Combinatorial Sets of Reals, III

Independence: Spectrum and Genericity

Vera Fischer

University of Vienna

Jan 28-Feb 4, 2023

Winter School in Abstract Analysis

Section Set Theory & Topology

Definition: Spectrum of Independence $\mathfrak{sp}(\mathfrak{i}) = \{|\mathscr{A}| : \mathscr{A} \text{ is a max. ind. family} \}$

Theorem (F., Shelah)

Assume CH. Let λ be a regular uncountable cardinal. Then

$$V^{\mathbb{S}_{\lambda}} \vDash \mathfrak{sp}(\mathfrak{i}) = \{ \aleph_1, \lambda \}.$$

-

물 시 문 시 문

Image: A mage: A ma

No intermediate cardinalities

Lemma

In the above extension there are no m.i.f. of size κ , for $\aleph_1 < \kappa < \lambda$.

Image: A mage: A ma

3/64

A-diagonalization filters

Let \mathscr{A} be an independent family. A filter \mathscr{U} is said to be an \mathscr{A} -diagonalization filter if

$$\forall F \in \mathscr{U} \forall h \in \mathsf{FF}(\mathscr{A})(|F \cap \mathscr{A}^h| = \omega)$$

and is maximal with respect to the above property.

Lemma

Suppose \mathscr{U} is a \mathscr{A} -diagonalization filter, G is $\mathbb{M}(\mathscr{U})$ -generic and

$$x_G = \bigcup \{ s : \exists F(s,F) \in G \}.$$

Then:

- $\mathscr{A} \cup \{x_G\}$ is independent
- **2** If *y* ∈ ([ω]^ω\) ∩ *V* is such that

 $\mathscr{A} \cup \{y\}$

is independent, then $\mathscr{A} \cup \{x_G, y\}$ is not independent.

Image: A mage: A ma

5/64

Proof (1):

For $h \in FF(\mathscr{A})$ and $n \in \omega$, the sets

•
$$D_{h,n} := \{(s, F) \in \mathbb{M}(\mathscr{U}) : |s \cap \mathscr{A}^h| > n\}$$
, and

•
$$E_{h,n} := \{(s,F) : |(\min F \setminus \max s) \cap \mathscr{A}^h| > n\}$$

are dense, and so $\mathscr{A}^h \cap x_G$, and $\mathscr{A}^h \setminus x_G$ are infinite.

315

글 노 네 글

Proof (2):

Fix *y* such that $\mathscr{A} \cup \{y\}$ is independent.

- **1** If $y \in \mathcal{U}$, then $x_G \subseteq^* y$ and so $x_G \setminus y$ is finite.
- 2 If $y \notin \mathcal{U}$, then
 - either there is $F \in \mathscr{U}$ such that $F \cap y$ is finite, and so $x_G \cap y$ is finite,
 - or there are $F \in \mathscr{U}$, $h \in FF(\mathscr{A})$ s.t. $F \cap y \cap \mathscr{A}^h = \emptyset$, in which case $x_G \cap y \cap \mathscr{A}^h$ is finite.
- **③** Thus in either case $\mathscr{A} \cup \{x_G, y\}$ is not independent.

Corollary

Let κ be a regular uncountable cardinal. Then consistently

 $\aleph_1 < \mathfrak{i} = \kappa < \mathfrak{c}.$

Proof:

Let $\lambda > \kappa$ be the desired size of the continuum. The ordinal product $\gamma^* = \lambda \cdot \kappa$ contains an unbounded subset \mathscr{I} of cardinality κ . Consider a finite support iteration of length γ^* such that along \mathscr{I} we

- recursively generate a max. independent family of cardinality κ ,
- as well as a scale of length κ,

and along $\gamma^* \setminus \mathscr{I}$, we add Cohen reals. Then in the final generic extension

$$\aleph_1 < \mathfrak{d} = \kappa \leq \mathfrak{i} \leq \kappa < \mathfrak{c} = \lambda.$$

Theorem (F., Shelah, 2019)

Assume *GCH*. Let $\kappa_1 < \cdots < \kappa_n$ be regular uncountable cardinals. There is a ccc generic extension in which $\{\kappa_i\}_{i=1}^n \subseteq \mathfrak{sp}(\mathfrak{i})$.

Proof:

Consider a finite support iteration of length γ^* , where γ^* is the ordinal product $\kappa_n \cdot \kappa_{n-1} \cdots \kappa_1$ and elaborate on the previous idea.

Ultrapowers

Let κ a measurable and let $\mathscr{D} \subseteq \mathscr{P}(\kappa)$ be a κ -complete ultrafilter. Let \mathbb{P} be a p.o. Then $\mathbb{P}^{\kappa}/\mathscr{D}$ consists of all equivalence classes

$$[f] = \{g \in {}^{\kappa}\mathbb{P} : \{\alpha \in \kappa : f(\alpha) = g(\alpha)\} \in \mathscr{D}\}$$

and is supplied with the p.o. relation $[f] \leq [q]$ iff

$$\{\alpha \in \kappa : f(\alpha) \leq_{\mathbb{P}} g(\alpha)\} \in \mathscr{D}.$$

We can identify each $p \in \mathbb{P}$ with

$$[p]=[f_p],$$

where $f_{\rho}(\alpha) = \rho$ for each $\alpha \in \kappa$ and so we can assume $\mathbb{P} \subseteq \mathbb{P}^{\kappa} / \mathscr{D}$.

Winter School 2023

Lemma

• If \mathbb{P} is ccc, then $\mathbb{P} \triangleleft \mathbb{P}^{\kappa} / \mathscr{D}$.

2 If \mathbb{P} has the countable chain condition, then so does $\mathbb{P}^{\kappa}/\mathscr{D}$.

Lemma

If \mathscr{A} be a $\mathbb P\text{-name}$ for an independent family of cardinality $\geq \kappa.$ Then

 $\Vdash_{\mathbb{P}^{\kappa}/\mathscr{D}} \mathscr{A}$ is not maximal.

Winter School 2023

Theorem (F., Shelah, 2019)

Let $\kappa_1 < \kappa_2 < \cdots < \kappa_n$ be measurable witnessed by κ_i -complete ultrafilters $\mathscr{D}_i \subseteq \mathscr{P}(\kappa_i)$. There is a ccc generic extension in which

 $\{\kappa_i\}_{i=1}^n = \mathfrak{sp}(\mathfrak{i}).$

Proof/Idea:

Let $\gamma^* = \kappa_n \cdot \kappa_{n-1} \cdots \kappa_1$ and for each $j \in \{1, \cdots, k\}$ fix $\mathscr{I}_j \subseteq \gamma^*$ unbounded, of cardinality κ_j . Along each \mathscr{I}_j

- iteratively generate a max. ind. family of cardinality κ_i , and
- for unboundedly many $\alpha \in \mathscr{I}_j$ take the ultrapower $\mathbb{P}_{\alpha}^{\kappa_j}/\mathscr{D}_j$.

Winter School 2023

Proof:

More precisely, take $\mathscr{I}_j \subseteq \gamma^*$ for $j = 1, \cdots, n$ so that:

- \mathscr{I}_j consists of successor ordinals, $|\mathscr{I}_j| = \kappa_j$
- $\mathscr{I}_{i} \cap \mathsf{Even}$ and $\mathscr{I}_{i} \cap \mathsf{Odd}$ are unbounded in γ^{*} , and

•
$$\{\mathscr{I}_j\}_{j=1}^{j=n}$$
 are pairwise disjoint.

Define a finite support iteration of length γ^* as follows. Fix $\alpha < \gamma$ and suppose for each $k \in \{1, \dots, n\}$ a sequence of reals

$$\langle r_{\gamma}^k : \gamma \in \mathscr{I}_k \cap \mathsf{Even}, \gamma < \alpha \rangle$$

has been defined such that

• $\mathscr{A}^k_{\alpha} = \bigcup \{ r^k_{\gamma} : \gamma \in \mathscr{I}_k \cap \mathsf{Even} \cap \alpha \}$ is independent, and

• for each $\gamma \in \mathscr{I}_k \cap \mathsf{Even}$, r_{γ}^k diagonalizes \mathscr{A}_{γ}^k over $V^{\mathbb{P}_{\gamma}}$.

Proceed as follows.

- **1** If $\alpha \in \mathscr{I}_k \cap$ Even for some $k \in \{1, \dots, n\}$ then
 - choose an \mathscr{A}^k_{α} -diagonalizing filter \mathscr{U}_{α} in $V^{\mathbb{P}_{\alpha}}$,
 - take \mathbb{Q}_{α} to be a \mathbb{P}_{α} -name for $\mathbb{M}(\mathscr{U}_{\alpha})$, and
 - r_{α}^{k} to be the associated Mathias generic real.
- 2 If $\alpha \in \mathscr{I}_k \cap \text{Odd}$ for some $k \in \{1, \dots, n\}$, then
 - $\alpha = \beta + 1$ and so we take
 - $\dot{\mathbb{Q}}_{\alpha}$ to be a \mathbb{P}_{β} -name for the quotient of $\mathbb{P}_{\beta}^{\kappa_{k}}/\mathscr{D}_{k}$ and \mathbb{P}_{β} .
 - Thus, in particular $\mathbb{P}_{\alpha} = \mathbb{P}_{\beta} * \dot{\mathbb{Q}}_{\alpha}$.

③ If $\alpha \notin \bigcup_{k=1}^{n} \mathscr{I}_{k}$ take $\dot{\mathbb{Q}}_{\alpha}$ to be a \mathbb{P}_{α} -name for the Cohen poset.

Question:

- Can we have a precise evaluation of the spectrum, without the assumption of measurables?
- Can we adjoin via forcing a maximal independent family of cardinality \\$^ω_ω?

Lemma

Let \mathscr{A} be an independent family, \mathscr{U} a \mathscr{A} -diagonalization filter. Let n > 1 and for each $i \in n$ let $\mathscr{U}_i = \mathscr{U}$. Let

$$G = \prod_{i \in n} G_i$$
 be $\mathbb{P} = \prod_{i \in n} \mathbb{M}(\mathscr{U}_i)$ -generic filter

and for each $i \in n$ let $x_i = x_{G_i}$. Then in V[G]:

- $\mathscr{A} \cup \{x_i\}_{i \in n}$ is independent;
- 2 if $y \in (V \setminus \mathscr{A}) \cap [\omega]^{\omega}$ be such that

 $\mathscr{A} \cup \{y\}$ is independent,

(ロ) (同) (E) (E) (E) (E) (O)

Winter School 2023

16/64

then for each $i \in n$, the family $\mathscr{A} \cup \{y, x_i\}$ is not independent.

Proof

Item (2) holds, since each x_i is a diagonalization real.

To prove item (1):

• fix $h \in FF(\mathscr{A})$ and an arbitrary $j : n \rightarrow 2$;

• for each $n \in \omega$, we will show that the set

$$\mathcal{D}_{h,j,n} = \{ \langle (t_i, \mathcal{H}_i) \rangle_{i \in n} : \exists i^* > n(i^* \in \bigcap t_i^{j(i)} \cap \mathscr{A}^h) \}$$

is dense in \mathbb{P} , where $t_i^0 = t$, $t_i^1 = \min H_i \setminus t_i$. Thus, if $p \in D_{h,j,n}$ then

$$p \Vdash i^* \in \bigcap_{i \in n} x_i^{j(j)} \cap \mathscr{A}^h,$$

3.0 € E 4 E + 4 E

17/64

Winter School 2023

where $x_i^0 = x_i$ and $x_i^1 = \omega \setminus x_i$.

- Let $\bar{p} = \langle (s_i, F_i) \rangle_{i \in n} \in \mathbb{P}$. Let $I = \{i \in n : j(i) = 0\}$ and $J = n \setminus I$.
- Thus, for each $i \in I$, $s_i^{j(i)} = s_i$ and for each $i \in J$, $s_i^{j(i)} = \omega \setminus s_i$.
- Since 𝒞 is 𝔄-diagonalization,

$$\bigcap_{i\in I} F_i \cap \mathscr{A}^h$$

is infinite and so there is

$$i^* \in \bigcap_{i \in I} F_i \cap \mathscr{A}^h,$$

which is strictly bigger than *n* and the maximum of s_i for all $i \in n$.

ヨト イヨト ヨヨ わえの

18/64

Then:

- if $i \in I$, $(s_i \cup \{i^*\}, F_i \setminus (i^*+1)) \le (s_i, F_i)$ and forces $i^* \in x_i \cap \mathscr{A}^h$;
- ② if $i \in J$, $(s_i, F_i \setminus (i^* + 1)) \le (s_i, F_i)$ and forces $i^* \in (\omega \setminus x_i) \cap \mathscr{A}^h$.

Let $ar{q} = \langle q_i angle_{i \in n}$ where

 $q_i = (s_i \cup \{i^*\}, F_i \setminus (i^*+1))$ for $i \in I$, $q_i = (s_i, F_i \setminus (i^*+1))$ for $i \in J$.

Then $\bar{q} \leq \bar{p}$ and $\bar{q} \in D_{h,j,n}$. In particular,

$$\bar{q} \Vdash i^* \in \bigcap_{i \in n} x_i^{j(i)} \cap \mathscr{A}^h.$$

Winter School 2023

Then:

- if $i \in I$, $(s_i \cup \{i^*\}, F_i \setminus (i^*+1)) \le (s_i, F_i)$ and forces $i^* \in x_i \cap \mathscr{A}^h$;
- ② if $i \in J$, $(s_i, F_i \setminus (i^* + 1)) \le (s_i, F_i)$ and forces $i^* \in (\omega \setminus x_i) \cap \mathscr{A}^h$.

Let $ar{q} = \langle q_i angle_{i \in n}$ where

 $q_i = (s_i \cup \{i^*\}, F_i \setminus (i^*+1))$ for $i \in I$, $q_i = (s_i, F_i \setminus (i^*+1))$ for $i \in J$.

Then $\bar{q} \leq \bar{p}$ and $\bar{q} \in D_{h,j,n}$. In particular,

$$\bar{q} \Vdash i^* \in \bigcap_{i \in n} x_i^{j(i)} \cap \mathscr{A}^h.$$

Winter School 2023

Theorem (F., Shelah)

(GCH) Let θ be an uncountable cardinal. Then, there is a ccc poset, which adjoins a maximal independent family of cardinality θ .

Remark

In particular, there is a ccc poset adjoining a maximal independent family of cardinality \aleph_{ω} .

Definition

Fix $\sigma \leq \theta \leq \lambda$, where:

- σ is regular uncountable (the intended value of i),
- λ is of uncountable cofinality (the intended value of c).
- Let $S \subseteq \theta^{<\sigma}$ be a well-prunded θ -splitting tree of height σ .
- For each $\alpha < \sigma$, let S_{α} be the α -th splitting level of S.

22/64

Recursively define a finite support iteration

$$\mathbb{P}_{\mathcal{S}} = \langle \mathbb{P}_{lpha}, \dot{\mathbb{Q}}_{lpha} : lpha \leq \sigma, eta < \sigma
angle$$

of length σ such that for each α , in $V^{\mathbb{P}_{\alpha}}$ we have

$$\mathbb{Q}_{lpha} = \prod_{\eta \in \mathcal{S}_{lpha}} \mathbb{Q}_{\eta}$$

where \mathbb{Q}_{η} is Mathias forcing for an appropriate diagonalization filter.

∃ → < ∃</p>

Winter School 2023

More precisely:

- Let $\mathbb{P}_0 = \{\emptyset\}$, $\dot{\mathbb{Q}}_0$ be a \mathbb{P}_0 -name for the trivial poset.
- Let A₀ = Ø and let U₀ be an arbitrary ultrafilter extending the Fréchet filter. Thus U₀ is A₀-diagonalizing.
- For each $\eta \in S_1 = \operatorname{succ}_{\mathcal{S}}(\emptyset)$, let $\mathscr{U}_{\eta} = \mathscr{U}_0$ and let

$$\mathbb{Q}_1 = \prod_{\eta \in S_1} \mathbb{M}(\mathscr{U}_\eta)$$

with finite supports.

• In $V^{\mathbb{P}_1 * \hat{\mathbb{Q}}_1}$ for each $\eta \in S_1$ let a_η be the $\mathbb{M}(\mathscr{U}_\eta)$ -generic real.

Image: A mage: A ma

ABAABA BIS MOO

24/64

• Suppose $\alpha \geq 2$ and in $V^{\mathbb{P}_{\alpha}}$ for all $\eta \in S_{\alpha}$,

$$\mathscr{A}_{\eta} = \{a_{v} : v \in \mathsf{succ}_{\mathcal{S}}(\eta \restriction \xi), \xi < \alpha\}$$

is independent.

• For each $\eta \in S_{\alpha}$, let \mathscr{U}_{η} be a \mathscr{A}_{η} -diagonalization filter and let

$$\mathbb{Q}_lpha = \prod_{\eta \in \mathcal{S}_lpha} \mathbb{M}(\mathscr{U}_\eta)$$

with finite supports.

• In $V^{\mathbb{P}_{\alpha}*\dot{\mathbb{Q}}_{\alpha}}$ for each $\eta \in S_{\alpha}$ let a_{η} be the $\mathbb{M}(\mathscr{U}_{\eta})$ -generic real.

글 이 이 글 이 글 날

25/64

Lemma

In $V^{\mathbb{P}_{\mathcal{S}}}$ for each branch $\eta \in [\mathcal{S}]$ the family

$$\mathscr{A}_\eta = \{ a_{v} : v \in \mathsf{succ}(\eta \restriction \xi), \xi < lpha \}$$

is a maximal independent family of cardinality θ .

Proof:

Maximality follows from the diagonalization properties and the fact that the length of the iteration is of uncountable cofinality.

A B > A B >

Winter School 2023

Corollary (F., Shelah)

There is a ccc forcing notion adjoining a maximal independent family \mathscr{A} such that

$$|\mathscr{A}| = \aleph_{\omega}.$$

Proof:

Use an \aleph_{ω} -splitting tree of height ω_1 .

< A >

医下子 医

Winter School 2023

Theorem (F., Shelah, 2022)

Assume GCH.Let σ be a regular uncountable cardinal, λ a cardinal of uncountable cofinality such that $\sigma \leq \lambda$. Let

$$\Theta_1 \subseteq [\sigma, \lambda]$$

be such that

$$\sigma = \min \Theta_1, \max \Theta_1 = \lambda.$$

Then there is a ccc generic extension in which

 $\Theta_1 \subseteq \mathfrak{sp}(\mathfrak{i}).$

Vera Fischer (University of Vienna)

28/64

Proof:

Let $\mathbf{m} = \langle S_{\theta} : \theta \in \Theta_1 \rangle$ be a sequence of pairwise disjoint trees such that for each $\theta \in \Theta_1$, S_{θ} is a θ -splitting tree of height σ .

Let $\alpha < \sigma$.

• For each $\theta \in \Theta_1$ let $S_{\theta,\alpha}$ denote the α -th splitting level of S_{θ} and

• Let
$$S_{\mathbf{m},\alpha} = \bigcup_{\theta \in \Theta_1} S_{\theta,\alpha}$$
.

Winter School 2023

We will define a finite support iteration

$$\mathbb{P}_{\mathsf{m}} = \langle \mathbb{P}_{lpha}, \dot{\mathbb{Q}}_{eta} : lpha \leq \sigma, eta < \sigma
angle$$

where for each $\beta < \sigma$ in $V^{\mathbb{P}_{\beta}}$,

$$\mathbb{Q}_{oldsymbol{eta}} = \prod_{oldsymbol{\eta} \in \mathcal{S}_{oldsymbol{m},oldsymbol{eta}}} \mathbb{Q}_{oldsymbol{\eta}}$$

with finite supports and \mathbb{Q}_{η} is Mathias forcing for an appropriate diagonalization filter adjoining a diagonalization real a_{η} .

・同・・モ・・ 日・ 日日

Winter School 2023

More precisely:

- Let $\mathbb{P}_0 = \{\emptyset\}$, $\dot{\mathbb{Q}}_0$ be a \mathbb{P}_0 -name for the trivial poset.
- Let 𝒜₀ = Ø and let 𝒜₀ be an arbitrary ultrafilter extending the Fréchet filter. Thus 𝒜₀ is 𝒜₀-diagonalizing.
- For each $\eta \in S_{\mathbf{m},1}$ let $\mathscr{U}_{\eta} = \mathscr{U}_{0}$ and let

$$\mathbb{Q}_1 = \prod_{\eta \in \mathcal{S}_{\mathbf{m},1}} \mathbb{M}(\mathscr{U}_\eta)$$

with finite supports.

• In $V^{\mathbb{P}_1 * \hat{\mathbb{Q}}_1}$ for each $\eta \in S_{\mathbf{m},1}$ let a_η be the $\mathbb{M}(\mathscr{U}_\eta)$ -generic real.

A B N A B N B B NOO

31/64

Suppose $\alpha \geq 2$, $\theta \in \Theta_1$, $\eta \in S_{\theta, \alpha}$ and

 $\Vdash_{\mathbb{P}_{\alpha}} \mathscr{A}_{\eta} = \{a_{\nu} : \nu \in \operatorname{succ}_{\mathcal{S}_{\theta}}(\eta \restriction \xi), \xi < \alpha\} \text{ is independent.}$

Then in $V^{\mathbb{P}_{\alpha}}$, take \mathscr{U}_{η} to be a \mathscr{A}_{η} -diagonalization filter and

 $\mathbb{Q}_{\eta} = \mathbb{M}(\mathscr{U}_{\eta}).$

With this the definition of the forcing notion is complete.

Winter School 2023

Lemma

In $V^{\mathbb{P}_m}$ for each branch $\eta \in [S_{\theta}] = S_{\theta,\sigma}$, $\theta \in \Theta_1$ the family

$$\mathscr{A}_\eta = \{a_v : v \in \mathsf{succ}_{\mathcal{S}_\theta}(\eta \restriction \xi), \xi < \sigma\}$$

is maximal independent of cardinality θ . Thus,

$$V^{\mathbb{P}_{\mathsf{m}}} \vDash \Theta_1 \subseteq \mathfrak{sp}(\mathfrak{i}).$$

Proof: Diagonalization.

Image: A mage: A ma

A = A = A = A = A = A

33/64

Theorem (F., Shelah)

• For any finite set $C \subseteq \{\aleph_n\}_{n \in \omega \setminus 1}$, consistently

sp(i) = C.

For any infinite C ⊆ { ℵ_n}_{n∈ω\1} and λ > ℵ_ω of uncountable cofinality, consistently

$$\operatorname{sp}(\mathfrak{i}) = \mathcal{C} \cup \{ \aleph_{\omega}, \mathfrak{c} = \lambda \}.$$

ヨトィヨト

Winter School 2023

3 2

Comment

Excluding values is an isomorphism of names argument, essentially a counting argument, relying on specific properties of the forcing construction.

-

→ 3 → 4 3

Question:

- Is it consistent that $i = \aleph_{\omega}$?
- Is sp(i) closed with respect to singular limits of countable cofinality?

-

... and once again Maximality

 $\forall X \in [\omega]^{\omega} \setminus \mathscr{A} \exists h \in \mathsf{FF}(\mathscr{A}) \text{ such that } \mathscr{A}^h \cap X \text{ or } \mathscr{A}^h \setminus X \text{ is finite.}$

Dense maximality

Let \mathscr{A} be an independent family. Then \mathscr{A} is said to be densely maximal if for each $X \in [\omega]^{\omega} \setminus \mathscr{A}$ and every $h \in FF(\mathscr{A})$ there is $h' \in FF(\mathscr{A})$ such that $h' \supseteq h$ and $\mathscr{A}^{h'} \cap X$ or $\mathscr{A}^{h'} \setminus X$ is finite.

Remark

Thus, \mathscr{A} is densely maximal if for each $X \in [\omega]^{\omega} \setminus \mathscr{A}$ the set of $h \in FF(\mathscr{A})$ such that X does not split \mathscr{A} is dense in $FF(\mathscr{A})$.

Winter School 2023

Density filter

Let \mathscr{A} be an independent family. Then

 $\mathsf{fil}(\mathscr{A}) = \{ \mathsf{Y} \in [\omega]^{\omega} : \forall h \in \mathsf{FF}(\mathscr{A}) \exists h' \in \mathsf{FF}(\mathscr{A}) \text{ s.t. } h' \supseteq h \text{ and } \mathscr{A}^{h'} \subseteq \mathsf{Y} \}$

is referred to as the density filter of \mathscr{A} .

Lemma

A family $\mathscr{A} \subseteq [\omega]^{\omega}$ is densely maximal if and only if

$$\boldsymbol{P}(\boldsymbol{\omega}) = \operatorname{fil}(\mathscr{A}) \cup \langle \boldsymbol{\omega} \backslash \mathscr{A}^{\boldsymbol{g}} \mid \boldsymbol{g} \in \operatorname{FF}(\mathscr{A}) \rangle_{\operatorname{dn}}.$$

38/64

Definition: Ramsey filter

A *p*-filter \mathscr{F} is said to be Ramsey if for every partition $\mathscr{E} = \{E_n\}_{n \in \omega}$ of ω into finite sets, there is a set *C* in \mathscr{F} such that $|C \cap E_n| \leq 1$ for each *n*.

Definition: Selective independence

A densely maximal independent family \mathscr{A} such that $fil(\mathscr{A})$ is Ramsey is said to be selective.

Winter School 2023

Theorem (Shelah)

- Selective independent families exists under CH.
- They are indestructible by a countable support iterations and countable support products of Sacks forcing.

Corollary

It is consistent that i < c.

Countable approximations

Definition (F., Montoya, 2019)

Let \mathbb{P} be the partial order

- of all pairs (\mathscr{A}, A) where \mathscr{A} is a countable independent family and $A \in [\omega]^{\omega}$ such that for all $h \in FF(\mathscr{A})$ the set $\mathscr{A}^h \cap A$ is infinite;
- with extension relation defined as follows

 $(\mathscr{B}, B) \leq (\mathscr{A}, A)$ iff $\mathscr{B} \supseteq \mathscr{A}$ and $B \subseteq^* A$.

ABAABA BIS MOO

41/64

Lemma (CH)

 \mathbb{P} is countably closed and \aleph_2 -cc.

Proof

- Let {(𝔄_i, 𝔄_i)}_{i∈ω} be a decreasing chain in ℙ. Then 𝔄 = ⋃_{i∈ω} 𝔄_i is a countable independent family.
- Inductively one can construct a pseudointersection A of {A_i}_{i∈ω} such that A∩𝔄^h is unbounded for each h∈ FF(𝔄).
- Note that there are only ℵ₁ options for a second coordinate and only ℵ₁ options for a first coordinate.

4 3 4 4 5 4 3 1 4 V

42/64

Lemma (CH)

Let *G* is \mathbb{P} -generic. Then $\mathscr{A}_G = \bigcup \{ \mathscr{A} : \exists A(\mathscr{A}, A) \in G \}$ is a selective independent family.

Remark

- \mathscr{A}_G is densely maximal;
- $\mathscr{F}_{G} = \{A : \exists \mathscr{A}(\mathscr{A}, A) \in G\}$ is a Ramsey set;
- fil(\mathscr{A}_G) is generated by \mathscr{F}_G and so
- fil(𝔄) is Ramsey filter.

43/64

Indestructibility

Let \mathscr{A} be a selective independent family. Then \mathscr{A} remains selective after forcing with the countable support iteration of any of:

- (Shelah, 1989) Shelah's poset for diagonalizing a maximal ideal,
- (Cruz-Chapital, F., Guzman, Supina, 2020) Miller partition forcing,
- (J. Bergfalk, F., C. Switzer, 2021) Coding with perfect trees,
- (Switzer, 2022) h-perfect trees,
- (F., Switzer, 2022) Miller lite forcing,

leading in particular to the consistency of each of the following

 $\mathfrak{i} < \mathfrak{u}, \mathfrak{u} = \mathfrak{a} = \mathfrak{i} < \mathfrak{a}_T, \mathfrak{i} = \mathfrak{u} < \operatorname{cof}(\mathscr{N}) = \operatorname{non}(\mathscr{N}), \mathfrak{i} = \mathfrak{hm} < \mathfrak{l}_{n,\omega}.$

Definition

A poset \mathbb{P} is Cohen preserving if every every new dense open subset of $2^{<\omega}$ (or, equivalently $\omega^{<\omega}$) contains an old dense subset.

Remark

More formally, \mathbb{P} is Cohen preserving if for all $p \in \mathbb{P}$ and all \mathbb{P} -names D so that

$$p \Vdash ``\dot{D} \subseteq 2^{<\omega}$$
 is dense open"

there is a dense $E \subseteq 2^{<\omega}$ in the ground model, $q \leq_{\mathbb{P}} p$ so that

$$q \Vdash \check{E} \subseteq \dot{D}.$$

 >
 ≥
 >
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 ≥
 >
 ≥
 ≥
 ≥

Theorem (Shelah)

If δ is an ordinal and $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} \mid \alpha \leq \delta, \beta < \delta \rangle$ is a countable support iteration such that for each $\alpha < \delta$

 \Vdash_{α} " $\dot{\mathbb{Q}}_{\alpha}$ is proper and Cohen preserving"

then \mathbb{P}_{δ} is proper and Cohen preserving.

Theorem (F., Switzer)

If \mathbb{P} is Cohen preserving and proper, then \mathbb{P} is ω^{ω} -bounding.

Winter School 2023

Theorem (F., Switzer 2022)

Let δ be an ordinal. Let \mathscr{A} be a selective independent family and let $\langle \mathbb{P}_{\alpha} \dot{\mathbb{Q}}_{\alpha} \mid \alpha < \delta \rangle$ be a countable support iteration of proper forcing notions so that for every $\alpha < \delta$,

 \Vdash_{α} " $\hat{\mathbb{Q}}_{\alpha}$ is Cohen preserving".

If for every $\alpha < \delta$,

 \Vdash_{α} " $\dot{\mathbb{Q}}_{\alpha}$ preserves the dense maximality of \mathscr{A} "

then \mathbb{P}_{δ} preserves the selectivity of \mathscr{A} .

4 3 6 4 3 6 3 1 4 O

47/64

Definition: Miller lite forcing

Miller Lite forcing, denoted ML, consists of

- finitely branching trees $T \subseteq \omega^{<\omega}$ so that
- for every s ∈ T and n < ω there is a t ∈ T with t ⊇ s which has at least n many immediate successors.

The order is inclusion.

Theorem

In the Miller lite model $i = \mathfrak{hm} < \mathfrak{l}_{n,\omega}$.

Winter School 2023

Genericity

Theorem (F., Montoya 2019; F., Switzer 2023)

Let \mathscr{A} be an independent family. Then \mathscr{A} is densely maximal iff fil(\mathscr{A}) is the unique diagonalization filter.

Proof

- (F., Montoya) If A is densely maximal then fil(A) is the unique diagonalization filter.
- (F., Switzer) If fil(𝒜) is the unique diagonalization filter, then 𝒜 is densely maximal.

Genericity

Theorem (F., Switzer, 2023)

The generic maximal independent family added by an iteration of Mathias forcing relativized to diagonalization filters is selective.

《曰》《問》《曰》《曰》 (曰)

Winter School 2023

Genericity

Theorem (F., Switzer, 2023)

(GCH) Let $\kappa < \lambda$ be regular uncountable. It is consistent that

$$\mathfrak{i} = \kappa < \mathfrak{c} = \lambda$$

holds with a selective witness to i.

The above holds, in fact, for $\kappa < \lambda$ with $cf(\kappa) > \omega$ and $cf(\lambda) > \kappa$.

Winter School 2023

Definition

Let κ be a regular uncountable cardinal, $\mathscr{A} \subseteq [\kappa]^{\kappa}$.

- Let FF_{<ω,κ}(𝒜) be the set of all finite partial functions with domain included in 𝒜 and range the set {0,1}.
- For each $h \in FF_{<\omega,\kappa}(\mathscr{A})$ let $\mathscr{A}^h = \bigcap \{A^{h(A)} : A \in \operatorname{dom}(h)\}$ where $A^{h(A)} = A$ if h(A) = 0 and $A^{h(A)} = \kappa \setminus A$ if h(A) = 1.

Definition

- A family 𝔄 ⊆ [κ]^κ is said to be κ-independent if for each h ∈ FF_{<ω,κ}(𝔄), 𝔄^h is unbounded.
- 2 It is maximal κ -independent family if it is κ -independent, maximal under inclusion.
- **③** The least size of a maximal κ -independent family is denoted $\mathfrak{i}(\kappa)$.

Lemma (F., Montoya)

Let κ be a regular infinite cardinal.

- **1** There is a maximal κ -independent family of cardinality 2^{κ} .
- 2 $\kappa^+ \leq \mathfrak{i}(\kappa) \leq 2^{\kappa}$
- $(\kappa) \leq \mathfrak{i}(\kappa)$

Corollary

If κ is regular uncountable, then if $i(\kappa) = \kappa^+$ also $\mathfrak{a}(\kappa) = \kappa^+$.

Winter School 2023

Definition: κ -dense maximality

A κ -independent family \mathscr{A} is densely maximal if for every $X \in [\kappa]^{\kappa} \setminus \mathscr{A}$ and every $h \in FF_{<\omega,\kappa}(\mathscr{A})$ there is $h' \in FF_{<\omega,\kappa}(\mathscr{A})$ such that $h' \supseteq h$ and

either
$$\mathscr{A}^{h'} \cap X = \emptyset$$
 or $\mathscr{A}^{h'} \cap (\kappa \setminus X) = \emptyset$.

Question

Are there κ -densely maximal independent families?

55/64

Definition (F., Montoya)

Let κ be a measurable cardinal and \mathscr{U} a normal measure on κ . Let $\mathbb{P}_{\mathscr{U}}$ be the poset of all pairs (\mathscr{A}, A) where

- \mathscr{A} is a κ -independent family of cardinality κ ,
- $A \in \mathscr{U}$ is such that $\forall h \in FF_{<\omega,\kappa}(\mathscr{A}), \ \mathscr{A}^h \cap A$ is unbounded.

The extension relation is defined as follows: $(\mathscr{A}_1, A_1) \leq (\mathscr{A}_0, A_0)$ iff $\mathscr{A}_1 \supseteq \mathscr{A}_0$ and $A_1 \subseteq^* A_0$.

Lemma

Assume $2^{\kappa} = \kappa^+$. Then $\mathbb{P}_{\mathscr{U}}$ is κ^+ -closed and κ^{++} -cc.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ やくや

Proof

- Let $\{(\mathscr{A}_i, A_i)\}_{i \in \kappa}$ be a decreasing sequence in $\mathbb{P}_{\mathscr{U}}$.
- We can assume that {A_i}_{i∈κ} is strictly decreasing, i.e for each i > j we have A_j ⊆ A_i.
- Then 𝔄 = ⋃_{i∈κ}𝔄_i is an independent family of cardinality κ and the diagonal intersection A' = Δ_{i∈κ}A_i ∈ 𝔄.
- Recursively we can define a set A["] which is a pseudo-intersection of {A_i}_{i∈κ} and which meets every A^h on an unbounded set.
- Then $A = A' \cup A''$ is an element of \mathscr{U} and so
- $(\mathscr{A}, A) \in \mathbb{P}_{\mathscr{U}}$ is a common extension of $\{(\mathscr{A}_i, A_i)\}_{i \in \kappa}$.

$$\mathbb{P}_{\mathscr{U}}$$
 is κ^{++} -cc, because $|\mathbb{P}_{\mathscr{U}}|=\kappa^+$

Winter School 2023

Lemma (F., Montoya)

Assume $2^{\kappa} = \kappa^+$, κ is measurable and \mathscr{U} is a normal measure on κ . Let *G* be a $\mathbb{P}_{\mathscr{U}}$ -generic filter. The

$$\mathscr{A}_{G} = \bigcup \{ \mathscr{A} : \exists A \in \mathscr{U} \text{ with } (\mathscr{A}, A) \in G \}$$

is a densely maximal κ -independent family.

Winter School 2023

Remark: Density filter

Let fil_{ $<\omega,\kappa}(\mathscr{A}_G)$ be the filter of all $X \in \mathscr{U}$ such that $\forall h \in FF_{<\omega,\kappa}(\mathscr{A}_G)$ there is $h' \in FF_{<\omega,\kappa}(\mathscr{A}_G)$ such that $h' \supseteq h$ and $\mathscr{A}^{h'} \subseteq X$. Then:

- Every $\mathscr{H} \in [\operatorname{fil}_{<\omega,\kappa}(\mathscr{A}_G)]^{\leq\kappa}$ has a pseudo-intersection in $\operatorname{fil}_{<\omega,\kappa}(\mathscr{A}_G)$.
- If $f \in V \cap {}^{\kappa}\kappa$ is strictly increasing, then $\exists a \in \operatorname{fil}_{<\omega,\kappa}(\mathscr{A}_G)$ such that

$$f(a(i)) < a(i+1)$$

for all $i \in \kappa$, where $\{a(i)\}_{i \in \kappa}$ is the increasing enumeration of a.

4 3 4 4 3 4 3 1 4 9 0 0

60/64

Theorem (F., Montoya)

(GCH) Let κ be a measurable cardinal and let \mathscr{U} be a normal measure on κ . The generic maximal independent family \mathscr{A}_G adjoined by $\mathbb{P}_{\mathscr{U}}$ remains maximal after the κ -support product $\mathbb{S}^{\lambda}_{\kappa}$.

Winter School 2023

Corollary

Let κ be a measurable cardinal. There is a cardinal preserving generic extension in which

$$\mathfrak{a}(\kappa) = \mathfrak{d}(\kappa) = \mathfrak{r}(\kappa) = \mathfrak{i}(\kappa) = \kappa^+ < 2^{\kappa}.$$

Winter School 2023

Thank you for your attention!

(a)

Winter School 2023

三日 のへの

Definition (A. Miller 1980, partition forcing)

Let $\mathscr{C} = \{C_{\alpha}\}_{\alpha \in \omega_1}$ be an uncountable partition of 2^{ω} into closed sets:

- Q(𝒞) is the set of perfect trees p ⊆ 2^{<ω} such that each C_α is nowhere dense in [p].
- The order $\mathbb{Q}(\mathscr{C})$ is inclusion.

Remark

A set $A \subseteq [p]$ for some perfect subtree p of $2^{<\omega}$ is nowhere dense in [p] if for every $s \in p$ there is $t \in p$ extending s and

$$\{f\in[p]:t\subseteq f\}\cap A=\emptyset.$$

A D N A R N A R N A R N R R N

Winter School 2023