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Introduction

All spaces under consideration are Tychonoff.

Let P be a topological property. We say that a space X is
projectively P provided every separable metrizable continuous
image of X has property P .
Here we are concerned with the case when P is either the
Menger property or the property of Hurewicz.
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Introduction (cont.)

Definition
We will say, that a topological space X is Menger (

Hurewicz
resp.

) if for every sequence (Un)n∈ω of open covers of X, there
is a sequence (Vn)n∈ω such that for every n, Vn is a finite
subfamily of Un and the family

⋃
n∈ω Vn covers X (

every point
of X is contained in

⋃
Vn for all but finitely many n’s

).

σ-compact⇒ Hurewicz⇒ Menger⇒ Lindelöf.

Proposition (Telgársky, 1984) (

Kočinac, 2006

)

A space X is Menger (

Hurewicz resp.

) if and only if X is
Lindelöf and projectively Menger (

projectively Hurewicz resp.

).
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Space in its compactification

Characterizations of interest are in terms of remainder of
compactification of a given space X.

i.e. one can ask how is the space X positioned in its
compactification bX (e.g. in βX) and if there’s a way to capture
this property, by looking at the remainder bX \ X.
Let bX be any compactification of a space X. Then:

Theorem (folklore)

X is σ-compact←→

the remainder bX \ X is of type Gδ in bX.

Theorem (Smirnov)

X is Lindelöf←→

for every compact K ⊆ bX \ X there exists a
set G ⊆ bX of type Gδ such that K ⊆ G ⊆ bX \ X.
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for every compact K ⊆ bX \ X there exists a
set G ⊆ bX of type Gδ such that K ⊆ G ⊆ bX \ X.



Space in its compactification

Characterizations of interest are in terms of remainder of
compactification of a given space X.
i.e. one can ask how is the space X positioned in its
compactification bX (e.g. in βX) and if there’s a way to capture
this property, by looking at the remainder bX \ X.
Let bX be any compactification of a space X. Then:

Theorem (folklore)

X is σ-compact←→ the remainder bX \ X is of type Gδ in bX.

Theorem (Smirnov)
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Characterization of Hurewicz property

Hurewicz property is characterised by the following theorem

Theorem (F. Tall, 2011)

For a space X the following conditions are equivalent:
1 X has the Hurewicz property,
2 for every σ-compact subset F of the remainder bX \ X,

there exists a Gδ-subset G of bX such that F ⊆ G ⊆ bX \ X.
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Characterization of projective Hurewicz property

Recall that a subset A of a topological space X is called a
zero-set if there is a continuous map f : X → [0, 1] such that
A = f−1(0).

According to Vedenissov’s lemma if Z is a compact space, then
A is a zero-set in Z if and only if A is closed Gδ-subset of Z. The
complement of a zero-set is called a cozero-set.

Theorem (Bonanzinga, Cammaroto, Matveev; 2010)

The following conditions are equivalent:
1 X is projectively Hurewicz,

2 for every sequence (Un)n∈ω of countable covers of X by
cozero-sets, there is a sequence (Vn)n∈ω such that for every
n, Vn is a finite subfamily of Un and for all x ∈ X, point x
belongs to

⋃
Vn, for all but finitely manu n’s (i.e. the family

{⋃Vn : n ∈ω} is a γ-cover of X).
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Characterization of projective Hurewicz property
(cont.)

Proposition (Krupski, K.)

For a space X the following conditions are equivalent:
1 X is projectively Hurewicz
2 for every F ⊆ βX \ X, such that F is a countable union of

zero-sets in βX, there exists a Gδ subset G of βX with
F ⊆ G ⊆ βX \ X.

Projective Menger property also can be characterised in this
way, but first we need to look closer at the notion of topological
games.
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Topological Games

Let’s describe three topological games of interest: the Menger
game, the k-Porada game, and it’s minor modification, the
z-Porada game.

All games considered are games with ω-many innings, played
alternatively by two players: Player I and Player II.

Menger game on a space X - M (X)

All ω rounds look very similar. Let n ∈ω.

In the n-th round Player I chooses open cover Un of X.
Player II responds with choosing finite subset Vn of a cover Un.
Player II wins the game M (X) if the union

⋃
n∈ω Vn is a cover

of X. Otherwise Player I wins.

Theorem (Hurewicz)

Space X has Menger property ⇐⇒

Player I doesn’t have
winning strategy in the game M (X).
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k-Porada game

Let Z be a compact space and let X ⊆ Z be a subspace of Z.

k-Porada game on Z with values in X - kP(Z, X)

Player I begins the game by choosing a pair (K0, U0), where
K0 ⊆ X is a nonempty compact set and U0 is an open set in Z
that contains K0.

Player II responds by choosing an open (in Z) set V0 such that
K0 ⊆ V0 ⊆ U0.
In the second round of the game, player I picks a pair (K1, U1),
where K1 is a nonempty compact subset of V0 and U1 is an
open subset of Z with K1 ⊆ U1 ⊆ V0.
Player II responds by picking an open (in Z) set V1 such that
K1 ⊆ V1 ⊆ U1. The game continues in this way and stops
after ω many rounds.
Player II wins the game if ∅ ̸= ⋂

n∈ω Un(=
⋂

n∈ω Vn) ⊆ X.
Otherwise Player I wins.
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k-Porada game

Let Z be a compact space and let X ⊆ Z be a subspace of Z.

k-Porada game on Z with values in X - kP(Z, X)
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Characterization of Menger property

Theorem (Telgársky, 1984)

Let Z be a compact space and let X ⊆ Z be a subspace of Z.
Then the games M (X) and kP(Z, Z \ X) are equivalent

i.e.
Player I (

Player II resp.

) has winning strategy in a game M (X)
if and only if Player I (

Player II resp.

) has winning strategy in
the game kP(Z, Z \ X).

Corollary

Let bX be any compactification of a space X. The following
conditions are equivalent:

1 X has Menger property,

2 Player I doesn’t have winning strategy in the game
kP(bX, bX \ X).
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z-Porada game

z-Porada game on Z with values in X - zP(Z, X)

As in the case of kP(Z, X), let Z be a compact space and X be
its subspace.

The z-Porada game on Z with values in X, denoted by
zP(Z, X), is played as kP(Z, X) with the only difference that
compact sets Kn played by player I are required to be zero-sets
in Z (i.e. compact Gδ). We keep the requirement that these sets
are contained in X.
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Characterization of projective Menger property

Recall that a space X is projectively Menger provided every
separable metrizable continuous image of X is Menger. The
following result was established by Bonanzinga et al.

Theorem (Bonanzinga, Cammaroto, Matveev; 2010)

The following conditions are equivalent:
1 X is projectively Menger,

2 For every sequence (Un)n∈ω of countable covers of X by
cozero-sets, there is a sequence (Vn)n∈ω such that for every
n, Vn is a finite subfamily of Un and the family

⋃
n∈ω Vn

covers X.

Again, the above suggests the following counterpart to the
theorem characterising property of Menger.
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Characterization of projective Menger property (cont.)

Proposition (Krupski, K.)

For a space X the following conditions are equivalent:
1 X is projectively Menger,
2 Player I has no winning strategy in the z-Porada game

zP(βX,βX \ X).



(Idea of a) proof (1→ 2)

• Assume X is projectively Menger and fix any strategyσ for
Player I in the zP(βX,βX \ X) game.

• By induction construct families (Ks)s∈ω<ω and (Vs)s∈ω<ω

which will have two purposes:

• in a sense they will limit players’ decisiveness to only
countably many possibilities,

• they will yeld a natural candidate for a metrizable,
separable, compact topological space bM on which we may
map (project?) βX.

• Using the aforementioned space and continuous mapping,
one can move strategy σ into a corresponding startegy τ in
the game of kP(bM, bM \M)

where we know that, due to
Telgársky’s theorem, Player I cannot win!

• After pulling back anwsers for Player II, one checks that
startegy σ is not winning.
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Telgársky’s theorem, Player I cannot win!

• After pulling back anwsers for Player II, one checks that
startegy σ is not winning.



(Idea of a) proof (1→ 2)

• Assume X is projectively Menger and fix any strategyσ for
Player I in the zP(βX,βX \ X) game.
• By induction construct families (Ks)s∈ω<ω and (Vs)s∈ω<ω

which will have two purposes:
• in a sense they will limit players’ decisiveness to only

countably many possibilities,

• they will yeld a natural candidate for a metrizable,
separable, compact topological space bM on which we may
map (project?) βX.

• Using the aforementioned space and continuous mapping,
one can move strategy σ into a corresponding startegy τ in
the game of kP(bM, bM \M)

where we know that, due to
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(Idea of a) proof (1← 2)

• Now, assume that Player I doesn’t have winning strategy
in the zP(βX,βX \ X) game.

Assume that X is not
projectively Menger and fix the witness M along with a
mapping f : βX → bM.
• Due to Telgársky’s theorem we know that Player I does

have a winning strategy τ in kP(bM, bM \M) game.
• By induction, pull back winning strategy τ onto a winning

strategy σ in the zP(βX,βX \ X) game.

It works because:
• preimages of zero-sets are zero-sets,

• images of open sets have no need to be open but at need it’s
enough to consider f #(U) = bM \ f (βX \U).
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Topological games acording to DALL · E2 AI


