Fraïssé-like constructions of compacta

Adam Bartoš bartos@math.cas.cz

Institute of Mathematics, Czech Academy of Sciences

Hejnice, January 27 - February 3, 2024

Based on joint work with Wiesław Kubiś, and on joint work with Tristan Bice and Alessandro Vignati

Abstract Fraïssé theory overview

Abstract Fraïssé theory overview

[Fraïssé; Droste–Göbel; Kubiś; B.]

Abstract Fraïssé theory overview

[Fraïssé; Droste–Göbel; Kubiś; B.]

Theorem (characterization of the Fraïssé limit)

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free completion and let U be an \mathcal{L} -object. Then the following are equivalent.

- **1** *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$,
- **2** U is cofinal and has the extension property in $\langle \mathcal{K}, \mathcal{L} \rangle$,
- **3** U is the \mathcal{L} -limit of a Fraïssé sequence in \mathcal{K} .

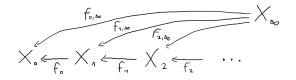
Moreover, such U is unique and cofinal in \mathcal{L} , and every \mathcal{K} -sequence with \mathcal{L} -limit U is Fraïssé in \mathcal{K} .

Theorem (existence of a Fraïssé sequence)

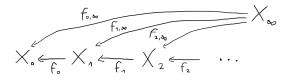
Let $\mathcal{K} \neq \emptyset$ be a category. \mathcal{K} has a Fraïssé sequence if and only if

- **1** \mathcal{K} is directed,
- 2 ${\cal K}$ has the amalgamation property,
- 3 $\mathcal K$ has a countable dominating subcategory.

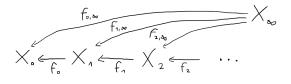
Inverse limits



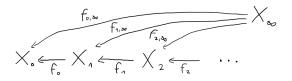
Inverse limits



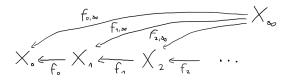
Inverse limits



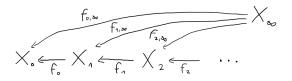
•
$$X_* = \langle X_n \rangle_{n \in \omega}$$
 sequence of structures,



- $X_* = \langle X_n \rangle_{n \in \omega}$ sequence of structures,
- $f_* = \langle f_{n,m} \colon X_n \leftarrow X_m \rangle_{n \le m \in \omega}$ structure-preserving maps such that $f_{n,m} \circ f_{m,k} = f_{n,k}$ and $f_{n,n} = \operatorname{id}_{X_n}$ for $n \le m \le k$.

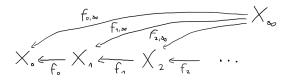


- $X_* = \langle X_n \rangle_{n \in \omega}$ sequence of structures,
- $f_* = \langle f_{n,m} \colon X_n \leftarrow X_m \rangle_{n \le m \in \omega}$ structure-preserving maps such that $f_{n,m} \circ f_{m,k} = f_{n,k}$ and $f_{n,n} = \operatorname{id}_{X_n}$ for $n \le m \le k$.
- We write f_n for $f_{n,n+1}$.



- $X_* = \langle X_n \rangle_{n \in \omega}$ sequence of structures,
- $f_* = \langle f_{n,m} \colon X_n \leftarrow X_m \rangle_{n \le m \in \omega}$ structure-preserving maps such that $f_{n,m} \circ f_{m,k} = f_{n,k}$ and $f_{n,n} = \operatorname{id}_{X_n}$ for $n \le m \le k$.
- We write f_n for $f_{n,n+1}$.

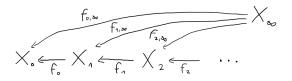
The limit cone $\langle X_{\infty}, f_{*,\infty} \rangle$:



- $X_* = \langle X_n \rangle_{n \in \omega}$ sequence of structures,
- $f_* = \langle f_{n,m} \colon X_n \leftarrow X_m \rangle_{n \le m \in \omega}$ structure-preserving maps such that $f_{n,m} \circ f_{m,k} = f_{n,k}$ and $f_{n,n} = \operatorname{id}_{X_n}$ for $n \le m \le k$.
- We write f_n for $f_{n,n+1}$.

The limit cone $\langle X_{\infty}, f_{*,\infty} \rangle$:

•
$$X_{\infty} = \{x_* \in \prod_{n \in \omega} X_n : x_n = f_{n,m}(x_m) \text{ for every } n \leq m\}$$



- $X_* = \langle X_n \rangle_{n \in \omega}$ sequence of structures,
- $f_* = \langle f_{n,m} \colon X_n \leftarrow X_m \rangle_{n \le m \in \omega}$ structure-preserving maps such that $f_{n,m} \circ f_{m,k} = f_{n,k}$ and $f_{n,n} = \operatorname{id}_{X_n}$ for $n \le m \le k$.
- We write f_n for $f_{n,n+1}$.

The limit cone $\langle X_{\infty}, f_{*,\infty} \rangle$:

- $X_{\infty} = \{x_* \in \prod_{n \in \omega} X_n : x_n = f_{n,m}(x_m) \text{ for every } n \le m\}$
- $f_{n,\infty}: X_n \leftarrow X_\infty$ is the restriction of the projection.

 Take (X_{*}, f_{*}) such that every X_n is a finite discrete space and every f_{n,m} is a (continuous) surjection.

- Take ⟨X_{*}, f_{*}⟩ such that every X_n is a finite discrete space and every f_{n,m} is a (continuous) surjection.
- Then X_{∞} is a zero-dimensional metrizable compactum.

- Take (X_{*}, f_{*}) such that every X_n is a finite discrete space and every f_{n,m} is a (continuous) surjection.
- Then X_{∞} is a zero-dimensional metrizable compactum.
- Every zero-dimensional metrizable compactum can be obtained this way.

- Take ⟨X_{*}, f_{*}⟩ such that every X_n is a finite discrete space and every f_{n,m} is a (continuous) surjection.
- Then X_{∞} is a zero-dimensional metrizable compactum.
- Every zero-dimensional metrizable compactum can be obtained this way.
- Let K be the category of all nonempty finite discrete spaces and all surjections and let L be the category of all zero-dimensional metrizable compacta and all continuous surjections.

- Take (X_{*}, f_{*}) such that every X_n is a finite discrete space and every f_{n,m} is a (continuous) surjection.
- Then X_{∞} is a zero-dimensional metrizable compactum.
- Every zero-dimensional metrizable compactum can be obtained this way.
- Let K be the category of all nonempty finite discrete spaces and all surjections and let L be the category of all zero-dimensional metrizable compacta and all continuous surjections.
- Then ${\cal K}$ is a Fraïssé category and the Cantor space is the Fraïssé limit.

- Take (X_{*}, f_{*}) such that every X_n is a finite discrete space and every f_{n,m} is a (continuous) surjection.
- Then X_{∞} is a zero-dimensional metrizable compactum.
- Every zero-dimensional metrizable compactum can be obtained this way.
- Let K be the category of all nonempty finite discrete spaces and all surjections and let L be the category of all zero-dimensional metrizable compacta and all continuous surjections.
- Then ${\cal K}$ is a Fraïssé category and the Cantor space is the Fraïssé limit.

How to obtain non-zero-dimensional spaces?

• [Irwin–Solecki]

- [Irwin–Solecki]
- We endow zero-dimensional metrizable compacta with a closed symmetric relation *E* and consider *E*-quotient maps.

- [Irwin–Solecki]
- We endow zero-dimensional metrizable compacta with a closed symmetric relation *E* and consider *E*-quotient maps.
- We obtain the category $\mathcal L$ of topological graphs.

- [Irwin–Solecki]
- We endow zero-dimensional metrizable compacta with a closed symmetric relation *E* and consider *E*-quotient maps.
- We obtain the category \mathcal{L} of topological graphs.
- \mathcal{K} is then the subcategoty of all finite graphs.

- [Irwin–Solecki]
- We endow zero-dimensional metrizable compacta with a closed symmetric relation *E* and consider *E*-quotient maps.
- We obtain the category \mathcal{L} of topological graphs.
- \mathcal{K} is then the subcategoty of all finite graphs.
- A topological graph ⟨X, E⟩ is a pre-space if a E is also transitive.

- [Irwin–Solecki]
- We endow zero-dimensional metrizable compacta with a closed symmetric relation *E* and consider *E*-quotient maps.
- We obtain the category \mathcal{L} of topological graphs.
- \mathcal{K} is then the subcategoty of all finite graphs.
- A topological graph ⟨X, E⟩ is a pre-space if a E is also transitive.
- Then the quotient space X/E is a metrizable compactum.

- [Irwin–Solecki]
- We endow zero-dimensional metrizable compacta with a closed symmetric relation *E* and consider *E*-quotient maps.
- We obtain the category \mathcal{L} of topological graphs.
- \mathcal{K} is then the subcategoty of all finite graphs.
- A topological graph ⟨X, E⟩ is a pre-space if a E is also transitive.
- Then the quotient space X/E is a metrizable compactum.
- Every metrizable compactum can be obtained this way.

We consider a subcategory *F* ⊆ *K* that is Fraïssé and the subcategory *σF* ⊆ *L* of limits of *F*-sequences

- We consider a subcategory *F* ⊆ *K* that is Fraïssé and the subcategory *σF* ⊆ *L* of limits of *F*-sequences
- If *F* consists of all linear graphs, then the Fraïssé limit is a pre-space of the pseudo-arc [Irwin–Solecki].

- We consider a subcategory *F* ⊆ *K* that is Fraïssé and the subcategory *σF* ⊆ *L* of limits of *F*-sequences
- If \mathcal{F} consists of all linear graphs, then the Fraïssé limit is a pre-space of the pseudo-arc [Irwin–Solecki].
- Another example: if *F* consists of all connected graphs and monotone quotient maps, then the Fraïssé limit is a pre-space of the Menger curve [Panagiotopoulos–Solecki].

- We consider a subcategory *F* ⊆ *K* that is Fraïssé and the subcategory *σF* ⊆ *L* of limits of *F*-sequences
- If \mathcal{F} consists of all linear graphs, then the Fraïssé limit is a pre-space of the pseudo-arc [Irwin–Solecki].
- Another example: if *F* consists of all connected graphs and monotone quotient maps, then the Fraïssé limit is a pre-space of the Menger curve [Panagiotopoulos–Solecki].
- Fraïssé limit is the pre-space, not the space. Properties of the space have to be transferred through the quotient map.

- We consider a subcategory *F* ⊆ *K* that is Fraïssé and the subcategory *σF* ⊆ *L* of limits of *F*-sequences
- If \mathcal{F} consists of all linear graphs, then the Fraïssé limit is a pre-space of the pseudo-arc [Irwin–Solecki].
- Another example: if *F* consists of all connected graphs and monotone quotient maps, then the Fraïssé limit is a pre-space of the Menger curve [Panagiotopoulos–Solecki].
- Fraïssé limit is the pre-space, not the space. Properties of the space have to be transferred through the quotient map.

Can we obtain the desired compactum directly as a Fraïssé limit?

Approach 2: Approximate Fraïssé theory for compacta

• [B.–Kubiś]

Approach 2: Approximate Fraïssé theory for compacta

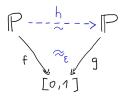
- [B.–Kubiś]
- We work directly with metrizable compacta and continuous surjections.

Approach 2: Approximate Fraïssé theory for compacta

- [B.–Kubiś]
- We work directly with metrizable compacta and continuous surjections.
- Fraïssé-theoretic properties involve approximate commutativity of diagrams.

- [B.–Kubiś]
- We work directly with metrizable compacta and continuous surjections.
- Fraïssé-theoretic properties involve approximate commutativity of diagrams.
- For example, homogeneity of the pseudo-arc \mathbb{P} : for every continuous surjections $f, g : \mathbb{P} \to [0, 1]$ and every $\varepsilon > 0$ there is a homeomorphism $h : \mathbb{P} \to \mathbb{P}$ such that $f \approx_{\varepsilon} g \circ h$.

- [B.–Kubiś]
- We work directly with metrizable compacta and continuous surjections.
- Fraïssé-theoretic properties involve approximate commutativity of diagrams.
- For example, homogeneity of the pseudo-arc \mathbb{P} : for every continuous surjections $f, g : \mathbb{P} \to [0, 1]$ and every $\varepsilon > 0$ there is a homeomorphism $h : \mathbb{P} \to \mathbb{P}$ such that $f \approx_{\varepsilon} g \circ h$.



Fraïssé theory of MU-categories overview

Theorem (characterization of the Fraïssé limit)

Let $\langle \mathcal{K}, \mathcal{L} \rangle$ be a free MU-completion and let U be an \mathcal{L} -object. Then the following are equivalent.

- **1** *U* is cofinal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$,
- **2** *U* is cofinal and injective in $\langle \mathcal{K}, \mathcal{L} \rangle$,
- **3** U is the \mathcal{L} -limit of a Fraïssé sequence in \mathcal{K} .

Moreover, such U is unique and cofinal and homogeneous in \mathcal{L} , and every \mathcal{K} -sequence with \mathcal{L} -colimit U is Fraïssé in \mathcal{K} .

Theorem (existence of a Fraïssé sequence)

Let $\mathcal{K} \neq \emptyset$ be an MU-category. \mathcal{K} has a Fraïssé sequence if and only if

- **1** \mathcal{K} is directed,
- 2 $\mathcal K$ has the amalgamation property,
- 3 $\mathcal K$ has a countable dominating subcategory.

• Let ${\mathcal I}$ be the category consisting of the unit interval and all continuous surjections.

- Let \mathcal{I} be the category consisting of the unit interval and all continuous surjections.
- Then *I* is Fraïssé, *σI* consists of all arc-like continua, and the Fraïssé limit is the pseudo-arc.

- Let \mathcal{I} be the category consisting of the unit interval and all continuous surjections.
- Then *I* is Fraïssé, *σI* consists of all arc-like continua, and the Fraïssé limit is the pseudo-arc.
- Let S_P be the category consisting of the unit circle and all continuous surjections whose degree uses only primes from a set P.

- Let ${\mathcal I}$ be the category consisting of the unit interval and all continuous surjections.
- Then *I* is Fraïssé, *σI* consists of all arc-like continua, and the Fraïssé limit is the pseudo-arc.
- Let S_P be the category consisting of the unit circle and all continuous surjections whose degree uses only primes from a set P.
- Then S_P is Fraïssé, σS_P consists of circle-like continua of "type ≤ P[∞]", and the Fraïssé limit is the P-adic pseudo-solenoid.

- Let ${\mathcal I}$ be the category consisting of the unit interval and all continuous surjections.
- Then *I* is Fraïssé, *σI* consists of all arc-like continua, and the Fraïssé limit is the pseudo-arc.
- Let S_P be the category consisting of the unit circle and all continuous surjections whose degree uses only primes from a set P.
- Then S_P is Fraïssé, σS_P consists of circle-like continua of "type ≤ P[∞]", and the Fraïssé limit is the P-adic pseudo-solenoid.

However, our small objects are not finite any more.

• [B.–Bice–Vignati]

- [B.–Bice–Vignati]
- Small objects are still finite graphs, but morphisms are relations.

- [B.–Bice–Vignati]
- Small objects are still finite graphs, but morphisms are relations.
- A morphism $R: Y \leftarrow X$ is $R \subseteq Y \times X$ that is

- [B.-Bice-Vignati]
- Small objects are still finite graphs, but morphisms are relations.
- A morphism $R: Y \leftarrow X$ is $R \subseteq Y \times X$ that is
 - co-surjective: $\forall x \exists y \ yRx$,

- [B.–Bice–Vignati]
- Small objects are still finite graphs, but morphisms are relations.
- A morphism $R: Y \leftarrow X$ is $R \subseteq Y \times X$ that is
 - co-surjective: $\forall x \exists y \ yRx$,
 - co-injective: $\forall y \exists x \ R(x) = \{y\}$,

- [B.–Bice–Vignati]
- Small objects are still finite graphs, but morphisms are relations.
- A morphism $R: Y \leftarrow X$ is $R \subseteq Y \times X$ that is
 - co-surjective: $\forall x \exists y \ yRx$,
 - co-injective: $\forall y \exists x \ R(x) = \{y\}$,
 - edge-preserving: $yRx \wedge y'Rx' \wedge xEx' \Rightarrow yEy'$.

- [B.–Bice–Vignati]
- Small objects are still finite graphs, but morphisms are relations.
- A morphism $R: Y \leftarrow X$ is $R \subseteq Y \times X$ that is
 - co-surjective: $\forall x \exists y \ yRx$,
 - co-injective: $\forall y \exists x \ R(x) = \{y\}$,
 - edge-preserving: $yRx \wedge y'Rx' \wedge xEx' \Rightarrow yEy'$.
- Let ${\mathcal K}$ denote the corresponding category.

• A sequence $\langle X_*, R_* \rangle$ in \mathcal{K} induces an ω -poset $\mathbb{P} = \bigsqcup_{n \in \omega} X_n$ where $\langle n, y \rangle \ge \langle m, x \rangle$ if $n \le m$ and $yR_{n,m}x$.

- A sequence $\langle X_*, R_* \rangle$ in \mathcal{K} induces an ω -poset $\mathbb{P} = \bigsqcup_{n \in \omega} X_n$ where $\langle n, y \rangle \geq \langle m, x \rangle$ if $n \leq m$ and $yR_{n,m}x$.
- P induces the spectrum SP = {S ⊆ P : S minimal selector},
 where S ⊆ P is a selector if S is upwards closed and
 S ∩ X_n ≠ Ø for every n ∈ ω.

- A sequence $\langle X_*, R_* \rangle$ in \mathcal{K} induces an ω -poset $\mathbb{P} = \bigsqcup_{n \in \omega} X_n$ where $\langle n, y \rangle \geq \langle m, x \rangle$ if $n \leq m$ and $yR_{n,m}x$.
- P induces the spectrum SP = {S ⊆ P : S minimal selector},
 where S ⊆ P is a selector if S is upwards closed and
 S ∩ X_n ≠ Ø for every n ∈ ω.
- SP is endowed with the topology generated by the sets $p^{\in} = \{S \in SP : p \in S\}$ for $p \in P$.

- A sequence $\langle X_*, R_* \rangle$ in \mathcal{K} induces an ω -poset $\mathbb{P} = \bigsqcup_{n \in \omega} X_n$ where $\langle n, y \rangle \geq \langle m, x \rangle$ if $n \leq m$ and $yR_{n,m}x$.
- P induces the spectrum SP = {S ⊆ P : S minimal selector},
 where S ⊆ P is a selector if S is upwards closed and
 S ∩ X_n ≠ Ø for every n ∈ ω.
- SP is endowed with the topology generated by the sets $p^{\in} = \{S \in SP : p \in S\}$ for $p \in P$.
- Then SP is a second-countable T_1 compactum.

- A sequence $\langle X_*, R_* \rangle$ in \mathcal{K} induces an ω -poset $\mathbb{P} = \bigsqcup_{n \in \omega} X_n$ where $\langle n, y \rangle \geq \langle m, x \rangle$ if $n \leq m$ and $yR_{n,m}x$.
- P induces the spectrum SP = {S ⊆ P : S minimal selector},
 where S ⊆ P is a selector if S is upwards closed and
 S ∩ X_n ≠ Ø for every n ∈ ω.
- SP is endowed with the topology generated by the sets $p^{\in} = \{S \in SP : p \in S\}$ for $p \in P$.
- Then SP is a second-countable T_1 compactum.
- Every second-countable *T*₁-compactum can be obtained this way.

 If *F* ⊆ *K* is the category of all linear graphs and monotone morphisms, then *F* is Fraïssé and the unit interval is the "limit".

- If *F* ⊆ *K* is the category of all linear graphs and monotone morphisms, then *F* is Fraïssé and the unit interval is the "limit".
- If *F* ⊆ *K* is the category of all linear graphs and all morphisms, then *F* is a Fraïssé and the pseudo-arc is the "limit".

- If *F* ⊆ *K* is the category of all linear graphs and monotone morphisms, then *F* is Fraïssé and the unit interval is the "limit".
- If $\mathcal{F} \subseteq \mathcal{K}$ is the category of all linear graphs and all morphisms, then \mathcal{F} is a Fraïssé and the pseudo-arc is the "limit".
- If *F* ⊆ *K* is the category of all fan graphs and spokewise monotone morphisms, then *F* is Fraïssé and the Lelek fan is the "limit".

- If *F* ⊆ *K* is the category of all linear graphs and monotone morphisms, then *F* is Fraïssé and the unit interval is the "limit".
- If $\mathcal{F} \subseteq \mathcal{K}$ is the category of all linear graphs and all morphisms, then \mathcal{F} is a Fraïssé and the pseudo-arc is the "limit".
- If *F* ⊆ *K* is the category of all fan graphs and spokewise monotone morphisms, then *F* is Fraïssé and the Lelek fan is the "limit".

But instead of taking the limit, we introduce an ad hoc construction.

	finite small objects	proper limits	no quotient needed
classical projective FT	 Image: A second s	1	X

	finite small objects	proper limits	no quotient needed
classical projective FT	1	√	×
approximate projective FT	×	1	✓

	finite small objects	proper limits	no quotient needed
classical projective FT	1	√	×
approximate projective FT	×	\checkmark	1
spectra of ω -posets	\checkmark	X *	1

• Maybe the spectrum can be viewed as a limit after all.

- Maybe the spectrum can be viewed as a limit after all.
- Let us put $X_{\infty} = S\mathbb{P}$ and $yR_{n,\infty}x$ iff $y \in x$.

- Maybe the spectrum can be viewed as a limit after all.
- Let us put $X_{\infty} = S\mathbb{P}$ and $yR_{n,\infty}x$ iff $y \in x$.
- Then ⟨X_{*}, R_{*,∞}⟩ is the unital lax adjoint limit (as a set) endowed with the initial topology with respect to lower semicontinuity.

- Maybe the spectrum can be viewed as a limit after all.
- Let us put $X_{\infty} = S\mathbb{P}$ and $yR_{n,\infty}x$ iff $y \in x$.
- Then ⟨X_{*}, R_{*,∞}⟩ is the unital lax adjoint limit (as a set) endowed with the initial topology with respect to lower semicontinuity.
- ... this is work in progess.

T. Irwin, S. Solecki,

Projective Fraïssé limits and the pseudo-arc. Trans. Amer. Math. Soc., 358 (2006)

A. Bartoš, W. Kubiś.

Hereditarily indecomposable continua as generic mathematical structures.

arXiv:2208.06886

📕 A. Bartoš, T. Bice, A. Vignati Constructing compacta from posets. arXiv:2307.01143