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Motivation

Let us recall Ramsey theorem from 1930. For every partition
[N]2 = A⊎B there exists an infinite set X ⊆ N such that [X ]2 ⊆ A
or [X ]2 ⊆ B .
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Motivation

Let us recall Ramsey theorem from 1930. For every partition
[N]2 = A⊎B there exists an infinite set X ⊆ N such that [X ]2 ⊆ A
or [X ]2 ⊆ B .

But, Sierpiński proved in 1933 that if we consider the set R, there
exists a partition [R]2 = A ⊎ B such that, for every X ⊆ R
uncountable, [X ]2 is not contained in A nor B .

But, N and R are also Abelian semi-groups.
What if we take into consideration the algebraic structure on those
sets?
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Historical Background

◮ Hindman’s proved in 1974 that considering (N,+) for every
partition into two cells N = A ⊎ B there exists an infinite set
X ⊆ N such that, the set of all finite sums of X (FS(X )) is
contained in either A or B .

◮ On the other hand, Komjáth proved in 2016 that (R,+)
admits the opposite property.
Namely, there exists a partition [R]2 = A ⊎ B such that, for
every uncountable set X ⊆ R the set of all the sums of two
elements from X (FS2(X )) is not contained in A nor B .
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Generalization

Consider the following ”Ramsey-type” problem:
For θ ≤ λ ≤ κ infinite cardinals. Given an Abelian (semi) group
(G ,+) of size κ, for all colorings c : G → θ, there exists a set
X ⊆ G of size λ such that the set of all finite sums of elements
from X is monochromatic.
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Consider the following ”Ramsey-type” problem:
For θ ≤ λ ≤ κ infinite cardinals. Given an Abelian (semi) group
(G ,+) of size κ, for all colorings c : G → θ, there exists a set
X ⊆ G of size λ such that the set of all finite sums of elements
from X is monochromatic.

We shall abbreviate this sentence by:

G → (λ)FSθ

and if we restrict ourselves only to sums of two elements,

G → (λ)FS2θ .
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Main result

Theorem (Special case)

Under ¬(CH). For every Abelian group of size ℵ2 there exists a
coloring c : G → ω such that, for every subset X of G of size ℵ1

and color n < ω, we may find x , y , z ∈ X for whom
c(x + y + z) = n.
i.e. G 󰃼 [ω1]

FS3
ω for all Abelian groups G of size ℵ2.
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Notation
We commence with brief recall of the ”Classical Ramsey-theory”
definitions.

Definition

◮ κ 󰃼 [λ]2θ asserts the existence of a coloring c : [κ]2 → θ such
that, for every A ∈ [κ]λ, c“[A]2 = θ;

◮ κ 󰃼 [λ;λ]2θ asserts the existence of a coloring c : [κ]2 → θ
such that, for all A,B ∈ [κ]λ, c[A⊛ B] = θ.
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Notation

Definition (Lambie-Hanson and Rinot, 2018)

U(κ, µ, θ,χ) asserts the existence of a coloring c : [κ]2 → θ such
that for every σ < χ, every κ-sized pairwise disjoint subfamily
A ⊆ [κ]σ, and every τ < θ, there exists B ∈ [A]µ such that
min(c[a× b]) > τ for all (a, b) ∈ [B]2.
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Strong Failures

◮ Fernández-Bretón and Rinot’s theorem from 2017 showed
that G 󰃼 [ω1]

FS
ω for every uncountable Abelian group G .

i.e. there exists a coloring c : G → ω such that for all X ⊆ G
uncountable, c“ FS(X ) = ω.

◮ In the same paper, Fernández-Bretón and Rinot showed that
for class many infinite cardinals λ, G 󰃼 [λ]FS2ω holds for every
abelian group G of size λ.
i.e. there exists a coloring c : G → ω such that for all X ⊆ G
of size λ, c“ FS2(X ) = ω.
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Reduction

Fact (Representing Abelian groups as direct sum)

Suppose that G is an infinite Abelian group. Denote by κ the size
of G. Then, there exists a sequence of countable divisible groups
〈Gα | α < κ〉 such that G embeds in

󰁏
α<κ Gα.

10 / 28



Reduction

Fact (Representing Abelian groups as direct sum)

Suppose that G is an Abelian group of size κ. Then, there exists a
sequence of countable divisible groups 〈Gα | α < κ〉 such that G
embeds in

󰁏
α<κ Gα.

Thus, if we replace every element x ∈ G by supp(x) our problem
may be translated as follows,

Definition (The S-principle)

Sn(κ,λ, θ) asserts the existence of a coloring f : [κ]<ω → θ such
that, for every X ⊆ [κ]<ω of size λ and a color τ < θ, there exist
{aj | j < n} ∈ [X ]n such that, for every z satisfying

(a0) △ (
󰁞

0<j<n

aj) ⊆ z ⊆
󰁞

j<n

aj ,

f (z) = τ .
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Background.

Lemma 1. (Fernández-Bretón-Rinot, 2017)

If Sn(κ,λ, θ) holds, then κ 󰃼 [λ]nθ .
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Background.

Lemma 1. (Fernández-Bretón-Rinot, 2017)

If Sn(κ,λ, θ) holds, then κ 󰃼 [λ]nθ .

Lemma 2. (Fernández-Bretón-Rinot, 2017)

For every successor κ: κ 󰃼 [κ]2θ holds iff S2(κ,κ, θ) holds.

12 / 28



Extraction principle

Extraction principles are maps that help detecting ∆-systems
within a big family of finite sets.

Definition
Extract2(κ,λ, µ,χ) asserts the existence of a map e : [κ]<ω → [κ]2

such that:

1. for every z ∈ [κ]<ω of size ≥ 2, e(z) ∈ [z ]2;

2. for every sequence 〈xγ | γ < λ〉 of subsets of κ, every
r ∈ [κ]<µ, and every nonzero σ < χ such that:

2.1 for every (γ, γ′) ∈ [λ]2, xγ ∩ xγ′ ⊆ r ;
2.2 for every γ < λ, yγ := xγ \ r has order-type σ,

there exist j < σ and cofinal subsets Γ0, Γ1 of λ satisfying the
following. For every (γ, γ′) ∈ (Γ0 ⊛ Γ1) ∪ (Γ1 ⊛ Γ0), for every
z ∈ [xγ ∪ xγ′ ]<ω covering {yγ(j), yγ′(j)}, we have

e(z) = (yγ(j), yγ′(j)).
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Extraction principle
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Extraction principle

Example

Suppose that U(κ,κ,ω,ω) holds for a regular uncountable κ and
an infinite θ < κ. Then, Extract2(κ,κ,ω,ω) holds.
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Proof of the example

Fix c : [κ]2 → ω witnessing U(κ,κ,ω,ω) . Define a coloring
d : [κ]<ω → θ, as follows. For z ∈ [κ]<2, just let d(z) := (0, 1).
Next, for z ∈ [κ]<ω of size ≥ 2, first let 〈αi | i < |z |〉 denote the
increasing enumeration of z . Then set

jz := min{j < |z |−1 | c(αj ,αj+1) = max{c(αi ,αi+1) | i < |z |−1}},

and let d(z) := (αjz ,α|z|).
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Next, for z ∈ [κ]<ω of size ≥ 2, first let 〈αi | i < |z |〉 denote the
increasing enumeration of z . Then set

jz := min{j < |z |−1 | c(αj ,αj+1) = max{c(αi ,αi+1) | i < |z |−1}},

and let d(z) := (αjz ,α|z|).

Lemma (General technique)

Assume Extract2(κ,λ,ω,ω) and κ 󰃼 [λ,λ]2θ hold, then S2(κ,λ, θ)
holds.

Lemma
For λ regular uncountable, if κ > 2<λ then Extract2(κ,λ, 2, 2) fails.
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An observation

Note that actually we do not need the full strength of the relation
κ 󰃼 [λ,λ]2θ,
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An observation

Note that actually we do not need the full strength of the relation
κ 󰃼 [λ,λ]2θ,

Definition
κ

sup󰃼 [λ,λ]2θ asserts the existence of a coloring c : [κ]2 → θ such
that for all τ < θ and disjoint A,B ∈ P(κ) satisfying the two:

1. otp(A) = otp(B) = λ,

2. sup(A) = sup(B),

there is (α,β) ∈ [A ∪ B]n \ ([A]n ∪ [B]n) with c(α,β) = τ .
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The case κ = λ

In case κ = λ the two relations are equivalent and by similar
argument as the example before Extract2(κ,κ,ω,ω) holds.

Lemma
Suppose that κ 󰃼 [κ;κ]2θ holds for a regular uncountable κ and an
infinite θ ≤ κ. Then S2(κ,κ, θ) holds, as well.
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The case κ = λ

In case κ = λ the two relations are equivalent and by similar
argument as the example before Extract2(κ,κ,ω,ω) holds.

Lemma
Suppose that κ 󰃼 [κ;κ]2θ holds for a regular uncountable κ and an
infinite θ ≤ κ. Then S2(κ,κ, θ) holds, as well.

Question
What can be said on S2(κ,λ, θ) when λ < κ?
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The case λ < κ

Theorem
If there exists a weak µ-Kurepa tree with κ branches, then
S2(κ,λ, 2) holds, for λ := µ+.
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For every infinite cardinal λ = 2<λ, S2(2
λ,λ+, 2) holds.

Corollary (Komjáth, 2016)

R 󰃼 [ω1]
FSn
2 for any n < ω;

Corollary (Komjáth, 2020)

There exists c : R → 2 such that, for every i < 2 and X ⊆ R of
size ℵ1, there exist x ∕= y ∈ X with c(|x − y |) = i .
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This section is dedicated to give a brief overview of the tools we
used to prove the main result.
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As before

Lemma
Suppose that there exists a weak µ-Kurepa tree with at least κ
many branches. Then Extract3(κ,λ, µ,ω) for every regular cardinal
λ ∈ (µ,κ].
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As before

Lemma
Suppose that there exists a weak µ-Kurepa tree with at least κ
many branches. Then Extract3(κ,λ, µ,ω) for every regular cardinal
λ ∈ (µ,κ].

But what about the appropriate coloring?
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The coloring

Definition
κ

sup󰃼 [λ,λ]nθ asserts the existence of a coloring c : [κ]n → θ such
that for all τ < θ and disjoint A,B ∈ P(κ) satisfying the two:

1. otp(A) = otp(B) = λ,

2. sup(A) = sup(B),

there is 󰂓x ∈ [A ∪ B]n \ ([A]n ∪ [B]n) with c(󰂓x) = τ .

Lemma
Suppose that:

◮ 2 ≤ n < ω;

◮ θ ≤ λ ≤ κ are cardinals with λ regular and uncountable;

◮ κ
sup󰃼 [λ,λ]nθ ;

◮ Extractn(κ,λ,ω,ω) holds.

Then Sn(κ,λ, θ) holds.
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The coloring: maximal number of colors

Theorem
The following are equivalent:

1. (ℵ2,ℵ1) ↠ (ℵ1,ℵ0) fails;

2. There exist a coloring c : [ω2]
3 → ω1 with the property that

for all disjoint A,B ⊆ ω2 of order-type ω1 such that
sup(A) = sup(B), for every color τ < ω1, there is
(α,β, γ) ∈ [A ∪ B]3 \ ([A]3 ∪ [B]3) such that c(α,β, γ) = τ .

i.e. ω2
sup󰃼 [ω1,ω1]

3
ω1
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The coloring: countably many colors

Theorem
Suppose that λ = µ+ for an infinite cardinal µ = µ<µ.
Then λ+ sup󰃼 [λ,λ]3ω.
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The coloring: countably many colors

◮ We use a technique introduced by Todorčević, called walks on
ordinals.
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The coloring: countably many colors

◮ We use a technique introduced by Todorčević, called walks on
ordinals.

◮ We divide into two cases depending on whenever 2µ = µ+ or
not.

◮ Each such case, similarly to the division into cases in
Todorčević celebrated theorem ω2 󰃼 [ω1]

3
ω, we divide into two

major cases.

◮ In the first case, we get a similar situation as in the maximal
color case. i.e. Chang’s conjecture fails.

◮ In the other case, we use a lifting up of the oscillation map.
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Some open questions regarding the Extract

Question
Does Extract2(κ,λ, . . .) imply Extract3(κ,λ, . . .)?
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The paper is available in: http://p.assafrinot.com/57
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Questions?
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