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Stone duality

Definition

A compact (Hausdorff) space K is totally disconnected (or
zero-dimensional) if K has a basis of clopens.

Examples: 2ω, βω, ω∗...

Stone space

Let A be a Boolean algebra. The Stone space St(A) of A is the
space of all ultrafilters on A endowed with the topology generated
by sets of the form:

[A]A = {U ∈ St(A) : A ∈ U}

for every A ∈ A.

Facts
1 St(A) is a totally disconnected compact space.
2 Clopen(St(A)) is isomorphic to A.
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σ-complete Boolean algebras

Definition

A compact space K is basically disconnected if every open Fσ-set
has open closure.

Example: βω
Non-examples: 2ω, ω∗

Definition

A Boolean algebra A is σ-complete if every countable subset of A
has supremum in A.

Examples: ℘(ω)
Non-examples: Free(ω), ℘(ω)/Fin

Fact

A Boolean algebra A is σ-complete if and only if St(A) is basically
disconnected.
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Cohen reals and random forcing

Theorem (folklore — Dow and Fremlin point Koszmider)

Let A ∈ V be a ground model Boolean algebra. Let P be a notion
of forcing adding a Cohen real.

Then, in any P-generic extension
V [G ], the Stone space St(A) contains a non-trivial convergent
sequence.

Random forcing

κ ­ ω — a cardinal number

λκ — the standard product measure on 2κ

Mκ = Bor(2κ)/{A ∈ Bor(2κ) : λκ(A) = 0}

Theorem (Dow–Fremlin)

Let A ∈ V be a ground model σ-complete Boolean algebra. Then,
in any Mκ-generic extension V [G ], the Stone space St(A) does
not contain any non-trivial convergent sequences.
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Sequences of measures

K — compact space, x ∈ K , A ⊆ K

δx(A) =

{
1, if x ∈ A,

0, if x 6∈ A.

Observation

Let K be a totally disconnected compact space,
〈
xn : n ∈ ω

〉
a

non-trivial sequence in K , and x ∈ K . Then:

xn → x ⇐⇒ ∀ clopen set U ⊆ K : δxn(U)→ δx(U)

=⇒ ∀ clopen set U ⊆ K : 12δx2n(U)− 12δx2n+1(U)→ 0.
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Sequences of measures

Definition

Let K be a totally disconnected compact space. A sequence〈
µn : n ∈ ω

〉
of Borel measures on K such that:

each µn =
∑

x∈Fn
αxδx , where Fn ∈ [K ]<ω (finite support)

and
∑

x∈Fn
|αx | = 1,

µn(U)→ 0 for every clopen set U ⊆ K ,

is called a finitely supported Josefson–Nissenzweig sequence on K ,
or, in short, a JN-sequence.

Observation

Let
〈
µn : n ∈ ω

〉
be a bounded sequence of finitely supported

measures on totally disconnected compact K . Then:

∀ clopen set U ⊆ K : µn(U)→ 0

⇐⇒ ∀ f ∈ C (K ):
∫
K f dµn → 0 (weak* convergence).
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Interlude

Theorem (Josefson–Nissenzweig)

For every infinite-dimensional Banach space X there exists a
sequence

〈
x∗n : n ∈ ω

〉
of continuous functionals in the dual space

X ∗ such that ‖x∗n‖ = 1 for every n ∈ ω and x∗n (x)→ 0 for every
x ∈ X .



Existence of JN-sequences on infinite compact spaces

Examples

spaces with non-trivial convergent sequences

metric spaces

Eberlein, Corson, Valdivia spaces...

products K × L of arbitrary spaces, in particular βω × βω
limits lim←−

〈
Kα, π

β
α : α ¬ β < δ

〉
based on simple extensions

Non-examples

basically disconnected spaces, in particular βω

F-spaces, in particular ω∗

K for which C (K ) is a Grothendieck space
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Cohen reals and random forcing, again

Theorem

Forcing notions adding Cohen reals add JN-sequences of the form
1
2δxn −

1
2δx to the Stone spaces of ground model Boolean algebras.

Theorem

Mκ does not add JN-sequences of the form 1
2δxn −

1
2δx to the

Stone spaces of ground model σ-complete Boolean algebras.

Main Question

Does Mκ add JN-sequences of some other form to the Stone
spaces of ground model (σ-complete) Boolean algebras?
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Positive answer

Theorem

Let A ∈ V be a ground model Boolean algebra. Let P be a forcing
adding a random real. Then, in any P-generic extension V [G ],
there is a JN-sequence on the Stone space St(A).

Sketch of the proof

r ∈ 2ω — a random real over V〈
xn : n ∈ ω

〉
∈ V — a non-trivial sequence of ultrafilters on A

µn =
1
2n

2n+1∑
i=2n+1

(−1)r(i)+1 · δxi

Weak Law of Large Numbers + Borel–Cantelli Lemma =⇒〈
µn : n ∈ ω

〉
is a JN-sequence on St(A) in V [G ]

Observe: | supp(µn)| = 2n ! So, limn→∞ | supp(µn)| =∞.
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Negative answer

Theorem

Let A ∈ V be a ground model σ-complete Boolean algebra.

Then,
in any Mκ-generic extension V [G ], the Stone space St(A) does
not admit any JN-sequence

〈
µn : n ∈ ω

〉
for which there exists

M ∈ ω such that | supp(µn)| ¬ M for all n ∈ ω.

Proposition

For every totally disconnected compact space K , TFAE:
1 K admits a JN-sequence

〈
µn : n ∈ ω

〉
such that

| supp(µn)| ¬ M for some M ∈ ω and all n ∈ ω;
2 K admits a JN-sequence

〈
µn : n ∈ ω

〉
such that

| supp(µn)| = 2 for all n ∈ ω.



Negative answer

Theorem

Let A ∈ V be a ground model σ-complete Boolean algebra. Then,
in any Mκ-generic extension V [G ], the Stone space St(A) does
not admit any JN-sequence

〈
µn : n ∈ ω

〉
for which there exists

M ∈ ω such that | supp(µn)| ¬ M for all n ∈ ω.

Proposition

For every totally disconnected compact space K , TFAE:
1 K admits a JN-sequence

〈
µn : n ∈ ω

〉
such that

| supp(µn)| ¬ M for some M ∈ ω and all n ∈ ω;
2 K admits a JN-sequence

〈
µn : n ∈ ω

〉
such that

| supp(µn)| = 2 for all n ∈ ω.



Negative answer

Theorem

Let A ∈ V be a ground model σ-complete Boolean algebra. Then,
in any Mκ-generic extension V [G ], the Stone space St(A) does
not admit any JN-sequence

〈
µn : n ∈ ω

〉
for which there exists

M ∈ ω such that | supp(µn)| ¬ M for all n ∈ ω.

Proposition

For every totally disconnected compact space K , TFAE:
1 K admits a JN-sequence

〈
µn : n ∈ ω

〉
such that

| supp(µn)| ¬ M for some M ∈ ω and all n ∈ ω;

2 K admits a JN-sequence
〈
µn : n ∈ ω

〉
such that

| supp(µn)| = 2 for all n ∈ ω.



Negative answer

Theorem

Let A ∈ V be a ground model σ-complete Boolean algebra. Then,
in any Mκ-generic extension V [G ], the Stone space St(A) does
not admit any JN-sequence

〈
µn : n ∈ ω

〉
for which there exists

M ∈ ω such that | supp(µn)| ¬ M for all n ∈ ω.

Proposition

For every totally disconnected compact space K , TFAE:
1 K admits a JN-sequence

〈
µn : n ∈ ω

〉
such that

| supp(µn)| ¬ M for some M ∈ ω and all n ∈ ω;
2 K admits a JN-sequence

〈
µn : n ∈ ω

〉
such that

| supp(µn)| = 2 for all n ∈ ω.



Main ingredients of the proof

Theorem (Dow–Fremlin)

Let A ∈ V be a ground model Boolean algebra. Assume that〈
U̇n : n ∈ ω

〉
is a sequence of Mκ-names for distinct ultrafilters on

A. Let G be a Mκ-generic filter over V .

Then, for every condition
p ∈Mκ there are a condition q ¬ p and a sequence〈
An : n ∈ ω

〉
∈ V of pairwise disjoint elements of A such that

q 
 [An]A ∩
{
U̇k : k ∈ ω

}
6= ∅ for every n ∈ ω.

Theorem (Borodulin-Nadzieja–S.)

Let A ∈ V be a ground model Boolean algebra. Let U̇ and V̇ be
Mκ-names for ultrafilters on A. Let p ∈Mκ be a condition such
that p 
 U̇ 6= V̇. Then, for every ε > 0 there are a condition q ¬ p
and an element C ∈ A such that λκ(q) > λκ(p)/4− ε and
q 
 C ∈ U̇4V̇.
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What about other forcings?

Definition

A forcing P ∈ V has the Laver property if for every P-generic filter
G over V , every f ∈ ωω ∩V and g ∈ ωω ∩V [G ] such that g ¬∗ f ,
there exists H : ω → [ω]<ω such that g(n) ∈ H(n) and
|H(n)| ¬ n + 1 for every n ∈ ω.

Examples: Sacks, side-by-side Sacks, Laver, Mathias, Miller,
Silver(-like)

Definition

A forcing P ∈ V preserves the ground model reals non-meager if
R ∩ V is a non-meager subset of R ∩ V [G ] for any P-generic filter
G .

Examples: Sacks, side-by-side Sacks, Miller, Silver(-like)
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What about other forcings?

Theorem (S.–Zdomskyy)

Let A ∈ V be a ground model σ-complete Boolean algebra. Let
P ∈ V be a notion of proper forcing having the Laver property and
preserving the ground model reals non-meager.

Then, in any
P-generic extension V [G ], St(A) does not admit any
JN-sequences.
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Why do we care? Complemented copies of c0!

c0 = {x ∈ Rω : x(n)→ 0}

Two topologies on c0

norm ‖x‖∞ = supn∈ω |x(n)|, making c0 a Banach space

pointwise topology τp inherited from Rω

Theorem (Banakh–Kąkol–Śliwa)

For every totally disconnected compact space K TFAE:
1 K admits a JN-sequence sequence,
2 Cp(K ) has a complemented copy of (c0, τp).

Corollary (by the Closed Graph Theorem)

If K as above admits a JN-sequence, then the Banach space C (K )
has a complemented copy of (c0, ‖ · ‖∞).
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Complemented copies of c0 in random extensions

Corollary

Let A = ℘(ω) ∩ V . Then,
1 in V , C (St(A)) does not have any complemented copies of

(c0, ‖ · ‖∞) (Sobczyk’s theorem);

2 in VMκ , C (St(A)) has a complemented copy of (c0, ‖ · ‖∞).

Theorem

If P is a proper notion of forcing having the Laver property and
preserving ground model reals non-meager, then, in V P, C (St(A))
does not have any complemented copies of (c0, ‖ · ‖∞).
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Why do we care? Cofinality of Boolean algebras!

Definition

The cofinality cf(A) of an infinite Boolean algebra A is the
minimal cardinality κ of an increasing chain

〈
Aξ : ξ < κ

〉
of proper

subalgebras of A such that A =
⋃
ξ<κAξ.

Theorem (Koppelberg)

For any infinite Boolean algebra A, ω ¬ cf(A) ¬ c.

Examples

|A| ¬ ω =⇒ cf(A) = ω,

A — σ-complete =⇒ cf(A) = ω1 (Koppelberg)

Open question (Koppelberg)

Does there consistently exist a Boolean algebra A such that
cf(A) > ω1?
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Why do we care? Cofinality of Boolean algebras!

Proposition (folklore)

For any infinite Boolean algebra A, TFAE:
1 cf(A) = ω,

2 there is a non-trivial discrete sequence
〈
xn : n ∈ ω

〉
in St(A)

such that for all clopen U ⊆ St(A) and almost all n ∈ ω we
have:

x2n ∈ U ⇐⇒ x2n+1 ∈ U.

Corollary

Let A ∈ V be a ground model σ-complete Boolean algebra. Then,
in any Mκ-generic extension V [G ], we have cf(A) = ω1.
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The end

Thank you for the attention!


