Compact connected spaces via the projective Fraïssé limit constructions

Aleksandra Kwiatkowska

Winter School 2023, Štěkeň, 3rd talk

28.01-4.02.2023

Topological graphs and monotone maps

Definition

A subset *S* of a topological graph *G* is disconnected if there are two nonempty closed subsets *P* and *Q* of *S* such that $P \cup Q = S$ and if $a \in P$ and $b \in Q$, then $\langle a, b \rangle \notin E(G)$. A subset *S* of *G* is connected if it is not disconnected.

伺 ト イヨト イヨト

Topological graphs and monotone maps

Definition

A subset *S* of a topological graph *G* is disconnected if there are two nonempty closed subsets *P* and *Q* of *S* such that $P \cup Q = S$ and if $a \in P$ and $b \in Q$, then $\langle a, b \rangle \notin E(G)$. A subset *S* of *G* is connected if it is not disconnected.

Definition

Let G, H be topological graphs. An epimorphism $f: G \to H$ is called monotone if for every closed connected subset Q of H, $f^{-1}(Q)$ is connected.

・ 何 ト ・ ヨ ト ・ ヨ ト

Dendrites

Definition

A dendrite is an arcwise connected, locally connected, hereditarily unicoherent continuum.

▶ < ∃ ▶</p>

Dendrites

Definition

A dendrite is an arcwise connected, locally connected, hereditarily unicoherent continuum.

Theorem (Charatonik-Roe '22+)

Suppose that \mathcal{T} is a projective Fraïssé class of finite trees with monotone epimorphisms, and \mathbb{T} is the projective Fraïssé limit of \mathcal{T} . Then $|\mathbb{T}|$, the topological realization of \mathbb{T} , if exists, it is a dendrite.

A⊒ ▶ ∢ ∃ ▶

Ważewski dendrites

Theorem (Charatonik-Roe '22+)

The topological realization of the projective Fraissé limit of the class T_M of **all** finite trees with **all** monotone maps, is homeomorphic to the Ważewski dendrite W_3 .

Monotone maps and trees Confluent maps

The universal Ważewski dendrite

Figure: The universal Ważewski dendrite W_{ω}

Ważewski dendrites 2

- For any P ⊆ {3,4,5,...,ω} there is a unique Ważewski dendrite, which has ramification points of orders exactly in P.
- Codenotti and Kwiatkowska in 2022 considered Fraïssé classes of finite trees with (weakly) coherent monotone epimorphisms, and constructed all Ważewski dendrites as topological realizations of their Fraïssé limits.
- They used uniqueness of Fraïssé limits to give a new proof of a result by Charatonik and Dilks that endpoints of any Ważewski dendrite are countably dense homogeneous.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Confluent maps

Definition

- (continua) Let K, L be continua. A continuous map f: L → K is called confluent if for every subcontinuum M of K and every component C of f⁻¹(M) we have f(C) = M.
- (graphs) Let G, H be topological graphs. An epimorphism
 f: G → H is called confluent if for every closed connected
 subset Q of H and every component C of f⁻¹(Q) we have
 f(C) = Q.

A (1) < (2) < (2) </p>

More on confluent maps

Proposition (Charatonik-Roe '22+)

Given two finite graphs G and H, the following conditions are equivalent for an epimorphism $f: G \rightarrow H$:

f is confluent;

Solution of the probability of the probability

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Solenoids

Definition

A solenoid is a continuum homeomorphic to the inverse limit $\Sigma(\mathbf{p}) = \varprojlim(S^1, f_n)$ of the inverse sequence of unit circles S^1 in the complex plane with bonding maps $f_n(z) = z^{p_n}$, where $\mathbf{p} = (p_1, p_2, \dots)$ is a sequence of prime numbers. It is called a **p**-adic solenoid. The solenoid $\Sigma(2, 2, \dots)$ is known as a dyadic solenoid.

直 ト イヨ ト イヨト

Solenoids-characterizations

Theorem

Let X be a continuum not homeomorphic to a circle. The following are equivalent:

- \bigcirc X is a solenoid,
- (Hewitt '63) X is homeomorhic to a one-dimensional topological group,
- (Hagopian '77) X is homogeneous and every proper subcontinuum is an arc.
- (Krupski '84) X is circle-like, has the property of Kelley, and contains no local end point,

伺 ト イヨト イヨト

Cycles

Definition

For $A \in \mathcal{G}$ we will say that $C \subseteq A$ is a cycle in A if |V(C)| > 2 and we can enumerate the vertices of C as $(c_0, c_1, \ldots, c_n = c_0)$ in a way that $c_i \neq c_j$ whenever $0 \leq i < j < n$ and $\langle c_i, c_j \rangle \in E(A)$ if and only if $|j - i| \leq 1$.

Cycles

Definition

For $A \in \mathcal{G}$ we will say that $C \subseteq A$ is a cycle in A if |V(C)| > 2 and we can enumerate the vertices of C as $(c_0, c_1, \ldots, c_n = c_0)$ in a way that $c_i \neq c_j$ whenever $0 \leq i < j < n$ and $\langle c_i, c_j \rangle \in E(A)$ if and only if $|j - i| \leq 1$.

Definition

Confluent epimorphism between cycles we call wrapping maps.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Cycles

Definition

For $A \in \mathcal{G}$ we will say that $C \subseteq A$ is a cycle in A if |V(C)| > 2 and we can enumerate the vertices of C as $(c_0, c_1, \ldots, c_n = c_0)$ in a way that $c_i \neq c_j$ whenever $0 \leq i < j < n$ and $\langle c_i, c_j \rangle \in E(A)$ if and only if $|j - i| \leq 1$.

Definition

Confluent epimorphism between cycles we call wrapping maps.

Definition

The winding number of a wrapping map f is n if for every (equivalently: some) $c \in C$, $f^{-1}(c)$ has exactly n components.

くロ と く 同 と く ヨ と 一

Wrapping maps

æ

-

I ← Ξ →

Fraïssé classes of cycles - warm up

Proposition

Let P be a set of prime numbers and let \mathcal{D}_P be the class of cycles with confluent epimorphisms whose winding numbers are of the form $p_1^{n_1}p_2^{n_2} \dots p_k^{n_k}$, where $p_i \in P$ and $n_i \in \mathbb{N}$. Then \mathcal{D}_P is a projective Fraïssé class.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Fraïssé classes of cycles - warm up

Proposition

Let P be a set of prime numbers and let \mathcal{D}_P be the class of cycles with confluent epimorphisms whose winding numbers are of the form $p_1^{n_1}p_2^{n_2}\dots p_k^{n_k}$, where $p_i \in P$ and $n_i \in \mathbb{N}$. Then \mathcal{D}_P is a projective Fraïssé class.

Theorem (Charatonik-K-Roe)

The \mathcal{D}_P approximates the solenoid, which is projectively universal for all **p**-adic solenoids, with **p** = (p_1, p_2, p_3, \ldots), $p_i \in P$.

The projective Fraïssé class G - main example

Proposition (Charatonik-Roe '22+)

The class G of finite connected graphs with confluent epimorphisms is a projective Fraïssé class.

- Let G denote the projective Fraïssé limit. Then E(G) is an equivalence relation with only single and double equivalence classes.
- Let $|\mathbb{G}|$ denote the topological realization. This is a one-dimensional continuum.

伺 ト イヨト イヨト

Main Theorem - part 1

Theorem (Charatonik-K-Roe '22+)

- $|\mathbb{G}|$ has the following properties:
 - it is not homogeneous;
 - it is pointwise self-homeomorphic;
 - it is an indecomposable continuum;
 - all arc components are dense;
 - **o** each point is the top of the Cantor fan;
 - the pseudo-arc, the universal pseudo-solenoid, and the universal solenoid, embed in it;
 - it is hereditarily unicoherent, in particular, the circle S¹ does not embed in it.

Indecomposable continuum

Definition

A connected topological graph G is called decomposable if there are two closed connected subgraphs A and B such that $G = A \cup B$, $A \neq G$, and $B \neq G$. It is called indecomposable if it is not decomposable.

• • = • • = •

Indecomposable continuum

Definition

A connected topological graph G is called decomposable if there are two closed connected subgraphs A and B such that $G = A \cup B$, $A \neq G$, and $B \neq G$. It is called indecomposable if it is not decomposable.

Theorem

If for every graph $F \in \mathcal{G}$ there is a graph $G \in \mathcal{G}$ and a confluent epimorphism $f_F^G : G \to F$ such that for every two connected graphs $A, B \subseteq G$ such that $G = A \cup B$ we have $f_F^G(A) = F$ or $f_F^G(B) = F$. Then \mathbb{G} is an indecomposable topological graph.

Corollary

The continuum $|\mathbb{G}|$ is indecomposable.

Indecomposable continuum 2

 $(\langle a_i, b_i \rangle)_{i \leq n}$ enumerate all edges of FFor every two connected graphs $A, B \subseteq G$ such that $G = A \cup B$ we have $f_F^G(A) = F$ or $f_F^G(B) = F$.

Main theorem - part 2: Embedding solenoids and non-homogeneity

Theorem (Charatonik-K-Roe '22+)

There is a dense set of points in $|\mathbb{G}|$ that belong to a solenoid. Moreover, the only solenoid that embeds into $|\mathbb{G}|$ is the universal solenoid.

伺 ト イヨト イヨト

Main theorem - part 2: Embedding solenoids and non-homogeneity

Theorem (Charatonik-K-Roe '22+)

There is a dense set of points in $|\mathbb{G}|$ that belong to a solenoid. Moreover, the only solenoid that embeds into $|\mathbb{G}|$ is the universal solenoid.

Theorem (Charatonik-K-Roe '22+)

There is a dense set of points in $|\mathbb{G}|$ that do not belong to a solenoid.

Main theorem - part 2: Embedding solenoids and non-homogeneity

Theorem (Charatonik-K-Roe '22+)

There is a dense set of points in $|\mathbb{G}|$ that belong to a solenoid. Moreover, the only solenoid that embeds into $|\mathbb{G}|$ is the universal solenoid.

Theorem (Charatonik-K-Roe '22+)

There is a dense set of points in $|\mathbb{G}|$ that do not belong to a solenoid.

Corollary (Charatonik-K-Roe '22+)

The continuum $|\mathbb{G}|$ is not homogeneous.

(日)

Embedding solenoids: lifting cycles

Lemma

Let $A, B \in \mathcal{G}$ and let $f : B \to A$ be a confluent epimorphism. Let $C = (c_0, c_1, \ldots, c_n = c_0)$ be a cycle in A. Then there is an induced subgraph D of B such that D is a cycle, f(D) = C, and $f|_D$ is a wrapping map.

Embedding solenoids: lifting cycles

Lemma

Let $A, B \in \mathcal{G}$ and let $f : B \to A$ be a confluent epimorphism. Let $C = (c_0, c_1, \ldots, c_n = c_0)$ be a cycle in A. Then there is an induced subgraph D of B such that D is a cycle, f(D) = C, and $f|_D$ is a wrapping map.

We can additionally make sure that:

- The winding number of $f|_D$ is divisible by a given number m.
- For every x ∈ C and any component P of f⁻¹(x) ∩ D, we have |P| ≥ 2.

< 同 > < 三 > < 三 > -

Embedding solenoids: graph-solenoids

Definition

The inverse limit of an inverse sequence of cycles $\{C_n, p_n\}$, where p_n are confluent epimorphisms, is a graph-solenoid if for infinitely many n the winding number of p_n is greater than 1 and for every $x \in V(C_n)$ every component of $p_n^{-1}(x)$ contains at least 2 vertices.

伺 ト イヨト イヨト

Embedding solenoids: graph-solenoids

Definition

The inverse limit of an inverse sequence of cycles $\{C_n, p_n\}$, where p_n are confluent epimorphisms, is a graph-solenoid if for infinitely many *n* the winding number of p_n is greater than 1 and for every $x \in V(C_n)$ every component of $p_n^{-1}(x)$ contains at least 2 vertices.

- We keep lifting cycles in a Fraïssé sequence of G and we conclude that G contains a graph-solenoid as a topological subgraph.
- By the result of Hagopian we have to show that the topological realization is homogeneous and that every proper non-degenerate subcontinuum is an arc.

Almost wrapping maps

Definition

A surjective homomorphism $g: D \to C$, where C, D are cycles with $C = (c_0, c_1, c_2, ..., c_k = c_0)$ is an almost wrapping map if there is a confluent epimorphism $f: D \to C$ such that for every $y \in D$ and $x = c_i \in C$, if $f(y) = c_i$ then $g(y) \in \{c_i, c_{i+1}\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Almost wrapping maps

Definition

A surjective homomorphism $g: D \to C$, where C, D are cycles with $C = (c_0, c_1, c_2, \ldots, c_k = c_0)$ is an almost wrapping map if there is a confluent epimorphism $f: D \to C$ such that for every $y \in D$ and $x = c_i \in C$, if $f(y) = c_i$ then $g(y) \in \{c_i, c_{i+1}\}$.

Lifting solenoids

Theorem (Charatonik-K-Roe '22+)

Let S be a solenoid and let S be a topological graph whose topological realization is S via a quotient map $\pi_S : \mathbb{S} \to S$. Suppose that the set of one-element equivalence classes is dense in S. Then S is an almost graph-solenoid.

伺 ト イヨト イヨト