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Spectrum of Independence Small Spectrum

Definition: Spectrum of Independence

sp(i) = {|A | : A is a max. ind. family}

Theorem (F., Shelah)
Assume CH. Let λ be a regular uncountable cardinal. Then

V Sλ � sp(i) = {ℵ1,λ}.
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Spectrum of Independence Small Spectrum

No intermediate cardinalities

Lemma
In the above extension there are no m.i.f. of size κ, for ℵ1 < κ < λ .
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Diagonalization filters

A -diagonalization filters
Let A be an independent family. A filter U is said to be an
A -diagonalization filter if

∀F ∈U ∀h ∈ FF(A )(|F ∩A h|= ω)

and is maximal with respect to the above property.
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Diagonalization filters

Lemma
Suppose U is a A -diagonalization filter, G is M(U )-generic and

xG =
⋃
{s : ∃F (s,F ) ∈G}.

Then:
1 A ∪{xG} is independent
2 If y ∈ ([ω]ω\A )∩V is such that

A ∪{y}

is independent, then A ∪{xG,y} is not independent.
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Diagonalization filters

Proof (1):

For h ∈ FF(A ) and n ∈ ω, the sets

Dh,n := {(s,F ) ∈M(U ) : |s∩A h|> n}, and

Eh,n := {(s,F ) : |(minF\maxs)∩A h|> n}
are dense, and so A h∩xG, and A h\xG are infinite.
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Diagonalization filters

Proof (2):
Fix y such that A ∪{y} is independent.

1 If y ∈U , then xG ⊆∗ y and so xG\y is finite.

2 If y /∈U , then

either there is F ∈U such that F ∩y is finite, and so xG ∩y is finite,

or there are F ∈U , h ∈ FF(A ) s.t. F ∩y ∩A h = /0, in which case
xG ∩y ∩A h is finite.

3 Thus in either case A ∪{xG,y} is not independent.
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Diagonalization filters

Corollary
Let κ be a regular uncountable cardinal. Then consistently

ℵ1 < i = κ < c.

Proof:
Let λ > κ be the desired size of the continuum. The ordinal product γ∗ = λ ·κ
contains an unbounded subset I of cardinality κ. Consider a finite support
iteration of length γ∗ such that along I we

recursively generate a max. independent family of cardinality κ,

as well as a scale of length κ,

and along γ∗\I , we add Cohen reals. Then in the final generic extension

ℵ1 < d = κ ≤ i≤ κ < c = λ .
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Diagonalization filters

Theorem (F., Shelah, 2019)
Assume GCH. Let κ1 < · · ·< κn be regular uncountable cardinals. There is a
ccc generic extension in which {κi}ni=1 ⊆ sp(i).

Proof:
Consider a finite support iteration of length γ∗, where γ∗ is the ordinal product
κn ·κn−1 · · ·κ1 and elaborate on the previous idea.
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Taking Ultrapowers

Ultrapowers
Let κ a measurable and let D ⊆P(κ) be a κ-complete ultrafilter. Let P be a
p.o. Then Pκ/D consists of all equivalence classes

[f ] = {g ∈ κP : {α ∈ κ : f (α) = g(α)} ∈D}

and is supplied with the p.o. relation [f ]≤ [q] iff

{α ∈ κ : f (α)≤P g(α)} ∈D .

We can identify each p ∈ P with

[p] = [fp],

where fp(α) = p for each α ∈ κ and so we can assume P⊆ Pκ/D .
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Taking Ultrapowers

Lemma

1 If P is ccc, then PlPκ/D .

2 If P has the countable chain condition, then so does Pκ/D .

Lemma
If A be a P-name for an independent family of cardinality ≥ κ. Then

Pκ/D A is not maximal.

Vera Fischer (University of Vienna) CSR Winter School 2023 11 / 62



Taking Ultrapowers

Theorem (F., Shelah, 2019)
Let κ1 < κ2 < · · ·< κn be measurable witnessed by κi -complete ultrafilters
Di ⊆P(κi ). There is a ccc generic extension in which

{κi}ni=1 = sp(i).

Proof/Idea:
Let γ∗ = κn ·κn−1 · · ·κ1 and for each j ∈ {1, · · · ,k} fix Ij ⊆ γ∗ unbounded, of

cardinality κj . Along each Ij

iteratively generate a max. ind. family of cardinality κj , and

for unboundedly many α ∈Ij take the ultrapower Pκj
α /Dj .
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Taking Ultrapowers

Proof:
More precisely, take Ij ⊆ γ∗ for j = 1, · · · ,n so that:

Ij consists of successor ordinals, |Ij |= κj

Ij ∩Even and Ij ∩Odd are unbounded in γ∗, and

{Ij}
j=n
j=1 are pairwise disjoint.

Define a finite support iteration of length γ∗ as follows. Fix α < γ and suppose
for each k ∈ {1, · · · ,n} a sequence of reals

〈r k
γ : γ ∈Ik ∩Even,γ < α〉

has been defined such that

A k
α =

⋃
{r k

γ : γ ∈Ik ∩Even∩α} is independent, and

for each γ ∈Ik ∩Even, r k
γ diagonalizes A k

γ over VPγ .
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Taking Ultrapowers

Proof (cnt’d):
Proceed as follows.

1 If α ∈Ik ∩Even for some k ∈ {1, · · · ,n} then

choose an A k
α -diagonalizing filter Uα in VPα ,

take Q̇α to be a Pα -name for M(Uα ), and
r k
α to be the associated Mathias generic real.

2 If α ∈Ik ∩Odd for some k ∈ {1, · · · ,n}, then

α = β + 1 and so we take
Q̇α to be a Pβ -name for the quotient of Pκk

β
/Dk and Pβ .

Thus, in particular Pα = Pβ ∗ Q̇α .

3 If α /∈
⋃n

k=1 Ik take Q̇α to be a Pα -name for the Cohen poset.
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Taking Ultrapowers

Question:
Can we have a precise evaluation of the spectrum, without the
assumption of measurables?

Can we adjoin via forcing a maximal independent family of
cardinality ℵω?
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Large Spectrum

Lemma
Let A be an independent family, U a A -diagonalization filter. Let n > 1 and
for each i ∈ n let Ui = U . Let

G = ∏
i∈n

Gi be P = ∏
i∈n

M(Ui )-generic filter

and for each i ∈ n let xi = xGi
. Then in V [G]:

1 A ∪{xi}i∈n is independent;

2 if y ∈ (V\A )∩ [ω]ω be such that

A ∪{y} is independent,

then for each i ∈ n, the family A ∪{y ,xi} is not independent.
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Large Spectrum

Proof
Item (2) holds, since each xi is a diagonalization real.

To prove item (1):

fix h ∈ FF(A ) and an arbitrary j : n→ 2;

for each n ∈ ω, we will show that the set

Dh,j ,n = {〈(ti ,Hi )〉i∈n : ∃i∗ > n(i∗ ∈
⋂

t j(i)
i ∩A h)}

is dense in P, where t0
i = t , t1

i = minHi\ti . Thus, if p ∈ Dh,j ,n then

p  i∗ ∈
⋂
i∈n

x j(j)
i ∩A h,

where x0
i = xi and x1

i = ω\xi .
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Large Spectrum

Proof cnt’d:

Let p̄ = 〈(si ,Fi )〉i∈n ∈ P. Let I = {i ∈ n : j(i) = 0} and J = n\I.

Thus, for each i ∈ I, sj(i)
i = si and for each i ∈ J, sj(i)

i = ω\si .

Since U is A -diagonalization, ⋂
i∈I

Fi ∩A h

is infinite and so there is
i∗ ∈

⋂
i∈I

Fi ∩A h,

which is strictly bigger than n and the maximum of si for all i ∈ n.
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Large Spectrum

Proof cnt’d:
Then:

1 if i ∈ I, (si ∪{i∗},Fi\(i∗+ 1))≤ (si ,Fi ) and forces i∗ ∈ xi ∩A h;

2 if i ∈ J, (si ,Fi\(i∗+ 1))≤ (si ,Fi ) and forces i∗ ∈ (ω\xi )∩A h.

Let q̄ = 〈qi〉i∈n where

qi = (si ∪{i∗},Fi\(i∗+ 1)) for i ∈ I, qi = (si ,Fi\(i∗+ 1)) for i ∈ J.

Then q̄ ≤ p̄ and q̄ ∈ Dh,j ,n. In particular,

q̄  i∗ ∈
⋂
i∈n

x j(i)
i ∩A h.
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Large Spectrum

Proof cnt’d:
Then:

1 if i ∈ I, (si ∪{i∗},Fi\(i∗+ 1))≤ (si ,Fi ) and forces i∗ ∈ xi ∩A h;

2 if i ∈ J, (si ,Fi\(i∗+ 1))≤ (si ,Fi ) and forces i∗ ∈ (ω\xi )∩A h.

Let q̄ = 〈qi〉i∈n where

qi = (si ∪{i∗},Fi\(i∗+ 1)) for i ∈ I, qi = (si ,Fi\(i∗+ 1)) for i ∈ J.

Then q̄ ≤ p̄ and q̄ ∈ Dh,j ,n. In particular,

q̄  i∗ ∈
⋂
i∈n

x j(i)
i ∩A h.
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Large Spectrum

Theorem (F., Shelah)
(GCH) Let θ be an uncountable cardinal. Then, there is a ccc poset,
which adjoins a maximal independent family of cardinality θ .

Remark
In particular, there is a ccc poset adjoining a maximal independent
family of cardinality ℵω .

Vera Fischer (University of Vienna) CSR Winter School 2023 21 / 62



Large Spectrum

Definition
Fix σ ≤ θ ≤ λ , where:

σ is regular uncountable (the intended value of i),

λ is of uncountable cofinality (the intended value of c).

Let S ⊆ θ<σ be a well-prunded θ -splitting tree of height σ .

For each α < σ , let Sα be the α-th splitting level of S.
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Large Spectrum

Recursively define a finite support iteration

PS = 〈Pα ,Q̇α : α ≤ σ ,β < σ〉

of length σ such that for each α, in VPα we have

Qα = ∏
η∈Sα

Qη

where Qη is Mathias forcing for an appropriate diagonalization filter.
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Large Spectrum

More precisely:

Let P0 = { /0}, Q̇0 be a P0-name for the trivial poset.

Let A0 = /0 and let U0 be an arbitrary ultrafilter extending the Fréchet
filter. Thus U0 is A0-diagonalizing.

For each η ∈ S1 = succS( /0), let Uη = U0 and let

Q1 = ∏
η∈S1

M(Uη )

with finite supports.

In VP1∗Q̇1 for each η ∈ S1 let aη be the M(Uη )-generic real.
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Large Spectrum

Suppose α ≥ 2 and in VPα for all η ∈ Sα ,

Aη = {aν : ν ∈ succS(η � ξ ),ξ < α}

is independent.

For each η ∈ Sα , let Uη be a Aη -diagonalization filter and let

Qα = ∏
η∈Sα

M(Uη )

with finite supports.

In VPα∗Q̇α for each η ∈ Sα let aη be the M(Uη )-generic real.
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Large Spectrum

Lemma
In VPS for each branch η ∈ [S] the family

Aη = {aν : ν ∈ succ(η � ξ ),ξ < α}

is a maximal independent family of cardinality θ .

Proof:
Maximality follows from the diagonalization properties and the fact that the
length of the iteration is of uncountable cofinality.
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Large Spectrum

Corollary (F., Shelah)
There is a ccc forcing notion adjoining a maximal independent family A such
that

|A |= ℵω .

Proof:
Use an ℵω -splitting tree of height ω1.
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Large Spectrum

Theorem (F., Shelah, 2022)
Assume GCH.Let σ be a regular uncountable cardinal, λ a cardinal of
uncountable cofinality such that σ ≤ λ . Let

Θ1 ⊆ [σ ,λ ]

be such that
σ = minΘ1,maxΘ1 = λ .

Then there is a ccc generic extension in which

Θ1 ⊆ sp(i).
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Large Spectrum

Proof:

Let m = 〈Sθ : θ ∈Θ1〉 be a sequence of pairwise disjoint trees such that for
each θ ∈Θ1, Sθ is a θ -splitting tree of height σ .

Let α < σ .

For each θ ∈Θ1 let Sθ ,α denote the α-th splitting level of Sθ and

Let Sm,α =
⋃

θ∈Θ1
Sθ ,α .
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Large Spectrum

Proof cnt’d:

We will define a finite support iteration

Pm = 〈Pα ,Q̇β : α ≤ σ ,β < σ〉

where for each β < σ in VPβ ,

Qβ = ∏
η∈Sm,β

Qη

with finite supports and Qη is Mathias forcing for an appropriate
diagonalization filter adjoining a diagonalization real aη .

Vera Fischer (University of Vienna) CSR Winter School 2023 30 / 62



Large Spectrum

More precisely:

Let P0 = { /0}, Q̇0 be a P0-name for the trivial poset.

Let A0 = /0 and let U0 be an arbitrary ultrafilter extending the Fréchet
filter. Thus U0 is A0-diagonalizing.

For each η ∈ Sm,1 let Uη = U0 and let

Q1 = ∏
η∈Sm,1

M(Uη )

with finite supports.

In VP1∗Q̇1 for each η ∈ Sm,1 let aη be the M(Uη )-generic real.
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Large Spectrum

Suppose α ≥ 2, θ ∈Θ1, η ∈ Sθ ,α and

Pα
Aη = {aν : ν ∈ succSθ

(η � ξ ),ξ < α} is independent.

Then in VPα , take Uη to be a Aη -diagonalization filter and

Qη = M(Uη ).

With this the definition of the forcing notion is complete.
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Large Spectrum

Lemma

In VPm for each branch η ∈ [Sθ ] = Sθ ,σ , θ ∈Θ1 the family

Aη = {aν : ν ∈ succSθ
(η � ξ ),ξ < σ}

is maximal independent of cardinality θ . Thus,

VPm � Θ1 ⊆ sp(i).

Proof:
Diagonalization.
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Large Spectrum

Theorem (F., Shelah)

For any finite set C ⊆ {ℵn}n∈ω\1, consistently

sp(i) = C.

For any infinite C ⊆ {ℵn}n∈ω\1 and λ > ℵω of uncountable cofinality,
consistently

sp(i) = C∪{ℵω ,c = λ}.
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Large Spectrum

Comment
Excluding values is an isomorphism of names argument, essentially a
counting argument, relying on specific properties of the forcing construction.
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Large Spectrum

Question:

Is it consistent that i = ℵω?

Is sp(i) closed with respect to singular limits of countable
cofinality?
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Indestructibility & Genericity

... and once again Maximality

∀X ∈ [ω]ω\A ∃h ∈ FF(A ) such that A h∩X or A h\X is finite.

Dense maximality
Let A be an independent family. Then A is said to be densely
maximal if for each X ∈ [ω]ω\A and every h ∈ FF(A ) there is
h′ ∈ FF(A ) such that h′ ⊇ h and A h′ ∩X or A h′\X is finite.

Remark
Thus, A is densely maximal if for each X ∈ [ω]ω\A the set of
h ∈ FF(A ) such that X does not split A is dense in FF(A ).
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Indestructibility & Genericity

Density filter
Let A be an independent family. Then

fil(A ) = {Y ∈ [ω]ω : ∀h ∈ FF(A )∃h′ ∈ FF(A ) s.t. h′ ⊇ h and A h′ ⊆ Y}

is referred to as the density filter of A .

Lemma
A family A ⊆ [ω]ω is densely maximal if and only if

P(ω) = fil(A )∪〈ω\A g | g ∈ FF(A )〉dn.
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Indestructibility & Genericity

Definition: Ramsey filter

A p-filter F is said to be Ramsey if for every partition E = {En}n∈ω of ω

into finite sets, there is a set C in F such that |C∩En| ≤ 1 for each n.

Definition: Selective independence

A densely maximal independent family A such that fil(A ) is Ramsey
is said to be selective.
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Indestructibility & Genericity

Theorem (Shelah)
Selective independent families exists under CH.
They are indestructible by a countable support iterations and
countable support products of Sacks forcing.

Corollary
It is consistent that i< c.
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Indestructibility & Genericity

Countable approximations

Definition (F., Montoya, 2019)
Let P be the partial order

of all pairs (A ,A) where A is a countable independent family and
A ∈ [ω]ω such that for all h ∈ FF(A ) the set A h∩A is infinite;
with extension relation defined as follows

(B,B)≤ (A ,A) iff B ⊇A and B ⊆∗ A.
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Indestructibility & Genericity

Lemma (CH)
P is countably closed and ℵ2-cc.

Proof
Let {(Ai ,Ai)}i∈ω be a decreasing chain in P. Then A =

⋃
i∈ω Ai is

a countable independent family.
Inductively one can construct a pseudointersection A of {Ai}i∈ω

such that A∩A h is unbounded for each h ∈ FF(A ).
Note that there are only ℵ1 options for a second coordinate and
only ℵ1 options for a first coordinate.
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Indestructibility & Genericity

Lemma (CH)

Let G is P-generic. Then AG =
⋃
{A : ∃A(A ,A) ∈G} is a selective

independent family.

Remark
AG is densely maximal;
FG = {A : ∃A (A ,A) ∈G} is a Ramsey set;
fil(AG) is generated by FG and so
fil(A ) is Ramsey filter.
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Indestructibility & Genericity

Indestructibility

Let A be a selective independent family. Then A remains selective after
forcing with the countable support iteration of any of:

(Shelah, 1989) Shelah’s poset for diagonalizing a maximal ideal,

(Cruz-Chapital, F., Guzman, Supina, 2020) Miller partition forcing,

(J. Bergfalk, F., C. Switzer, 2021) Coding with perfect trees,

(Switzer, 2022) h-perfect trees,

(F., Switzer, 2023) Miller lite forcing,

leading in particular to the consistency of each of the following

i< u,u = a = i< aT , i = u< cof(N ) = non(N ), i = hm< ln,ω .
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Indestructibility & Genericity

Definition
A poset P is Cohen preserving if every every new dense open subset
of 2<ω (or, equivalently ω<ω ) contains an old dense subset.

Remark

More formally, P is Cohen preserving if for all p ∈ P and all P-names Ḋ
so that

p  “Ḋ ⊆ 2<ω is dense open”

there is a dense E ⊆ 2<ω in the ground model, q ≤P p so that

q  Ě ⊆ Ḋ.
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Indestructibility & Genericity

Theorem (Shelah)

If δ is an ordinal and 〈Pα ,Q̇β | α ≤ δ ,β < δ 〉 is a countable support
iteration such that for each α < δ

α “Q̇α is proper and Cohen preserving”

then Pδ is proper and Cohen preserving.

Lemma
If P is Cohen preserving and proper, then P is ωω -bounding.
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Indestructibility & Genericity

Theorem
Let δ be an ordinal. Let A be a selective independent family and let
〈PαQ̇α | α < δ 〉 be a countable support iteration of proper forcing
notions so that for every α < δ ,

α “Q̇α is Cohen preserving”.

If for every α < δ ,

α “Q̇α preserves the dense maximality of A ”

then Pδ preserves the selectivity of A .
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Indestructibility & Genericity

Genericity

Theorem (F., Montoya 2019; F., Switzer 2023)

Let A be an independent family. Then A is densely maximal iff fil(A )
is the unique diagonalization filter.

Proof
(F., Montoya) If A is densely maximal then fil(A ) is the unique
diagonalization filter.
(F., Switzer) If fil(A ) is the unique diagonalization filter, then A is
densely maximal.
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Indestructibility & Genericity

Genericity

Theorem (F., Switzer, 2023)
The generic maximal independent family added by an iteration of
Mathias forcing relativized to diagonalization filters is selective.
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Indestructibility & Genericity

Genericity

Theorem (F., Switzer, 2023)
(GCH) Let κ < λ be regular uncountable. It is consistent that

i = κ < c = λ

holds with a selective witness to i.

The above holds, in fact, for κ < λ with cf(κ) > ω and cf(λ ) > κ.
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Higher independence

Definition
Let κ be a regular uncountable cardinal, A ⊆ [κ]κ .

Let FF<ω,κ (A ) be the set of all finite partial functions with domain
included in A and range the set {0,1}.
For each h ∈ FF<ω,κ (A ) let A h =

⋂
{Ah(A) : A ∈ dom(h)} where

Ah(A) = A if h(A) = 0 and Ah(A) = κ\A if h(A) = 1.
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Higher independence

Definition
1 A family A ⊆ [κ]κ is said to be κ-independent if for each

h ∈ FF<ω,κ (A ), A h is unbounded.
2 It is maximal κ-independent family if it is κ-independent, maximal

under inclusion.
3 The least size of a maximal κ-independent family is denoted i(κ).

Vera Fischer (University of Vienna) CSR Winter School 2023 52 / 62



Higher independence

Lemma (F., Montoya)
Let κ be a regular infinite cardinal.

1 There is a maximal κ-independent family of cardinality 2κ .
2 κ+ ≤ i(κ)≤ 2κ

3 r(κ)≤ i(κ)

4 d(κ)≤ i(κ).

Corollary

If κ is regular uncountable, then if i(κ) = κ+ also a(κ) = κ+.
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Higher independence

Definition: κ-dense maximality

A κ-independent family A is densely maximal if for every X ∈ [κ]κ\A
and every h ∈ FF<ω,κ (A ) there is h′ ∈ FF<ω,κ (A ) such that h′ ⊇ h and

either A h′ ∩X = /0 or A h′ ∩ (κ\X ) = /0.

Question
Are there κ-densely maximal independent families?
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Higher independence

Definition (F., Montoya)
Let κ be a measurable cardinal and U a normal measure on κ. Let
PU be the poset of all pairs (A ,A) where

A is a κ-independent family of cardinality κ,
A ∈U is such that ∀h ∈ FF<ω,κ (A ), A h∩A is unbounded.

The extension relation is defined as follows: (A1,A1)≤ (A0,A0) iff
A1 ⊇A0 and A1 ⊆∗ A0.
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Higher independence

Lemma
Assume 2κ = κ+. Then PU is κ+-closed and κ++-cc.
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Higher independence

Proof
Let {(Ai ,Ai)}i∈κ be a decreasing sequence in PU .
We can assume that {Ai}i∈κ is strictly decreasing, i.e for each
i > j we have Aj ⊆ Ai .
Then A =

⋃
i∈κ Ai is an independent family of cardinality κ and

the diagonal intersection A′ = ∆i∈κAi ∈U .
Recursively we can define a set A′′ which is a pseudo-intersection
of {Ai}i∈κ and which meets every A h on an unbounded set.
Then A = A′∪A′′ is an element of U and so
(A ,A) ∈ PU is a common extension of {(Ai ,Ai)}i∈κ .

PU is κ++-cc, because |PU |= κ+.
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Higher independence

Lemma (F., Montoya)

Assume 2κ = κ+, κ is measurable and U is a normal measure on κ.
Let G be a PU -generic filter. The

AG =
⋃
{A : ∃A ∈U with (A ,A) ∈G}

is a densely maximal κ-independent family.
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Higher independence

Remark: Density filter

Let fil<ω,κ (AG) be the filter of all X ∈U such that ∀h ∈ FF<ω,κ (AG)
there is h′ ∈ FF<ω,κ (AG) such that h′ ⊇ h and A h′ ⊆ X . Then:

Every H ∈ [fil<ω,κ (AG)]≤κ has a pseudo-intersection in
fil<ω,κ (AG).
If f ∈ V ∩ κκ is strictly increasing, then ∃a ∈ fil<ω,κ (AG) such that

f (a(i)) < a(i + 1)

for all i ∈ κ, where {a(i)}i∈κ is the increasing enumeration of a.
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Higher independence

Theorem (F., Montoya)
(GCH) Let κ be a measurable cardinal and let U be a normal measure
on κ. The generic maximal independent family AG adjoined by PU

remains maximal after the κ-support product Sλ
κ .
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Higher independence

Corollary
Let κ be a measurable cardinal. There is a cardinal preserving generic
extension in which

a(κ) = d(κ) = r(κ) = i(κ) = κ
+ < 2κ .
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The End!

Thank you for your attention!
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