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in the game starting with s~ (i, j).

Sandra Miiller (TU Wien)




Theorem (Gale-Stewart, 1953)
Let A C NN be open. Then the game with payoff set A is determined.

Proof.

Claim

Let s € 2"N. If | does not have a winning strategy in the game starting with s,
then for any i € N, there is a j € N such that | does not have a winning strategy
in the game starting with s~ (i, 7).

Proof.
Suppose not and let ¢ be a counterexample. For any j € N let o; be a winning

strategy for | in the game starting with s (i, j).

Sandra Miiller (TU Wien)




Theorem (Gale-Stewart, 1953)
Let A C NN be open. Then the game with payoff set A is determined.

Proof. |
Claim

Let s € 2"N. If | does not have a winning strategy in the game starting with s,
then for any i € N, there is a j € N such that | does not have a winning strategy
in the game starting with s~ (i, 7).

Proof.
Suppose not and let ¢ be a counterexample. For any j € N let o; be a winning

strategy for | in the game starting with s (i, j).
This yields a winning strategy for | in the game starting with s: Play . If Il
responds with some j, continue playing according to o;. O

v

Sandra Miiller (TU Wien)



Theorem (Gale-Stewart, 1953)
Let A C NN be open. Then the game with payoff set A is determined.

Proof.
Claim
Let s € "N. If | does not have a winning strategy in the game starting with s,

then for any i € N, there is a j € N such that | does not have a winning strategy
in the game starting with s~ (i, j).

Suppose | does not have a winning strategy.

Sandra Miiller (TU Wien)




Theorem (Gale-Stewart, 1953)
Let A C NN be open. Then the game with payoff set A is determined.

Proof.

Claim

Let s € "N. If | does not have a winning strategy in the game starting with s,
then for any i € N, there is a j € N such that | does not have a winning strategy
in the game starting with s~ (i, j).

Suppose | does not have a winning strategy. Then we can use the claim
recursively to build a strategy 7 for Il such that for any partial play s | does not
have a winning strategy in the game starting with s.

Sandra Miiller (TU Wien)



Theorem (Gale-Stewart, 1953)
Let A C NN be open. Then the game with payoff set A is determined.

Proof.

Claim

Let s € "N. If | does not have a winning strategy in the game starting with s,
then for any i € N, there is a j € N such that | does not have a winning strategy
in the game starting with s~ (i, j).

Suppose | does not have a winning strategy. Then we can use the claim
recursively to build a strategy 7 for Il such that for any partial play s | does not
have a winning strategy in the game starting with s.

This 7 is a winning strategy for 1l: Suppose not and let = be according to 7
such that x € A.

Sandra Miiller (TU Wien)



Theorem (Gale-Stewart, 1953)
Let A C NN be open. Then the game with payoff set A is determined.

Proof.

Claim

Let s € "N. If | does not have a winning strategy in the game starting with s,
then for any i € N, there is a j € N such that | does not have a winning strategy
in the game starting with s~ (i, j).

Suppose | does not have a winning strategy. Then we can use the claim
recursively to build a strategy 7 for Il such that for any partial play s | does not
have a winning strategy in the game starting with s.

This 7 is a winning strategy for 1l: Suppose not and let = be according to 7
such that x € A. As A is open, there is some basic open set O(z | 2n) C A.

Sandra Miiller (TU Wien)



Theorem (Gale-Stewart, 1953)
Let A C NN be open. Then the game with payoff set A is determined.

Proof.

Claim

Let s € 2"N. If | does not have a winning strategy in the game starting with s,
then for any i € N, there is a j € N such that | does not have a winning strategy
in the game starting with s~ (i, j).

Suppose | does not have a winning strategy. Then we can use the claim
recursively to build a strategy 7 for Il such that for any partial play s | does not
have a winning strategy in the game starting with s.

This 7 is a winning strategy for 1l: Suppose not and let = be according to 7
such that x € A. As A is open, there is some basic open set O(z | 2n) C A.
But then any strategy for | in the game starting with x [ 2n is winning,
contradicting the definition of 7. L]

Sandra Miiller (TU Wien)



Determinacy Axioms

Which games are determined?

Borel

open/closed

Martin (1975),

Gale-Stewart (1953),




Determinacy Axioms

Which games are determined?

analytic

Martin (1970),

Borel

open/closed

Martin (1975),

Gale-Stewart (1953),




Determinacy Axioms

Which games are determined?

sechovs of Borel
(P:;\f;ﬁ{s .'Zﬁ R

analytic

Borel

open/closed

Martin (1970),
Martin (1975),

Gale-Stewart (1953),



Determinacy Axioms
Which games are determined?

progetions of Forel Theorew (Varkin) :Suppose At
o 25 RR xH pies o ey vl

“Then every anlys st BV
LQ is detewived..
“v.,....-»“.'_ﬁ

LN

analytic

Martin (1970),

Borel

open/closed

Martin (1975),

Gale-Stewart (1953),




Which games are determined?

Martin-Steel (1985), Woodin cardi-

nals and a measurable cardinal

Martin (1970), measurable cardinal

Borel

open/closed

Martin (1975), ZFC

Gale-Stewart (1953), ZFC

DA



Which games are determined?

Martin-Steel (1985), Woodin cardi-

nals and a measurable cardinal

Martin (1970), measurable cardinal

Borel

open/closed

Martin (1975), 7FC

Gale-Stewart (1953), ZFC

DA



Determinacy Axioms

Which games are determined?

a®. aawes ave

l0/ defeswivedh.

projective
analytic

Borel

open/closed

Martin-Steel (1985),

Martin (1970),

Martin (1975),

Gale-Stewart (1953),




Which games are determined?

a& gawgs N R ane
I Koeﬂ beRN‘
'B:’ “ep 2em

Martin-Steel (1985), Woodin cardi-

nals and a measurable cardinal

Martin (1970), measurable cardinal

Borel

open/closed

Martin (1975), 7FC

Gale-Stewart (1953), ZFC

u}
)
l
n
it

DA



Determinacy Axioms

[/
How far are these axioms from ZFC? ’ Sﬁee.{ 5
Consicler lierasclues oﬁ these axioms anck a)mFaxe Hheir

n

@J

P, ecbve
[ansyfic |

Delawivcy Logge. Grlins$s orcig Aoones

Sandra Miiller (TU Wien)




Determinacy Axioms

[/ [
How far are these axioms from ZFC? ’ S{ee:e 5 ’
Consicler lierasclues o;ﬁ fhose axiows anol dupae Huair .

@j Eﬂ"‘ﬁ"@dw

Delawivcy losge G"’d""“\% orcig Aoones

Sandra Miiller (TU Wien)



Determinacy Axioms

[/ [
How far are these axioms from ZFC? ’ S{ee:e 5 ,
Consicler lierasclues o;ﬁ fhose axiows anol dupae Huair .

@je———— [&*ﬁ;ﬁ;ﬂ'ﬁ-’
1 e | Bl g oS
projecs
m ‘ — wleaS(fﬁbe&—
Delawivocy Lasge. Gudind orcig A

Sandra Miiller (TU Wien)




Determinacy Axioms

[/ [
How far are these axioms from ZFC? ’ S{ee:e 5 ,
Consicler lierasclues o;ﬁ fhose axiows anol dupae Huair .

“Delawincy

Sandra Miiller (TU Wien)



" )
How far are these axioms from ZFC? S{ee,{ s
Consicler lierasclues oﬁ fhose axiows anol dupae Huair .

[Pager Forcy iou FFA) |

“Delawincy

Sandra Miiller (TU Wien)



" )
How far are these axioms from ZFC? S{ee,{ s
Consicler lierasclues oﬁ fhose axiows anol dupae Huair .

( Mockin's Mocimune (“K) k

“Delawincy

Sandra Miiller (TU Wien)



" ]
How far are these axioms from ZFC? S{ee,{ s
Consider lierasclues oﬁ these axiowms anck Cmpare Ahair

t
Lo ‘mj m—in\:@

r-OMlM &méo,{i W W-DPQV beaquwow(’PFA |
@jk—_—’ l inﬁw-'egmu; Woodki© ’
projective e—>|f i
Caralyfic] &>

Sandra Miiller (TU Wien)



" ]
How far are these axioms from ZFC? S{ee,{ s
Consider lierasclues oﬁ these axiowms anck Cmpare Ahair

€
P‘*C \ Moehin iHauwuv«(“K)

r-OMlM &méo,{i W W-DPQV beaquwow(’PFA |
@jk—_—’ l inﬁw-'egmu; Woodki© ’
projective e—>|f i
Caralyfic] &>

Sandra Miiller (TU Wien)



" ]
How far are these axioms from ZFC? S{ee,{ s
Consider lierasclues oﬁ these axiowms anck Cmpare Ahair
t
Pac \ Moehin iHouwuv«(“K)

Tiapes oo e 7))
r-ooolm &vwé of %"’f

Sandra Miiller (TU Wien)



" ]
How far are these axioms from ZFC? S{ee,{ s
Consider lierasclues oﬁ these axiowms anck Cmpare Ahair
t
P‘*C \ Moehin iHauwuv«(“K)

Tiapes oo e 7))
r-ooolm &vwé of %"’f

Sandra Miiller (TU Wien)



Two scenarios

et oiowm(s) Couldh M Moo \TP
an Ahe Cl&"ervwkv\o\c&(j \/\AQYORC\AJZ



Two scenarios

et oiowm(s) Couldh M Moo SQP
an Ahe C[&"erm‘mac&‘j \/\AQYOLVC\AJZ

/
Lovﬂ gow%

Sandra Miiller (TU Wien)



Two scenarios

et oiowm(s) Couldh M Moo SQP
an Ahe C[&"erm‘mac&‘j \/\AQYOLVC\AJZ

/YN

LOV\\OB 30&/\@9 Sm,@ modes

Sandra Miiller (TU Wien)



