following definition.

Definition

By a tree will be meant a set of finite sequences closed under
initial segments; in other words, if T is a tree and τ ∈ T and
k ≤ |τ | then τ � k ∈ T . Given a tree T and τ ∈ T define
succT (τ) = {z | τ_z ∈ T }. A branch of T is a function B with
domain ω such that B � k ∈ T for all k.

Definition

Given an ultrafilter U on ω say that T is a U-P-tree if for each
τ ∈ T there is A ∈ U such that

succT (τ) = [A]<ℵ0

min(A) > τ(`) for all ` in the domain of τ .
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Proposition

If U is an ultrafilter then U is a P-point if and only if every
U-P-tree has a branch B such that

⋃
k∈ω B(k) ∈ U .

Proof.

Suppose first that every U-P-tree has a branch B such that⋃
k∈ω B(k) ∈ U . Then, given An ∈ U it is always possible to

assume that An+1 ⊆ An. Then let T be the tree defined by
succT (τ) = [A|τ |]

<ℵ0 .

For the other direction, let U be a P-point and T a U-P-tree. For
τ ∈ T let Aτ ∈ U be such that succT (τ) = [Aτ ]<ℵ0 . For k ∈ ω let
t(k) be the finite set of all sequences τ : `→ P(k) for ` < k and
let

Dn =
⋂

τ∈t(n)

Aτ .

Juris Steprāns P-points



Continuation of proof.

Using that U is a P-point find D ∈ U such that D ⊆∗ Dn for all n.
Then construct a sequence of increasing integers dn such that
d0 = 0 and dn+1 is so large that D \ dn+1 ⊆ Ddn .

Let Ei =
⋃

k∈ω D ∩ [d2k+i , d2k+i+1) for i ∈ 2. Since D = E0 ∪ E1

let j ∈ 2 be such that Ej ∈ U . There is no harm in letting j = 0.
Let B(k) = D ∩ [d2k , d2k+1).
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Continuation of proof.

Then note that

B(k) ⊆ D \ d2k ⊆ Dd2k−1
= Dd2(k−1)+1

⊆ AB�k

To see that Dd2(k−1)+1
⊆ AB�k observe that if ` = k < 2(k − 1) + 1

and τ(i) = B(i) for i ∈ ` then Bi ⊆ d2i+1 ≤ d2(k−1)+1 and so
D2(k−1)+1 ⊆ Aτ = AB�k .

Therefore B is a branch of T and
⋃

k B(k) = E0 ∈ U .
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The use of games is not essential for the following, but it provides
an opportunity to illustrate the concept that will be used in more
subtle ways in the third lecture.

Proposition

If U is an ultrafilter then the following are equivalent:

1 U is a P-point
2 for every function F : ω → ω there is A ∈ U such that one of

the following options holds:

F is constant on A
F is finite-to-one on A.
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1 implies 2.

Suppose that F is not constant on any set on U . Let T be the tree
defined by ∅ ∈ T and if τ ∈ T then

succT (τ) = [{n ∈ ω | (∀` ∈ domain(τ)) F (n) /∈ F [τ(`)]}]<ℵ0 .

Note T is a U-tree. Letting B be a branch of T such that⋃
n B(n) ∈ U yields a set in U on which F is finite-to-one.

2 implies 1.

Suppose that {An}n∈ω ⊆ U . Define F : ω → ω + 1 by letting F (k)
be the least m such that k /∈ Am if there is such an m and letting
F (k) = ω otherwise. If A ∈ U is such that F is constant on A then
this constant value must be ω and then A ⊆ Am or all m. On the
other hand, if F is finite-to-one on A, then, if k ∈ A and F (k) ≥ m
it follows that k ∈ Am and hence, A ⊆∗ Am for all m.
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Weaker properties

Note that a consequence of the characterization of P-points in
terms of convergent sequences is the following, that can be
interpreted as saying that P-points are in some sense small:

Proposition

If U is a P-point and F : ω → [0, 1] then there is a discrete set
A ⊆ [0, 1] such that F−1(A) ∈ U .

This motivates the following definition due to Baumgartner [1] but
implicit in work of van Douwen.

Definition

If I is a family of subsets of the set X then an ultrafilter U is
known as an I-ultrafilter if for every function F : ω → X there is
some A ∈ I such that F−1(A) ∈ U .
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Theorem (Baumgartner)

If U is an ultrafilter then in the following list of conditions on U ,
each implies the next:

1 U is a P-point.

2 U is a discrete-ultrafilter.

3 U is a scattered-ultrafilter.

4 U is a measure zero-ultrafilter.

5 U is a nowhere dense-ultrafilter.

and, assuming p = c, none of the implications reverses.

The proof that (5) does not imply (4) is quite delicate, but even
the proof that (2) does not imply (1) is illuminating.
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Proof of 2 does not imply 1.

Using p = c there is a P-point U (we will prove this soon). The
non-implication will follow from showing that U × U is discrete. So
let F : ω × ω → [0, 1]

For k ∈ ω let Fk : ω → [0, 1] be defined by Fk(n) = F (k , n). From
preceding proposition get that there is are Ak ∈ U and xk ∈ [0, 1]
such that limn∈Ak

Fk(n) = xk . Let G (k) = xk and again get A ∈ U
and x ∈ [0, 1] such that limn∈A G (n) = x .

Now choose disjoint neighbourhoods Vk of xk for k ∈ A and note
that

D =
⋃
n∈A
{Fn(m) ∈ Vn | m ∈ An }

is discrete.
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Proof continued.

Then Ak ⊆∗ F−1k (Vk) for k ∈ A and hence F−1k (Vk) ∈ U .
Therefore

F−1(D) =
∏
k∈A

F−1k (Vk) ∈ U × U .

Since D is discrete this shows that U × U is a discrete-ultrafilter.
Recall that U × U is never a P-point.

So a nowhere dense-ultrafilters can be considered to be much
weaker than P-points. Nevertheless , it will be shown in the next
lecture that these may still not exist. Also studied are the ordinal
ultrafilters defined for indecomposable ordinals and their associated
ideals [5, 9]. All of these are notions weaker than P-point, but an
important class of modifications yields stronger properties.
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Question

The following question of Baumgartner from [1] seems to be open.

Question

Does the existence of a scattered ultrafilter imply the existence of
a P-point?
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Stronger properties

Definition

For any ultrafilter U define the game as(U) as follows. Player 1
and Player 2 take turns making moves for ω innings. At Inning K
Player 1 plays AK ∈ U and Player 2 plays aK ∈ AK . At the end of
ω moves Player 2 is declared the winner if {ak}k∈ω ∈ U .

The associated trees are very easy to define.

Definition

For any ultrafilter U define T to be a U-S-tree if succT (τ) ∈ U for
every τ ∈ T . In this case T ⊆ ω<ω.
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Lemma

If U is an ultrafilter then the following are equivalent:

1 Player 1 has no winning strategy in the game as(U).

2 Every U-S-tree has a branch whose range is in U .

3 For every P : [ω]2 → 2 there is A ∈ U such that P is constant
on [A]2; in other words, ω → (U)22

4 For every k ∈ ω and every P : [ω]k → 2 there is A ∈ U such
that P is constant on [A]k ; in other words, ω → (U)k2

5 For any F : ω → ω there is A ∈ U such that F is either
constant or one-to-one on A.

6 For any family {An}n∈ω ⊆ U such that An+1 ⊆ An there is
A ∈ U such that |A ∩ (An \ An+1)| ≤ 1 for all n.

An ultrafilter satisfying any of these properties is called selective.
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Proof that 1 implies 3.

Let P : [ω]2 → 2. Let T be the U-tree consisting of all τ such that
there are Zτ ∈ U and fτ : |τ | → 2 such that P(n,m) = fτ (n) for all
n ∈ domain(τ) and m ∈ Zτ . Let B be a branch of T whose range
belongs to U .

Note that f =
⋃

m fB�m is a function. Let J ∈ 2 be such that
f −1{J} ∈ U and note that f −1{J} is homogeneous.
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3 implies 4.

Proceed by induction on k starting with k = 2. Assume that for
every P : [ω]k → 2 there is A ∈ U such that P is constant on [A]k

and let Q : [ω]k+1 → 2. Now define Q∗ : [ω]k → 2 by Q∗(a) = i if
and only if Za = {k ∈ ω \ a | Q(a ∪ {k}) = i } ∈ U . Using the
induction hypothesis it is possible to find B ∈ U and J ∈ 2 such
that Q∗(a) = J for all a ∈ [B]k .
Now define Q∗∗ : [B]2 → 2 by

Q∗∗({n,m}) =

{
0 if n < m & m ∈

⋂
a∈[n]k−1 Za∪{n}

1 otherwise.

Now let A ⊆ B be such that A ∈ U and Q∗∗ is constant on [A]2.
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Continuation of 3 implies 4.

The first thing to notice is that it must be the case that
Q∗∗(a) = 0 for all a ∈ [A]2. To see this, let n ∈ A and let
W =

⋂
a∈[n]k−1 Za∪{m} ∈ U . Then let m ∈ A ∩W be such that

n < m and note that {n,m} ∈ [A]2 and Q∗∗({n,m}) = 0.

It now suffices to check that Q(a) = J for all a ∈ [A]k+1. To see
this let a = a0 ∪ {m} ∪ {n} where max(a0) < m < n. Then
Q∗∗({n,m}) = 0 and so n ∈ Za0∪{m}. Since Q∗(a0 ∪ {m}) = J it
follows that

Q(a) = Q((a0 ∪ {m}) ∪ {n}) = J.
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P-points can exist

Definition

Recall that d is the least cardinality of a dominating family in ωω.

Theorem (Ketonen [8])

If d = c then there is a P-point. Indeed, any filter with a base of
cardinality less than c can be extended to a P-point. (This stronger
property is known as the generic existence of P-points)

The proof will use the following easy lemma at a crucial point.

Lemma

If G is a family of infinite partial functions from ω to ω and
|G| < d then there is f : ω → ω such that for each g ∈ G there are
infinitely many n in the domain of g such that f (n) > g(n).
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Proof of Theorem.

Let {Fξ}ξ∈c enumerate ωω. Construct filters Fξ such that:

1 if ξ ∈ η then Fξ ⊆ Fη
2 Fη has a base of cardinality |η| · ℵ0
3 if F−1ξ {n} ∈ F

∗
ξ for all n then there is A ∈ Fξ+1 such that

Fξ � A is finite-to-one.

4 if there is some n such that F−1ξ {n} /∈ F
∗
ξ then there is some

n such that F−1ξ {n} ∈ Fξ+1.

If this can be done, then let F =
⋃
ξ∈cFξ and note that F is an

ultrafilter by considering the Fξ that are 2-valued and applying
Induction Hypothesis 4.
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Continuation.

To see that F is a P-point use Corollary 7 and let F : ω → ω. Let
ξ ∈ c be such that Fξ = F . If F−1{n} ∈ F∗ξ for all n then there is
A ∈ Fξ+1 ⊆ F such that F � A is finite-to-one. Otherwise there is
n such that F−1{n} ∈ Fξ+1 ⊆ F and so F is constant on a set in
F .
To carry out the induction, let F0 = F∗. At limit stages simply
take unions, so suppose that Fξ has been constructed. If there is
some m such that F−1ξ {m} /∈ F

∗ then let Fξ+1 be the filter

generated by Fξ ∪ {F−1ξ {m}} and note that F−1ξ {m} ∈ Fξ+1.

Hence it will be assumed that F−1ξ {m} ∈ F
∗ for all m.

Let
X =

⋃
{m∈ω | |F−1

ξ {m}|=ℵ0 }
F−1ξ {m}.
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Continuation.

The first case to consider is ω \ X ∈ F+
ξ . Then Fξ ∪ {ω \ X}

generates a filter consisting of infinite sets. Let Fξ+1 be this filter
and note that ω \ X ∈ Fξ+1 and Fξ � ω \ X is finite-to-one.
The other possibility is that X ∈ Fξ. Let

R =
{
m ∈ ω

∣∣∣ |F−1ξ {m}| = ℵ0
}
.

Note that if Z ∈ Fξ then Z ∩ X ∈ Fξ and hence
Z ∩ X \ F−1ξ (a) 6= ∅ for each a ∈ [R]<ℵ0 . Hence for each such Z

there are infinitely many r ∈ R such that Z ∩ F−1ξ {r} 6= ∅. Let
DZ be any function whose domain is{

r ∈ R
∣∣∣ Z ∩ F−1ξ {r} 6= ∅

}
such that DZ (r) ∩ Z ∩ F−1ξ {r} 6= ∅ for each r in the domain of
DZ . Note that the domain of each DZ is an infinite subset of R.
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Continuation.

Let B be a base for Fξ of cardinality less than c and let
D = {DZ | Z ∈ B}. Up to this point no extra hypothesis has
been needed, but it is now possible to use the easy lemma and the
fact that |B| < d to find f : ω → ω such that for each Z ∈ B there
are infinitely many r in the domain of DZ such that f (r) > DZ (r).
Let W =

⋃
r∈R F−1ξ {r} ∩ f (r).

It is immediate that Fξ � W is finite-to-one. Moreover, W ∩ Z is
infinite for each Z ∈ B and hence W ∈ F+

ξ . Letting Fξ+1 be
generated by Fξ ∪ {W } completes this inductive step.
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Theorem (Ketonen [8])

If cov(M) = c then there is a selective ultrafilter.

Definition

If U is an ultrafilter such that for any finite-to-one function
F : ω → ω there is A ∈ U such that F is either constant or
one-to-one on A is known as a Q-point.

The following characterization of selective ultrafilters is immediate
from Corollary 7 and Condition 5 of Lemma 2.

Lemma

An ultrafilter U is selective if and only if it is both a P-point and a
Q-point.
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Question

If cov(M) = c then there is a Q-Point that is not a P-point and
we will see later that there can P-points that are not Q-points.
Miller showed [10] that there are no Q-points in Laver’s model for
the Borel Conjecture. The following remains open.

Question (Miller)

Is it consistent that there are no P-points and no Q-points?
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More properties of P-points

Rosen [12] asked the natural question whether the condition
ω → (U)22 of the characterization of selective ultrafilters might be
replaced by the assertion ω → [U ]km omitting a colour.

Theorem (Rosen)

Assuming 2ℵ0 = ℵ1 for each n ∈ N there are ultrafilters U such
that ω → [U ]2n+1 yet the relation ω → [U ]2n fails.

Theorem (Blass, Dobrinen and Raghavan [3])

For each dimension n there is an integer T (n) such that
ω → [U ]nT (n)−1 holds if and only if U is a P-point and, moreover,

there are non-P-points U such that ω → [U ]nT (n) holds.
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It should be mentioned that earlier characterizations of P-points
along these lines were also known. However, the statements
require some technicalities.

Definition (Baumgartner [1])

Given G ⊆ [X ]k the notation ω → [U ,G ]k means the following:
For any partition P : [ω]k → 2 either there is A ∈ U such that
P(a) = 0 for each a ∈ [A]k or there is a one-to-one mapping
h : X → ω such that P({h[x ]}) = 1 for each x ∈ G . The ultrafilter
U is said to be an m-arrow ultrafilter if m ≥ 3 and
ω → [U , [m]2]2 and U is said to be an arrow ultrafilter if it is a
m-arrow ultrafilter for all m.

In the case of k = 2 it may be more instructive to think of graphs.
The relation ω → [U ,G ]2 holds if for every P : [ω]2 → 2 there is
either a set A ∈ U such that P restricted to [A]2 is constantly 0 or
there is an isomorphic copy of the graph G on some subset of ω
whose edges are coloured 1 by P.
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Theorem (Baumgartner and Taylor [2])

For an ultrafilter U the following are equivalent:

1 U is selective

2 ω → [U , [ω]2]2

3 ω → [U , [4]3]3.

Kanamori showed that there is 3-arrow ultafilter if and only if there
is P-point, even though the 3-arrow ultrafilters may not themselves
be P-points.
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Question

Question

Is it consistent to have no k + 1-arrow ultrafilters, but to have a
k-arrow ultrafilter.

Under p = c Baumgartner and Taylor show there are k-arrow
P-points that are not k + 1-arrow ultrafilters. Selective ultrafilters
are arrow ultrafilters. One could still ask if for a given k and m it is
consistent to have a P-point that is k-arrow and not k + 1-arrow
but no P-point that is m-arrow and not m + 1-arrow.
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Nešeťril [11] showed that ω → [U ,F ]2 for every countable, acyclic
graph with finite components and every ultrafilter U . However,
assuming cov(M) = c, he showed there is a P-point U (which he
called a Riga P-point) such that ω → [U ,F ]2 if and only if F is a
countable, acyclic graph with finite components. In other words,
under cov(M) = c, P-points cannot be characterized as the only
ultrafilters satisfying ω → [U ,G ]2 for some graph G or even for
some family of graphs.

Note that a consistency result along these lines is all that can be
hoped for since it will be shown in the next lecture that it is
consistent that there is a P-point but every P-point is selective.
On the other hand, it has already been seen that ω → [U ,Kℵ0 ]2

holds for any selective ultrafilter U . Hence in this model the arrow
relation ω → [U ,Kℵ0 ]2 characterizes the P-points, although in a
somewhat degenerate way.
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Theorem (Nešetřil)

If cov(M) = c then there is a P-point U (that is not a Q-point)
and has the following property: A countable graph G is acyclic
with only finite components if and only if ω → [U ,G ]2.

Proof of Theorem Jump to question.

The argument will use the following result of Erdös : For any
integer k there is a finite graph Gk with vertices Vk such that:

{Vk}k∈ω partitions ω into finite sets

the chromatic number of Gk is k

Gk has no n-cycle for any n ≤ k.

Let G =
⋃

k Gk = ⊕kGk .
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Continuation of Proof.

Now construct inductively filters Fξ for ξ ∈ c such that:

1 Fξ ⊆ Fη if ξ ∈ η
2 Fξ is generated by a set of cardinality less than c

3 if X ∈ Fξ and m ∈ ω then the chromatic number of G ∩ [X ]2

is greater than m; in other words, there is some k such that
the chromatic number of Gk ∩ [X ]2 is greater than m.
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Claim

Given Fξ and X ⊆ ω there is Fξ+1 satisfying Inductive Condition 1
to 3 such that either X ∈ Fξ+1 or X ∈ F∗ξ+1.

Proof of claim.

The fact that it is possible to add either X or it complement to Fξ
while preserving Inductive Conditions 3 follows from the fact that if
H is a graph with vertices W and W = W0 ∪W1 then the sum of
the chromatic numbers of H ∩ [W0]2 and H ∩ [W1]2 is at least the
chromatic number of H.
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Claim

Given Fξ and a partition {An}n∈ω of ω such that An ∈ F∗ξ for each
n there is Fξ+1 satisfying Inductive Conditions 1 to 3 and
X ∈ Fξ+1 such that |X ∩ An| < ℵ0 for each n ∈ ω.

Proof of claim.

Let P =
⋃

n∈ω
∏

j∈n[Aj ]
<ℵ0 ordered by inclusion. This is a

countable partial order and so the hypothesis cov(M) = c can be
applied to meet fewer than c dense sets. Let B ⊆ Fξ be a set of
cardinality less than c generating Fξ. For each X ∈ B and m ∈ ω
let D(X ,m) be the set of c ∈ P such that G ∩ [

⋃
j c(j) ∩ X ]2 has

chromatic number greater than m.
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Continuation of proof of claim.

To see that each D(X ,m) is dense in P let c ∈ P with domain `
and note that that X \

⋃
i∈` Ai ∈ Fξ. By Induction Hypothesis 3 it

follows that there is some k ≥ ` such that the chromatic number
of Gk ∩ [X \

⋃
i∈` Ai ]

2 is greater than m. Extend c to c ′ with
domain m so that

m−1⋃
j=`

c ′(j) ⊇ Vk ∩ X \
⋃
i∈`

Ai .

Hence it is possible to find a generic filter G ⊆ P such that
G ∩ D(Z ,m) 6= ∅ for all m ∈ ω and Z ∈ B. Let
X =

⋃
c∈G

⋃
j∈ω c(j) and note that letting Fξ+1 be generated by

{X} ∪ F+
ξ will satisfy Induction Hypotheses 1 to 3. Moreover,

|X ∩ An| < ℵ0 for all n.
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Continuation of proof of theorem.

Using an appropriate enumeration of the instances of Claim 1 and
Claim 2 it will follow that F =

⋃
ξ∈cFξ is a P-point. It has already

been seen that ω → [F ,F ]2 for any countable, acyclic graph F
with only finite components. To see that ω 6→ [F ,H]2 otherwise,
let H be given and suppose that the vertices of H are ω.

There are two cases to consider. The first case is that H has an
infinite component C . If P be the characteristic function of G then
no set in F is homogeneous for P. If e ∈ ωω is a one-to-one
mapping it must be shown that there is an edge of H whose image
under e is not an edge of G . Let k be such that e−1(Vk)∩ C 6= ∅.
Since C is infinite and e−1(Vk) is finite it follows that e−1(Vk) is
not a component of H. Hence there is some n ∈ C \ e−1(Vk) and
m ∈ e−1(Vk) ∩ C such that {n,m} is an edge of H. But then
e(n) /∈ Vk and e(m) ∈ Vk so {e(n), e(m)} is not an edge of G .
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Conclusion of proof of theorem.

The other possibility is that H contains a k-cycle {a0, a1, . . . , ak}
for some k. In this case let P : [ω]2 → 2 be defined by P(a) = 1 if
and only if there is some j > k such that a ∈ Gj . If e ∈ ωω is a
one-to-one mapping such that P({e(n), e(m)}) = 1 if {n,m} is an
edge of H then it follows that P({e(ai ), e(ai+1)}) = 1 for each
i ∈ k. Since a0 = ak it follows that there is some m > k such that
{e(a0), e(a1), . . . , e(ak)} ⊆ Vm. But this contradicts that Gm

contains no k-cycle.
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Question

It has already been noted that under the Continuum Hypothesis it
is not possible to characterize P-points by a class of graphs such
that U is a P-point if and only if ω → [U ,G ]2 for all graph G from
the class. On the other hand, if there is a P-point, but all P-points
are selective then U is a P-point if and only if ω → [U ,Kℵ0 ]2.

Question

For which classes of graphs G is it consistent that U is a P-point if
and only ω → [U ,G ]2 for all G ∈ G.
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