Some remarks on the projective properties of Menger and Hurewicz

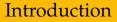
Kacper Kucharski

Joint work with Mikołaj Krupski

University of Warsaw

WINTER SCHOOL IN ABSTRACT ANALYSIS 2023

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~



▲□▶▲□▶▲□▶▲□▶ □ のへで

All spaces under consideration are Tychonoff.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

All spaces under consideration are Tychonoff.

Let \mathcal{P} be a topological property. We say that a space X is *projectively* \mathcal{P} provided every separable metrizable continuous image of X has property \mathcal{P} .

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

All spaces under consideration are Tychonoff.

Let \mathcal{P} be a topological property. We say that a space *X* is *projectively* \mathcal{P} provided every separable metrizable continuous image of *X* has property \mathcal{P} .

Here we are concerned with the case when \mathcal{P} is either the Menger property or the property of Hurewicz.

Introduction (cont.)

).

(日) (日) (日) (日) (日) (日) (日)

Definition

We will say, that a topological space *X* is *Menger* (

) if for every sequence $(\mathscr{U}_n)_{n \in \omega}$ of open covers of *X*, there is a sequence $(\mathscr{V}_n)_{n \in \omega}$ such that for every *n*, \mathscr{V}_n is a finite subfamily of \mathscr{U}_n and the family $\bigcup_{n \in \omega} \mathscr{V}_n$ covers *X* (

(日) (日) (日) (日) (日) (日) (日)

Definition

We will say, that a topological space *X* is *Menger* (*Hurewicz* resp.) if for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of open covers of *X*, there is a sequence $(\mathcal{V}_n)_{n \in \omega}$ such that for every *n*, \mathcal{V}_n is a finite subfamily of \mathcal{U}_n and the family $\bigcup_{n \in \omega} \mathcal{V}_n$ covers *X* (every point of *X* is contained in $\bigcup \mathcal{V}_n$ for all but finitely many *n*'s).

(日) (日) (日) (日) (日) (日) (日)

Definition

We will say, that a topological space *X* is *Menger* (*Hurewicz* resp.) if for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of open covers of *X*, there is a sequence $(\mathcal{V}_n)_{n \in \omega}$ such that for every *n*, \mathcal{V}_n is a finite subfamily of \mathcal{U}_n and the family $\bigcup_{n \in \omega} \mathcal{V}_n$ covers *X* (every point of *X* is contained in $\bigcup \mathcal{V}_n$ for all but finitely many *n*'s).

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Definition

We will say, that a topological space *X* is *Menger* (*Hurewicz* resp.) if for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of open covers of *X*, there is a sequence $(\mathcal{V}_n)_{n \in \omega}$ such that for every *n*, \mathcal{V}_n is a finite subfamily of \mathcal{U}_n and the family $\bigcup_{n \in \omega} \mathcal{V}_n$ covers *X* (every point of *X* is contained in $\bigcup \mathcal{V}_n$ for all but finitely many *n*'s).

 σ -compact \Rightarrow Hurewicz \Rightarrow Menger \Rightarrow Lindelöf.

(日) (日) (日) (日) (日) (日) (日)

Definition

We will say, that a topological space *X* is *Menger* (*Hurewicz* resp.) if for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of open covers of *X*, there is a sequence $(\mathcal{V}_n)_{n \in \omega}$ such that for every *n*, \mathcal{V}_n is a finite subfamily of \mathcal{U}_n and the family $\bigcup_{n \in \omega} \mathcal{V}_n$ covers *X* (every point of *X* is contained in $\bigcup \mathcal{V}_n$ for all but finitely many *n*'s).

 σ -compact \Rightarrow Hurewicz \Rightarrow Menger \Rightarrow Lindelöf.

)
and only if X is).

Definition

We will say, that a topological space *X* is *Menger* (*Hurewicz* resp.) if for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of open covers of *X*, there is a sequence $(\mathcal{V}_n)_{n \in \omega}$ such that for every *n*, \mathcal{V}_n is a finite subfamily of \mathcal{U}_n and the family $\bigcup_{n \in \omega} \mathcal{V}_n$ covers *X* (every point of *X* is contained in $\bigcup \mathcal{V}_n$ for all but finitely many *n*'s).

 σ -compact \Rightarrow Hurewicz \Rightarrow Menger \Rightarrow Lindelöf.

Proposition (Telgársky, 1984) (Kočinac, 2006)

A space *X* is Menger (Hurewicz resp.) if and only if *X* is Lindelöf and projectively Menger (projectively Hurewicz resp.).

Space in its compactification

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Characterizations of interest are in terms of *remainder of compactification* of a given space *X*.

Characterizations of interest are in terms of *remainder of compactification* of a given space *X*.

i.e. one can ask how is the space *X* positioned in its compactification bX (e.g. in βX) and if there's a way to capture this property, by looking at the remainder $bX \setminus X$.

Characterizations of interest are in terms of *remainder of compactification* of a given space *X*.

i.e. one can ask how is the space *X* positioned in its compactification bX (e.g. in βX) and if there's a way to capture this property, by looking at the remainder $bX \setminus X$.

Let *bX* be any compactification of a space *X*. Then:

Characterizations of interest are in terms of *remainder of compactification* of a given space *X*.

i.e. one can ask how is the space *X* positioned in its compactification bX (e.g. in βX) and if there's a way to capture this property, by looking at the remainder $bX \setminus X$.

Let *bX* be any compactification of a space *X*. Then:

Theorem (folklore)

X is σ -compact \longleftrightarrow

Characterizations of interest are in terms of *remainder of compactification* of a given space *X*.

i.e. one can ask how is the space *X* positioned in its compactification bX (e.g. in βX) and if there's a way to capture this property, by looking at the remainder $bX \setminus X$.

Let *bX* be any compactification of a space *X*. Then:

Theorem (folklore)

X is σ -compact \longleftrightarrow the remainder $bX \setminus X$ is of type G_{δ} in bX.

Characterizations of interest are in terms of *remainder of compactification* of a given space *X*.

i.e. one can ask how is the space *X* positioned in its compactification bX (e.g. in βX) and if there's a way to capture this property, by looking at the remainder $bX \setminus X$.

Let *bX* be any compactification of a space *X*. Then:

Theorem (folklore)

X is σ -compact \longleftrightarrow the remainder $bX \setminus X$ is of type G_{δ} in bX.

Theorem (Smirnov)

 $X ext{ is Lindelöf} \longleftrightarrow$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ○へ⊙

Characterizations of interest are in terms of *remainder of compactification* of a given space *X*.

i.e. one can ask how is the space *X* positioned in its compactification bX (e.g. in βX) and if there's a way to capture this property, by looking at the remainder $bX \setminus X$.

Let *bX* be any compactification of a space *X*. Then:

Theorem (folklore)

X is σ -compact \longleftrightarrow the remainder $bX \setminus X$ is of type G_{δ} in bX.

Theorem (Smirnov)

X is Lindelöf \longleftrightarrow for every compact $K \subseteq bX \setminus X$ there exists a set $G \subseteq bX$ of type G_{δ} such that $K \subseteq G \subseteq bX \setminus X$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Hurewicz property is characterised by the following theorem

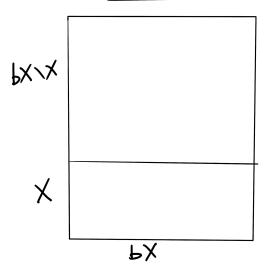
Hurewicz property is characterised by the following theorem

Theorem (F. Tall, 2011)

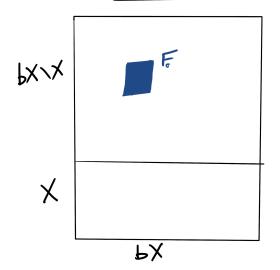
For a space *X* the following conditions are equivalent:

- 1 *X* has the Hurewicz property,
- **2** for every σ -compact subset *F* of the remainder $bX \setminus X$, there exists a G_{δ} -subset *G* of bX such that $F \subseteq G \subseteq bX \setminus X$.

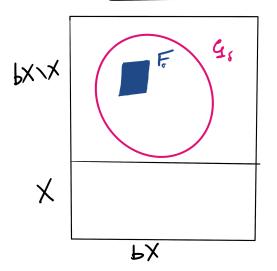
TALL'S Thm.



▲□▶▲□▶▲□▶▲□▶ □ ● ● ●



・ロト・日本・日本・日本・日本・日本



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

Recall that a subset *A* of a topological space *X* is called a *zero-set* if there is a continuous map $f : X \to [0, 1]$ such that $A = f^{-1}(0)$.

Recall that a subset *A* of a topological space *X* is called a *zero-set* if there is a continuous map $f : X \to [0, 1]$ such that $A = f^{-1}(0)$.

According to Vedenissov's lemma if *Z* is a compact space, then *A* is a zero-set in *Z* if and only if *A* is closed G_{δ} -subset of *Z*. The complement of a zero-set is called a *cozero-set*.

(日) (日) (日) (日) (日) (日) (日) (日)

Recall that a subset *A* of a topological space *X* is called a *zero-set* if there is a continuous map $f : X \to [0, 1]$ such that $A = f^{-1}(0)$.

According to Vedenissov's lemma if *Z* is a compact space, then *A* is a zero-set in *Z* if and only if *A* is closed G_{δ} -subset of *Z*. The complement of a zero-set is called a *cozero-set*.

Theorem (Bonanzinga, Cammaroto, Matveev; 2010)

The following conditions are equivalent:

1 X is projectively Hurewicz,

Recall that a subset *A* of a topological space *X* is called a *zero-set* if there is a continuous map $f : X \to [0, 1]$ such that $A = f^{-1}(0)$.

According to Vedenissov's lemma if *Z* is a compact space, then *A* is a zero-set in *Z* if and only if *A* is closed G_{δ} -subset of *Z*. The complement of a zero-set is called a *cozero-set*.

Theorem (Bonanzinga, Cammaroto, Matveev; 2010)

The following conditions are equivalent:

- 1 X is projectively Hurewicz,
- **2** for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of countable covers of X by cozero-sets, there is a sequence $(\mathcal{V}_n)_{n \in \omega}$ such that for every n, \mathcal{V}_n is a finite subfamily of \mathcal{U}_n and for all $x \in X$, point x belongs to $\bigcup \mathcal{V}_n$, for all but finitely manu n's (i.e. the family $\{\bigcup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X).

Recall that a subset *A* of a topological space *X* is called a *zero-set* if there is a continuous map $f : X \to [0, 1]$ such that $A = f^{-1}(0)$.

According to Vedenissov's lemma if *Z* is a compact space, then *A* is a zero-set in *Z* if and only if *A* is closed G_{δ} -subset of *Z*. The complement of a zero-set is called a *cozero-set*.

Theorem (Bonanzinga, Cammaroto, Matveev; 2010)

The following conditions are equivalent:

- 1 X is projectively Hurewicz,
- **2** for every sequence $(\mathcal{U}_n)_{n \in \omega}$ of **countable** covers of *X* by **cozero-sets**, there is a sequence $(\mathcal{V}_n)_{n \in \omega}$ such that for every n, \mathcal{V}_n is a finite subfamily of \mathcal{U}_n and for all $x \in X$, point x belongs to $\bigcup \mathcal{V}_n$, for all but finitely manu n's (i.e. the family $\{\bigcup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X).

Proposition (Krupski, K.)

For a space *X* the following conditions are equivalent:

- 1 X is projectively Hurewicz
- **2** for every $F \subseteq \beta X \setminus X$, such that *F* is a countable union of zero-sets in βX , there exists a G_{δ} subset *G* of βX with $F \subseteq G \subseteq \beta X \setminus X$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ●

Proposition (Krupski, K.)

For a space *X* the following conditions are equivalent:

- 1 *X* is projectively Hurewicz
- **2** for every $F \subseteq \beta X \setminus X$, such that *F* is a countable union of zero-sets in βX , there exists a G_{δ} subset *G* of βX with $F \subseteq G \subseteq \beta X \setminus X$.

Projective Menger property also can be characterised in this way, but first we need to look closer at the notion of topological games.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let's describe three topological games of interest: the Menger game, the *k*-Porada game, and it's minor modification, the *z*-Porada game.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Let's describe three topological games of interest: the Menger game, the *k*-Porada game, and it's minor modification, the *z*-Porada game.

All games considered are games with ω -many innings, played alternatively by two players: Player I and Player II.

(日) (日) (日) (日) (日) (日) (日) (日)

Let's describe three topological games of interest: the Menger game, the *k*-Porada game, and it's minor modification, the *z*-Porada game.

All games considered are games with ω -many innings, played alternatively by two players: Player I and Player II.

Menger game on a space $X - \mathcal{M}(X)$

All ω rounds look very similar. Let $n \in \omega$.

(日) (日) (日) (日) (日) (日) (日) (日)

Let's describe three topological games of interest: the Menger game, the *k*-Porada game, and it's minor modification, the *z*-Porada game.

All games considered are games with ω -many innings, played alternatively by two players: Player I and Player II.

Menger game on a space $X - \mathcal{M}(X)$

All ω rounds look very similar. Let $n \in \omega$. In the *n*-th round Player I chooses open cover \mathcal{U}_n of X.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Let's describe three topological games of interest: the Menger game, the *k*-Porada game, and it's minor modification, the *z*-Porada game.

All games considered are games with ω -many innings, played alternatively by two players: Player I and Player II.

Menger game on a space $X - \mathcal{M}(X)$

All ω rounds look very similar. Let $n \in \omega$. In the *n*-th round Player I chooses open cover \mathcal{U}_n of X. Player II responds with choosing finite subset \mathcal{V}_n of a cover \mathcal{U}_n .

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

Let's describe three topological games of interest: the Menger game, the *k*-Porada game, and it's minor modification, the *z*-Porada game.

All games considered are games with ω -many innings, played alternatively by two players: Player I and Player II.

Menger game on a space $X - \mathcal{M}(X)$

All ω rounds look very similar. Let $n \in \omega$. In the *n*-th round Player I chooses open cover \mathscr{U}_n of *X*. Player II responds with choosing finite subset \mathscr{V}_n of a cover \mathscr{U}_n . Player II wins the game $\mathscr{M}(X)$ if the union $\bigcup_{n \in \omega} \mathscr{V}_n$ is a cover of *X*. Otherwise Player I wins.

Let's describe three topological games of interest: the Menger game, the *k*-Porada game, and it's minor modification, the *z*-Porada game.

All games considered are games with ω -many innings, played alternatively by two players: Player I and Player II.

Menger game on a space $X - \mathcal{M}(X)$

All ω rounds look very similar. Let $n \in \omega$. In the *n*-th round Player I chooses open cover \mathscr{U}_n of *X*. Player II responds with choosing finite subset \mathscr{V}_n of a cover \mathscr{U}_n . Player II wins the game $\mathscr{M}(X)$ if the union $\bigcup_{n \in \omega} \mathscr{V}_n$ is a cover of *X*. Otherwise Player I wins.

Theorem (Hurewicz)

Space X has Menger property \iff

Topological Games

Let's describe three topological games of interest: the Menger game, the *k*-Porada game, and it's minor modification, the *z*-Porada game.

All games considered are games with ω -many innings, played alternatively by two players: Player I and Player II.

Menger game on a space $X - \mathcal{M}(X)$

All ω rounds look very similar. Let $n \in \omega$. In the *n*-th round Player I chooses open cover \mathscr{U}_n of *X*. Player II responds with choosing finite subset \mathscr{V}_n of a cover \mathscr{U}_n . Player II wins the game $\mathscr{M}(X)$ if the union $\bigcup_{n \in \omega} \mathscr{V}_n$ is a cover of *X*. Otherwise Player I wins.

Theorem (Hurewicz)

Space *X* has Menger property \iff Player I doesn't have winning strategy in the game $\mathcal{M}(X)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*.

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*.

k-Porada game on *Z* with values in *X* - $k \mathscr{P}(Z, X)$

Player I begins the game by choosing a pair (K_0, U_0) , where $K_0 \subseteq X$ is a nonempty compact set and U_0 is an open set in Z that contains K_0 .

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*.

k-Porada game on *Z* with values in *X* - $k \mathscr{P}(Z, X)$

Player I begins the game by choosing a pair (K_0, U_0) , where $K_0 \subseteq X$ is a nonempty compact set and U_0 is an open set in Z that contains K_0 .

Player II responds by choosing an open (in *Z*) set V_0 such that $K_0 \subseteq V_0 \subseteq U_0$.

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*.

k-Porada game on *Z* with values in *X* - $k\mathscr{P}(Z, X)$

Player I begins the game by choosing a pair (K_0, U_0) , where $K_0 \subseteq X$ is a nonempty compact set and U_0 is an open set in Z that contains K_0 .

Player II responds by choosing an open (in *Z*) set V_0 such that $K_0 \subseteq V_0 \subseteq U_0$.

In the second round of the game, player I picks a pair (K_1, U_1) , where K_1 is a nonempty compact subset of V_0 and U_1 is an open subset of Z with $K_1 \subseteq U_1 \subseteq V_0$.

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*.

k-Porada game on *Z* with values in *X* - $k \mathscr{P}(Z, X)$

Player I begins the game by choosing a pair (K_0 , U_0), where $K_0 \subseteq X$ is a nonempty compact set and U_0 is an open set in Z that contains K_0 .

Player II responds by choosing an open (in *Z*) set V_0 such that $K_0 \subseteq V_0 \subseteq U_0$.

In the second round of the game, player I picks a pair (K_1, U_1) , where K_1 is a nonempty compact subset of V_0 and U_1 is an open subset of Z with $K_1 \subseteq U_1 \subseteq V_0$.

Player II responds by picking an open (in *Z*) set V_1 such that $K_1 \subseteq V_1 \subseteq U_1$.

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*.

k-Porada game on *Z* with values in *X* - $k \mathscr{P}(Z, X)$

Player I begins the game by choosing a pair (K_0 , U_0), where $K_0 \subseteq X$ is a nonempty compact set and U_0 is an open set in Z that contains K_0 .

Player II responds by choosing an open (in *Z*) set V_0 such that $K_0 \subseteq V_0 \subseteq U_0$.

In the second round of the game, player I picks a pair (K_1, U_1) , where K_1 is a nonempty compact subset of V_0 and U_1 is an open subset of Z with $K_1 \subseteq U_1 \subseteq V_0$.

Player II responds by picking an open (in *Z*) set V_1 such that $K_1 \subseteq V_1 \subseteq U_1$. The game continues in this way and stops after ω many rounds.

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*.

k-Porada game on *Z* with values in *X* - $k \mathscr{P}(Z, X)$

Player I begins the game by choosing a pair (K_0, U_0) , where $K_0 \subseteq X$ is a nonempty compact set and U_0 is an open set in Z that contains K_0 .

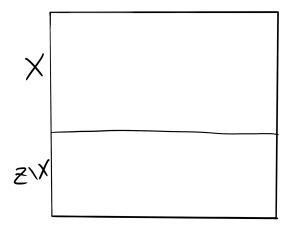
Player II responds by choosing an open (in *Z*) set V_0 such that $K_0 \subseteq V_0 \subseteq U_0$.

In the second round of the game, player I picks a pair (K_1, U_1) , where K_1 is a nonempty compact subset of V_0 and U_1 is an open subset of Z with $K_1 \subseteq U_1 \subseteq V_0$.

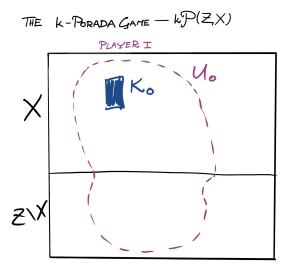
Player II responds by picking an open (in *Z*) set V_1 such that $K_1 \subseteq V_1 \subseteq U_1$. The game continues in this way and stops after ω many rounds.

Player II wins the game if $\emptyset \neq \bigcap_{n \in \omega} U_n (= \bigcap_{n \in \omega} V_n) \subseteq X$. Otherwise Player I wins.

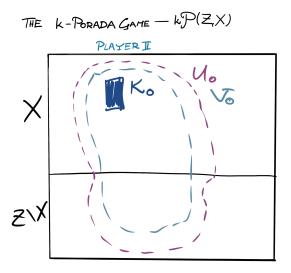
THE
$$k$$
-Brada Game — $kP(ZX)$



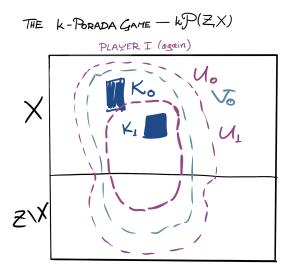
・ロト・日本・日本・日本・日本・日本



▲□▶▲圖▶▲厘▶▲厘▶ = 臣 - 釣�?

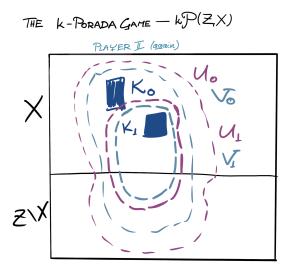


▲□▶▲圖▶▲厘▶▲厘▶ = 臣 - 釣�?



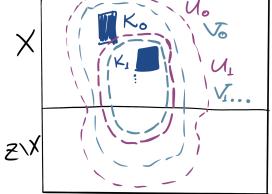
 \mathcal{Z}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへで



・ロト・日本・日本・日本・日本・日本

THE K-PORADA GAME - KP(Z,X) AND SO ON...



Z

THE K-Porada Game — kP(ZX)AFTER W MANY ROUNDS: $\sqrt{6}$ Z\X

Z

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

THE K-Porada Game — kP(Z,X)AFTER W MANY ROUNDS: PLAYER TLAINS Z\X Ø= OVn < X Z

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ • • • ○ < ○

200

Theorem (Telgársky, 1984)

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*. Then the games $\mathcal{M}(X)$ and $k\mathcal{P}(Z, Z \setminus X)$ are equivalent

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ●

Theorem (Telgársky, 1984)

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*. Then the games $\mathscr{M}(X)$ and $k\mathscr{P}(Z, Z \setminus X)$ are equivalent i.e. Player I () has winning strategy in a game $\mathscr{M}(X)$ if and only if Player I () has winning strategy in the game $k\mathscr{P}(Z, Z \setminus X)$.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Telgársky, 1984)

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*. Then the games $\mathscr{M}(X)$ and $k\mathscr{P}(Z, Z \setminus X)$ are equivalent i.e. Player I (Player II resp.) has winning strategy in a game $\mathscr{M}(X)$ if and only if Player I (Player II resp.) has winning strategy in the game $k\mathscr{P}(Z, Z \setminus X)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ●

Theorem (Telgársky, 1984)

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*. Then the games $\mathscr{M}(X)$ and $k\mathscr{P}(Z, Z \setminus X)$ are equivalent i.e. Player I (Player II resp.) has winning strategy in a game $\mathscr{M}(X)$ if and only if Player I (Player II resp.) has winning strategy in the game $k\mathscr{P}(Z, Z \setminus X)$.

Corollary

Let bX be any compactification of a space X. The following conditions are equivalent:

1 X has Menger property,

Theorem (Telgársky, 1984)

Let *Z* be a compact space and let $X \subseteq Z$ be a subspace of *Z*. Then the games $\mathscr{M}(X)$ and $k\mathscr{P}(Z, Z \setminus X)$ are equivalent i.e. Player I (Player II resp.) has winning strategy in a game $\mathscr{M}(X)$ if and only if Player I (Player II resp.) has winning strategy in the game $k\mathscr{P}(Z, Z \setminus X)$.

Corollary

Let bX be any compactification of a space X. The following conditions are equivalent:

- 1 *X* has Menger property,
- Player I doesn't have winning strategy in the game k𝒫(b𝑋, b𝑋 \ 𝑋).

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

z-Porada game on Z with values in X - $z \mathscr{P}(Z, X)$

As in the case of $k\mathscr{P}(Z, X)$, let *Z* be a compact space and *X* be its subspace.

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

z-Porada game on Z with values in X - $z\mathscr{P}(Z, X)$

As in the case of $k\mathscr{P}(Z, X)$, let *Z* be a compact space and *X* be its subspace.

The *z*-*Porada game* on *Z* with values in *X*, denoted by $z \mathscr{P}(Z, X)$, is played as $k \mathscr{P}(Z, X)$ with the only difference that compact sets K_n played by player I are required to be zero-sets in *Z* (i.e. compact G_{δ}). We keep the requirement that these sets are contained in *X*.

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

z-Porada game on Z with values in X - $z \mathscr{P}(Z, X)$

As in the case of $k\mathscr{P}(Z, X)$, let Z be a compact space and X be its subspace.

The *z*-*Porada game* on *Z* with values in *X*, denoted by $z \mathscr{P}(Z, X)$, is played as $k \mathscr{P}(Z, X)$ with **the only difference that compact sets** K_n played by player I **are** required to be **zero-sets** in *Z* (i.e. compact G_{δ}). We keep the requirement that these sets are contained in *X*.

▲ロト ▲ 理 ト ▲ ヨ ト → ヨ → つ Q (~

Recall that a space *X* is *projectively Menger* provided every separable metrizable continuous image of *X* is Menger. The following result was established by Bonanzinga *et al.*

(日) (日) (日) (日) (日) (日) (日)

Recall that a space *X* is *projectively Menger* provided every separable metrizable continuous image of *X* is Menger. The following result was established by Bonanzinga *et al.*

Theorem (Bonanzinga, Cammaroto, Matveev; 2010)

The following conditions are equivalent:

1 X is projectively Menger,

Recall that a space *X* is *projectively Menger* provided every separable metrizable continuous image of *X* is Menger. The following result was established by Bonanzinga *et al.*

Theorem (Bonanzinga, Cammaroto, Matveev; 2010)

The following conditions are equivalent:

- 1 X is projectively Menger,
- **2** For every sequence $(\mathcal{U}_n)_{n \in \omega}$ of countable covers of X by cozero-sets, there is a sequence $(\mathcal{V}_n)_{n \in \omega}$ such that for every n, \mathcal{V}_n is a finite subfamily of \mathcal{U}_n and the family $\bigcup_{n \in \omega} \mathcal{V}_n$ covers X.

Recall that a space *X* is *projectively Menger* provided every separable metrizable continuous image of *X* is Menger. The following result was established by Bonanzinga *et al.*

Theorem (Bonanzinga, Cammaroto, Matveev; 2010)

The following conditions are equivalent:

- 1 X is projectively Menger,
- 2 For every sequence (𝔄_n)_{n∈ω} of countable covers of X by cozero-sets, there is a sequence (√_n)_{n∈ω} such that for every n, √_n is a finite subfamily of 𝔄_n and the family ⋃_{n∈ω} √_n covers X.

Recall that a space *X* is *projectively Menger* provided every separable metrizable continuous image of *X* is Menger. The following result was established by Bonanzinga *et al.*

Theorem (Bonanzinga, Cammaroto, Matveev; 2010)

The following conditions are equivalent:

- 1 X is projectively Menger,
- Por every sequence (𝔄_n)_{n∈ω} of countable covers of X by cozero-sets, there is a sequence (√_n)_{n∈ω} such that for every n, √_n is a finite subfamily of 𝔄_n and the family ⋃_{n∈ω} √_n covers X.

Again, the above suggests the following counterpart to the theorem characterising property of Menger.

Proposition (Krupski, K.)

For a space *X* the following conditions are equivalent:

- 1 *X* is projectively Menger,
- Player I has no winning strategy in the z-Porada game z𝒫(βX, βX \ X).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ●

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

• Assume *X* is projectively Menger and fix any strategy σ for Player I in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game.

- Assume *X* is projectively Menger and fix any strategy σ for Player I in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game.
- By induction construct families (*K*_s)_{s∈w^{<ω}} and (*V*_s)_{s∈w^{<ω}} which will have two purposes:

- Assume *X* is projectively Menger and fix any strategy σ for Player I in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game.
- By induction construct families (*K*_s)_{s∈w^{<ω}} and (*V*_s)_{s∈w^{<ω}} which will have two purposes:
 - in a sense they will limit players' decisiveness to only countably many possibilities,

- Assume *X* is projectively Menger and fix any strategy σ for Player I in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game.
- By induction construct families (*K*_s)_{s∈w^{<ω}} and (*V*_s)_{s∈w^{<ω}} which will have two purposes:
 - in a sense they will limit players' decisiveness to only countably many possibilities,
 - they will yeld a natural candidate for a metrizable, separable, compact topological space *bM* on which we may map (project?) *βX*.

- Assume *X* is projectively Menger and fix any strategy σ for Player I in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game.
- By induction construct families (*K*_s)_{s∈w^{<ω}} and (*V*_s)_{s∈w^{<ω}} which will have two purposes:
 - in a sense they will limit players' decisiveness to only countably many possibilities,
 - they will yeld a natural candidate for a metrizable, separable, compact topological space bM on which we may map (project?) βX .
- Using the aforementioned space and continuous mapping, one can move strategy *σ* into a corresponding startegy *τ* in the game of *k*𝒫(*bM*, *bM* \ M)

- Assume *X* is projectively Menger and fix any strategy σ for Player I in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game.
- By induction construct families (*K*_s)_{s∈w^{<ω}} and (*V*_s)_{s∈w^{<ω}} which will have two purposes:
 - in a sense they will limit players' decisiveness to only countably many possibilities,
 - they will yeld a natural candidate for a metrizable, separable, compact topological space bM on which we may map (project?) βX .
- Using the aforementioned space and continuous mapping, one can move strategy σ into a corresponding startegy τ in the game of $k \mathscr{P}(bM, bM \setminus M)$ where we know that, due to Telgársky's theorem, Player I cannot win!

- Assume *X* is projectively Menger and fix any strategy σ for Player I in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game.
- By induction construct families (*K*_s)_{s∈w^{<ω}} and (*V*_s)_{s∈w^{<ω}} which will have two purposes:
 - in a sense they will limit players' decisiveness to only countably many possibilities,
 - they will yeld a natural candidate for a metrizable, separable, compact topological space bM on which we may map (project?) βX .
- Using the aforementioned space and continuous mapping, one can move strategy σ into a corresponding startegy τ in the game of $k \mathscr{P}(bM, bM \setminus M)$ where we know that, due to Telgársky's theorem, Player I cannot win!
- After pulling back anwsers for Player II, one checks that startegy *σ* is not winning.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

• Now, assume that Player I doesn't have winning strategy in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game.

▲ロト ▲ 理 ト ▲ 国 ト → 国 - の Q (~

• Now, assume that Player I doesn't have winning strategy in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game. Assume that X is not projectively Menger and fix the witness M along with a mapping $f : \beta X \to bM$.

(日) (日) (日) (日) (日) (日) (日) (日)

- Now, assume that Player I doesn't have winning strategy in the *z*𝒫(β*X*, β*X* \ *X*) game. Assume that *X* is not projectively Menger and fix the witness *M* along with a mapping *f* : β*X* → *bM*.
- Due to Telgársky's theorem we know that Player I does have a winning strategy *τ* in *k*𝒫(*bM*, *bM* \ *M*) game.

- Now, assume that Player I doesn't have winning strategy in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game. Assume that X is not projectively Menger and fix the witness *M* along with a mapping $f : \beta X \to bM$.
- Due to Telgársky's theorem we know that Player I **does** have a winning strategy τ in $k\mathscr{P}(bM, bM \setminus M)$ game.
- By induction, pull back winning strategy *τ* onto a winning strategy *σ* in the *z*𝒫(β*X*, β*X* \ *X*) game.

- Now, assume that Player I doesn't have winning strategy in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game. Assume that X is not projectively Menger and fix the witness *M* along with a mapping $f : \beta X \to bM$.
- Due to Telgársky's theorem we know that Player I **does** have a winning strategy τ in $k\mathscr{P}(bM, bM \setminus M)$ game.
- By induction, pull back winning strategy *τ* onto a winning strategy *σ* in the *z*𝒫(β*X*, β*X* \ *X*) game. It works because:
 - preimages of zero-sets are zero-sets,

- Now, assume that Player I doesn't have winning strategy in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game. Assume that X is not projectively Menger and fix the witness *M* along with a mapping $f : \beta X \to bM$.
- Due to Telgársky's theorem we know that Player I **does** have a winning strategy τ in $k\mathscr{P}(bM, bM \setminus M)$ game.
- By induction, pull back winning strategy *τ* onto a winning strategy *σ* in the *z*𝒫(β*X*, β*X* \ *X*) game. It works because:
 - preimages of zero-sets are zero-sets,
 - images of open sets have no need to be open but at need it's enough to consider f[#](U) = bM \ f(βX \ U).

- Now, assume that Player I doesn't have winning strategy in the $z \mathscr{P}(\beta X, \beta X \setminus X)$ game. Assume that X is not projectively Menger and fix the witness *M* along with a mapping $f : \beta X \to bM$.
- Due to Telgársky's theorem we know that Player I **does** have a winning strategy τ in $k\mathscr{P}(bM, bM \setminus M)$ game.
- By induction, pull back winning strategy *τ* onto a winning strategy *σ* in the *z*𝒫(β*X*, β*X* \ *X*) game. It works because:
 - preimages of zero-sets are zero-sets,
 - images of open sets have no need to be open but at need it's enough to consider f[#](U) = bM \ f(βX \ U).

Topological games acording to DALL \cdot E₂ AI

▲ロト▲聞▶▲臣▶▲臣▶ 臣 のへで