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Abstract Fraïssé theory overview

[Fraïssé; Droste–Göbel; Kubiś; B.]

Theorem (characterization of the Fraïssé limit)

Let ⟨K,L⟩ be a free completion and let U be an L-object. Then
the following are equivalent.

1 U is cofinal and homogeneous in ⟨K,L⟩,
2 U is cofinal and has the extension property in ⟨K,L⟩,
3 U is the L-limit of a Fraïssé sequence in K.

Moreover, such U is unique and cofinal in L, and every
K-sequence with L-limit U is Fraïssé in K.

Theorem (existence of a Fraïssé sequence)

Let K ̸= ∅ be a category. K has a Fraïssé sequence if and only if
1 K is directed,
2 K has the amalgamation property,
3 K has a countable dominating subcategory.
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Inverse limits

Inverse sequence ⟨X∗, f∗⟩:

• X∗ = ⟨Xn⟩n∈ω sequence of structures,
• f∗ = ⟨fn,m : Xn ← Xm⟩n≤m∈ω structure-preserving maps such

that fn,m ◦ fm,k = fn,k and fn,n = idXn for n ≤ m ≤ k.
• We write fn for fn,n+1.

The limit cone ⟨X∞, f∗,∞⟩:

• X∞ = {x∗ ∈
∏

n∈ω Xn : xn = fn,m(xm) for every n ≤ m}
• fn,∞ : Xn ← X∞ is the restriction of the projection.
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Inverse limits of compacta

• Take ⟨X∗, f∗⟩ such that every Xn is a finite discrete space and
every fn,m is a (continuous) surjection.

• Then X∞ is a zero-dimensional metrizable compactum.
• Every zero-dimensional metrizable compactum can be

obtained this way.
• Let K be the category of all nonempty finite discrete spaces

and all surjections and let L be the category of all
zero-dimensional metrizable compacta and all continuous
surjections.
• Then K is a Fraïssé category and the Cantor space is the

Fraïssé limit.

How to obtain non-zero-dimensional spaces?



Inverse limits of compacta

• Take ⟨X∗, f∗⟩ such that every Xn is a finite discrete space and
every fn,m is a (continuous) surjection.
• Then X∞ is a zero-dimensional metrizable compactum.

• Every zero-dimensional metrizable compactum can be
obtained this way.
• Let K be the category of all nonempty finite discrete spaces

and all surjections and let L be the category of all
zero-dimensional metrizable compacta and all continuous
surjections.
• Then K is a Fraïssé category and the Cantor space is the

Fraïssé limit.

How to obtain non-zero-dimensional spaces?



Inverse limits of compacta

• Take ⟨X∗, f∗⟩ such that every Xn is a finite discrete space and
every fn,m is a (continuous) surjection.
• Then X∞ is a zero-dimensional metrizable compactum.
• Every zero-dimensional metrizable compactum can be

obtained this way.

• Let K be the category of all nonempty finite discrete spaces
and all surjections and let L be the category of all
zero-dimensional metrizable compacta and all continuous
surjections.
• Then K is a Fraïssé category and the Cantor space is the

Fraïssé limit.

How to obtain non-zero-dimensional spaces?



Inverse limits of compacta

• Take ⟨X∗, f∗⟩ such that every Xn is a finite discrete space and
every fn,m is a (continuous) surjection.
• Then X∞ is a zero-dimensional metrizable compactum.
• Every zero-dimensional metrizable compactum can be

obtained this way.
• Let K be the category of all nonempty finite discrete spaces

and all surjections and let L be the category of all
zero-dimensional metrizable compacta and all continuous
surjections.

• Then K is a Fraïssé category and the Cantor space is the
Fraïssé limit.

How to obtain non-zero-dimensional spaces?



Inverse limits of compacta

• Take ⟨X∗, f∗⟩ such that every Xn is a finite discrete space and
every fn,m is a (continuous) surjection.
• Then X∞ is a zero-dimensional metrizable compactum.
• Every zero-dimensional metrizable compactum can be

obtained this way.
• Let K be the category of all nonempty finite discrete spaces

and all surjections and let L be the category of all
zero-dimensional metrizable compacta and all continuous
surjections.
• Then K is a Fraïssé category and the Cantor space is the

Fraïssé limit.

How to obtain non-zero-dimensional spaces?



Inverse limits of compacta

• Take ⟨X∗, f∗⟩ such that every Xn is a finite discrete space and
every fn,m is a (continuous) surjection.
• Then X∞ is a zero-dimensional metrizable compactum.
• Every zero-dimensional metrizable compactum can be

obtained this way.
• Let K be the category of all nonempty finite discrete spaces

and all surjections and let L be the category of all
zero-dimensional metrizable compacta and all continuous
surjections.
• Then K is a Fraïssé category and the Cantor space is the

Fraïssé limit.

How to obtain non-zero-dimensional spaces?



Approach 1: Classical projective Fraïssé theory

• [Irwin–Solecki]

• We endow zero-dimensional metrizable compacta with a
closed symmetric relation E and consider E -quotient maps.
• We obtain the category L of topological graphs.
• K is then the subcategoty of all finite graphs.
• A topological graph ⟨X ,E ⟩ is a pre-space if a E is also

transitive.
• Then the quotient space X/E is a metrizable compactum.
• Every metrizable compactum can be obtained this way.
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Approach 1: Classical projective Fraïssé theory

• We consider a subcategory F ⊆ K that is Fraïssé and the
subcategory σF ⊆ L of limits of F-sequences

• If F consists of all linear graphs, then the Fraïssé limit is a
pre-space of the pseudo-arc [Irwin–Solecki].
• Another example: if F consists of all connected graphs and

monotone quotient maps, then the Fraïssé limit is a pre-space
of the Menger curve [Panagiotopoulos–Solecki].
• Fraïssé limit is the pre-space, not the space. Properties of the

space have to be transferred through the quotient map.

Can we obtain the desired compactum directly as a Fraïssé limit?
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Approach 2: Approximate Fraïssé theory for compacta

• [B.–Kubiś]

• We work directly with metrizable compacta and continuous
surjections.
• Fraïssé-theoretic properties involve approximate commutativity

of diagrams.
• For example, homogeneity of the pseudo-arc P: for every

continuous surjections f , g : P→ [0, 1] and every ε > 0 there
is a homeomorphism h : P→ P such that f ≈ε g ◦ h.
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Fraïssé theory of MU-categories overview

Theorem (characterization of the Fraïssé limit)

Let ⟨K,L⟩ be a free MU-completion and let U be an L-object.
Then the following are equivalent.

1 U is cofinal and homogeneous in ⟨K,L⟩,
2 U is cofinal and injective in ⟨K,L⟩,
3 U is the L-limit of a Fraïssé sequence in K.

Moreover, such U is unique and cofinal and homogeneous in L,
and every K-sequence with L-colimit U is Fraïssé in K.

Theorem (existence of a Fraïssé sequence)

Let K ̸= ∅ be an MU-category. K has a Fraïssé sequence if and
only if

1 K is directed,
2 K has the amalgamation property,
3 K has a countable dominating subcategory.



Approach 2: Approximate Fraïssé theory for compacta

• Let I be the category consisting of the unit interval and all
continuous surjections.

• Then I is Fraïssé, σI consists of all arc-like continua, and the
Fraïssé limit is the pseudo-arc.
• Let SP be the category consisting of the unit circle and all

continuous surjections whose degree uses only primes from a
set P.
• Then SP is Fraïssé, σSP consists of circle-like continua of

“type ≤ P∞”, and the Fraïssé limit is the P-adic
pseudo-solenoid.

However, our small objects are not finite any more.
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Approach 3: Spectra of ω-posets

• [B.–Bice–Vignati]

• Small objects are still finite graphs, but morphisms are
relations.
• A morphism R : Y ← X is R ⊆ Y × X that is

• co-surjective: ∀x ∃y yRx ,
• co-injective: ∀y ∃x R(x) = {y},
• edge-preserving: yRx ∧ y ′Rx ′ ∧ xEx ′ ⇒ yEy ′.

• Let K denote the corresponding category.
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Approach 3: Spectra of ω-posets

• A sequence ⟨X∗,R∗⟩ in K induces an ω-poset P =
⊔

n∈ω Xn
where ⟨n, y⟩ ≥ ⟨m, x⟩ if n ≤ m and yRn,mx .

• P induces the spectrum SP = {S ⊆ P : S minimal selector},
where S ⊆ P is a selector if S is upwards closed and
S ∩ Xn ̸= ∅ for every n ∈ ω.

• SP is endowed with the topology generated by the sets
p∈ = {S ∈ SP : p ∈ S} for p ∈ P.
• Then SP is a second-countable T1 compactum.
• Every second-countable T1-compactum can be obtained this

way.
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Approach 3: Spectra of ω-posets

• If F ⊆ K is the category of all linear graphs and monotone
morphisms, then F is Fraïssé and the unit interval is the
“limit”.

• If F ⊆ K is the category of all linear graphs and all
morphisms, then F is a Fraïssé and the pseudo-arc is the
“limit”.
• If F ⊆ K is the category of all fan graphs and spokewise

monotone morphisms, then F is Fraïssé and the Lelek fan is
the “limit”.

But instead of taking the limit, we introduce an ad hoc
construction.
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projective FT ✓ ✓ ✗

approximate
projective FT ✗ ✓ ✓

spectra of
ω-posets ✓ ✗∗ ✓
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Spectra as limits

• Maybe the spectrum can be viewed as a limit after all.

• Let us put X∞ = SP and yRn,∞x iff y ∈ x .
• Then ⟨X∗,R∗,∞⟩ is the unital lax adjoint limit (as a set)

endowed with the initial topology with respect to lower
semicontinuity.
• ... this is work in progess.
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