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Conventions

Throughout this series of talks:
> 0 < k is a pair of infinite regular cardinals;
» Ej stands for {o < k| cf(a) = 0},
» S denotes a stationary subset of k.
Typically, S consists of limits ordinals;

» For D C k, acc(D) :={d € D |sup(DNd) =46 >0},

and nacc(D) := D\ acc(D).

H H . K K K K K
Some variations: EZ,, EZy, E;ég, EZ,, EX, and

acc™(X) := {6 < sup(X) | sup(X Nd) =46 > 0}.
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Recall |

Definition ([29])

¢ : K(k) — K(k) is a postprocessing function if for all x € K(k):
1. ®(x) is a club in sup(x);
2. acc(P(x)) C ace(x);
3. d(x)Na = d(xNa) for every & € acc(P(x)).

It is conservative if ®(x) C x for all x.
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Recall Il

Definition (Shelah, 1990's)
CG(S) asserts the existence of a sequence C = (C5 | 6 € S) s.t.:
1. for every 6 € S, Cs is a club in §;

2. for every club D C k, theset {0 € S| G C DNé}is
stationary in k.

Theorem (Shelah)
CG(E)) holds, in any of the following cases:

> Ny <0 <0 <k

» No =0 and k = AT for some uncountable cardinal \.
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Sierpinski-type colorings
Definition ([47])

Onto(\, K, 6) asserts the existence of a coloring ¢ : A X Kk — 6 such
that, for every B € [k]", for some n < A, c[{n} x B] = 6.
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Sierpinski-type colorings

Definition ([47])
Onto(\, K, 6) asserts the existence of a coloring ¢ : A X Kk — 6 such
that, for every B € [k]", for some n < A, c[{n} x B] = 6.

Fact ([53])

If Onto(\, k, 6) holds, then there is a \-sized universal family of
decompositions of k into § many sets, {{Uy - | T < 6) | n < A}.
This means that for every A\ -complete ideal J extending [k]<", for
every B € JT, for some n < ),

(Up-NB|T<8)
is a decomposition of B into # many J*-sets.

This is actually an equivalency in the non-degenerate case.
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Sierpinski-type colorings

Definition ([47])
Onto(\, K, 6) asserts the existence of a coloring ¢ : A X Kk — 6 such
that, for every B € [k]", for some n < A, c[{n} x B] = 0.

Sierpiriski proved that Onto(\, AT, A*) follows from 2* = A\*, and
we mentioned yesterday that Onto(\, AT, \) may consistently fail.
This leaves open the case Onto(\, AT, 6) for 6 < \.
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A Sierpinski theorem in ZFC

Theorem ([53])

Suppose that X\ is a singular cardinal. For every cardinal 0 < A,
there is a coloring ¢ : A\ x At — 0 such that, for every B € [)\+]/\+,
for somen < A, c[{n} ® B] = 0. l.e., Onto(\, A", 0) holds.

For the proof, we need Shelah’s theorem on the existence of scales.
Fact (Shelah)

For every singular cardinal A, there is a sequence (fz | B < AT):

» All f3's are elements of some product [|; <cf(n) Ai of regular
cardinals, with sup{\; | i < cf(A\)} = A;

> Forall o < 8 < At, fo, <* f3, that is, o (i) < f3(i) for a tail
of i < cf(N);

> For every g € [[;cc(x) Air there is B < AT such that g <* f3.
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A Sierpinski-type theorem in ZFC
Theorem ([53])

Suppose that X\ is a singular cardinal. For every cardinal 0 < A,
there is a coloring ¢ : A x At — 0 such that, for every B € [AT]}',
for somen < A, c[{n} x B] = 6.
Proof. Fix a scale (f3 | 8 < A™") in some product [iccroy M-
By increasing 6 and A\, may assume cf(\) < cf(8) =0 < 07 < )o.
For i < cf()), fix a 6-bounded witness (C} | § € Eg") to CG(EQ’\").
Fix a bijection 7 : A > U;_cey ({i} x E;"). Pick ¢ : A x AT — 0
such that, for all n < X and 8 < AT, if m(n) = (7, ), then

c(n, B) := sup(otp(C5 N f5(7)))-
To see this works, let B € [A\*]}". Then (f; | 8 € B) is a scale, so
there must exist an i < cf(X) such that sup{fz(i) | B € B} = A;.
As D :=acct({fz(i) | B € B}) is a club in \;, we may fix some
o€ Ee’\" such that C/ C D. Set 1 := 7~1(i, ).
In between any two elements of Cj, there is one the form f3(i) for
some 3 € B. So c[{n} ® B] = 0, as sought! O
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The critical cofinality

Theorem (Abraham-Shelah, [AbSh:182])

Assume GCH and k = 0. (recall that 0 is assumed to be regular)
Then there is a GCH-preserving forcing extension, adding no new
0-sequences, not collapsing cardinals, in which CG(EQW) fails.
Furthermore, in this model, there is a family (D; | i < k™) of clubs
in K such that |(\;c; Di| < 0 for every | € [xT]".

The analogous question for successors of singulars is open.
To focus on the contrapositive:

Question
Suppose that A is a singular cardinal. Must there exist a
C-sequence (Cs | 6 € Ec’\fJ(r/\)) such that for every club D C AT,

the set {0 € Egﬁ)\) | Cs € D & otp(Cs) = A} is stationary?
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The second theorem

Theorem (Shelah)

For every regular uncountable cardinal 0, there exists a §-bounded
C-sequence (Cs | § € EJ") such that, for every club D C 6, the
following set is stationary:

{6 € Eg+ | sup(nacc(Cs) N D) = 6}.

Equivalently: for every club D C 67, the next set is nonempty:

{6 € EJ" | sup{B < & | min(Cs\ (8+1)) € D} = 6}.
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The invasion of ideals

Suppose J = (Js | § € S) is a sequence such that each J; is some
ideal over §, extending J®9[6] (the ideal of bounded subsets of 4).
Definition ([46])

CG(S, J) asserts the existence of a C-sequence (Cs | § € S) such
that for every club D C k, there exists a § € S for which

{8 < 6| min(Cs\ (8+1)) € D} € Jj.

Remark

So far we obtained instances of CG(S) by starting with some
C-sequence (G5 | 6 € S) for which supscs |Cs| is relatively small,
and then rectifying errors using a postprocessing function.

In the context in which supscs |Cs| cannot be small, we need a
more relaxed concept. ..
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Amenable C-sequences

Definition ([29])
A C-sequence (Cs | § € S) is amenable iff for every club D C &,
the set {6 € S |sup(DNd\ G5) < d} is nonstationary (in k).

Lemma

Every successor cardinal admits an amenable C-sequence.

Proof. Let kK = AT be some successor cardinal. Pick a C-sequence
C = (Gs | 0 < k) such that otp(Cs) < A for all 6 < k.

For every club D C &, the set {6 < x| otp(DNJ) =3 > A} is a
club in x disjoint from {§ € S | sup(DNé\ Cs) < d}. O
More generally, if almost all ordinals in S are singular,

then S admits an amenable C-sequence.

Exercise: (G5 |0 € S) is amenable iff for every club D C &, the set
{6 € S| DN C Gs} is nonstationary iff for every club D C « and
every conservative ®, {0 € S| DN = ®(Cs)} is nonstationary.
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Amenable C-sequences
Definition
A C-sequence (Cs | 6 € S) is amenable iff for every club D C &,
theset {6 € S| DNd C Gy} is nonstationary in k.

Lemma

For every stationary S C k, there exists a stationary S’ C S such
that S’ carries an amenable C-sequence.

Proof. If SN ES is stationary, then S := SN E/ carries an
w-bounded C-sequence, which is clearly amenable. So, we may
assume that SN Ef is empty, and let S’ := S\ Tr(S), where:

Tr(S) :={a € EL, | SN a is stationary in a},

» To see that S’ is stationary, let D C x be a club. Then

a :=min(acc(D) N S) belongs to D NS and acc(D) N« is a club

in « disjoint from S, so that a ¢ Tr(S). Altogether, « € S'N D. «
Fix a C-sequence (Cs | 6 € §’) such that GsNS =0 forall 6 € S
If there is a club D C k such that {§ € S’ | DN § C GCs} is cofinal

in k, then that set must contain a § € S’ above min(DNS). [
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Amenable C-sequences and club-guessing

We have seen that for every stationary S C k, there exists a
stationary S’ C S such that S’ carries an amenable C-sequence.
The next step is to come up with a postprocessing function that
can take advantage of amenability. For a club D C &, let

9P (x) - {{sup(o 17) |7 € x> min(D)}, sup(x) € ace(D);
b | x\ sup(D N sup(x)), otherwise.

Note: ® is not conservative! sup(x) € acc(D) = ®3°P(x) C D.

Lemma

Suppose that C = (Cs | § € S) is an amenable C-sequence.
If kK > Ny, then there exists a club D C k for which
(®%°P(C5) | 6 € S) witnesses CG(S, (J*I[5] | 6 € S)).
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Amenable C-sequences and club-guessing (cont.)
Proof. Suppose not. So, for every club D C &, there is a club
FP C k such that, for every § € S,
sup(nacc(®5°P(C;)) N FP) < 6.

Construct a descending sequence (D; | i < wi) of clubs in & via:

1. Dy := k;

2. Diy1:=DinFY;

3. for i € acc(w1), Di := Ny Dy
As D* .= ﬂi<wl D; is a club in kK > N> and C is amenable, we may
pick some § € S such that sup(D*Nd \ C5) = 0. For each i < wy,
since D; N is a closed unbounded subset of §, it is the case that

¢f)ri°p(C5) = {sup(D; N~) | v € G5,y > min(D;)}.
So ¢‘gi°p(C5) C D; and acc(d>‘gi°p(C5)) C acc(D;) Nace(GCs).
In addition, for each i < wy, since D;y; C FDi,

gj = sup(nacc(d>f)ri°p(C5)) N Dj41) is smaller than 4.
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Amenable C-sequences and club-guessing (cont.)

Claim
There exists | C wy of ordertype w such that sup{e; | i € I} <.

Proof. » If cf(d) > w, then just let | := w.

» If cf(d) = w, then pick a countable cofinal subset e of § and for
each / € wy, find the least € € e such ¢; < e. By the pigeonhole
principle, there is an € € e for which {i € | | g; <&} is
uncountable. In particular, this set contains a subset of type w. [
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Amenable C-sequences and club-guessing (cont.)

Fix I C wy of ordertype w such that sup{e; | i € I} < 4, and then
pick « € D*N ¢\ Cs above sup{e; | i € I}.

As a ¢ Cs, v := min(Cs \ ) is in nacc(Gs).

As (sup(DiN~) | i €l)is a weakly decreasing sequence of
ordinals, by well-foundedness there must be a pair of ordinals i < j
in | such that ; ;== sup(D; N~y) is equal to 3; ;== sup(D; N ).
Asa e Diny, ei<a< i<~y s0 b€ ¢c,j;i°p(C5) N (i, 7]
Likewise, 8; € ®5°(C5) N (2,7].

Recalling that §; = 8; € D; C Dj41, it follows that f3; is an element
of CDdD'I,OP(C(;) N D;;1 above &; and hence 3; € acc(dfgi(’p(C(;)).
Recalling that acc(dDdDr_op(C(;)) C acc(Dj) Nacc(Cs), we infer that
Bi € acc(Cs). But « < Bi<~vand Csn [o,v] = {7}, and hence
Bi =y, contradicting the fact that v € nacc(Cs). O
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Amenability FTW

Corollary

If k > Ny, then for every stationary S C r, CG(S, (JP4[6] | 6 € S))
holds.
Proof. Given a stationary set S, find a stationary S’ C S and an

amenable C-sequence (Cs | 6 € S§’). Now, find a club D C & such
that (®5°P(Cs) | & € ') witnesses CG(S', (JP4[6] | 6 € S')).

In particular, CG(S, (J*4[5] | 6 € S)) holds. O
Corollary
CG(Reg(k), (J*4[0] | & € Reg(k))) holds for every Mahlo k. O
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A bonus

Corollary
If 67 < i, then CG(S) holds for every stationary S C EJ.

Proof. Yesterday we took care of the case Rg < 6, so suppose

S C Ef. Since postprocessing functions do not increase
order-types, the result from the previous slide yields an w-bounded
witness to CG(S, (J*4[6] | 0 € S)).

So, by the so-called familiar argument, we may find a club D C k
such that (®p(Cs) | § € S) witnesses CG(S). O
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