Hunting vector spaces inside non-linear objects

Tommaso Russo (Joint with Paolo Leonetti and Jacopo Somaglia)

Winter School in Abstract Analysis: Set Theory & Topology Hejnice, Czech Republic January 29 – February 5, 2022

Some lineability results

- Gurariy (1966). There is an infinite-dimensional subspace Y of C([0,1]) such that every $f \in Y, f \neq 0$ is nowhere differentiable.
 - Fonf-Gurariy-Kadets (1999). Such *Y* can be a closed subspace.
 - Gurariy (1966). If Y is a closed subspace of C([0,1]) and every element of Y is differentiable, then Y is finite-dimensional.
- Grothendieck (1954). If μ is a finite measure, Y is a closed subspace of $L_p(\mu)$, $0 , and <math>Y \subseteq L_{\infty}(\mu)$, then Y is finite-dimensional.
- Plichko–Zagorodnyuk (1998). If X is an infinite-dimensional complex Banach space and $P: X \to \mathbb{C}$ is a polynomial with P(0) = 0, $P^{-1}(0)$ contains an infinite-dimensional vector space.
 - Avilés–Todorčević (2007). There is a polynomial $P: \ell_1(\omega_1) \to \mathbb{C}$ with P(0) = 0 such that every subspace $Y \subseteq P^{-1}(0)$ is separable.
 - Aron–Hajék (2006). If X is a real infinite-dimensional, separable Banach space, there is an odd polynomial $P: X \to \mathbb{R}$ such that $P^{-1}(0)$ contains no infinite-dimensional vector space.

Aron-Bernal-Pellegrino-Seoane (2016), Lineability.

Dense lineability in spaces of sequences

- A subset M of a Banach space X is **lineable** if $M \cup \{0\}$ contains an infinite-dimensional vector space.
- *M* is **densely lineable** if it contains a vector subspace dense in *X*.
- If $1 \le q , <math>\ell_p \setminus \ell_q$ is densely lineable.
 - **Kitson–Timoney (2011).** Let X be a separable Banach space and $T_n : Z_n \to X$ be bounded linear maps. If $Y := \text{span}(\bigcup T_n[Z_n])$ is not closed in X, then $X \setminus Y$ is densely lineable.
 - So, $\ell_p \setminus \bigcup_{q < p} \ell_q$ is densely lineable.
 - Nestoridis (2020). An explicit construction.
- Nestoridis (2020). Is $\ell_{\infty} \setminus c_0$ densely lineable?
 - Papathanasiou (2022). Yes, it is.
 - **Leonetti, R., Somaglia.** An alternative simpler proof. With a technique that can be adapted to prove much more.

Further results

- Let X be a Banach space with a projectional skeleton and such that dens $X \le \mathfrak{c}$ and let Y be a closed subspace of X such that the quotient X/Y is infinite-dimensional. Then $X \setminus Y$ is densely lineable.
 - Reflexive, WCG, WLD, Plichko, $L_1(\mu)$, C(K) where K is Valdivia, or a compact Abelian group, ...
- If Y is a subspace of ℓ_{∞} and dens $Y < \mathfrak{c}$, then $\ell_{\infty} \setminus Y$ is densely lineable.
- If I is a meager ideal, $\ell_{\infty} \setminus c_0(I)$ is densely lineable.
- $\ell_{\infty}^{c}(\Gamma) \setminus c_{0}(\Gamma)$ is densely lineable.
- $\ell_{\infty}(\Gamma) \setminus \ell_{\infty}^{<|\Gamma|}(\Gamma)$ is densely lineable: there is a dense vector subspace of $\ell_{\infty}(\Gamma)$ whose each non-zero vector has $|\Gamma|$ -many non-zero coordinates.

Lineability of $\ell_{\infty} \setminus c_0$

- Let $(B_j)_{j \in \omega}$ be a partition of ω , such that $|B_j| = \omega$.
- Take a bijection between $2^{\omega} \times \omega$ and (0, 1). Hence $(A, k) \leftrightarrow q_{A,k}$.
- For $A \subseteq \omega$ and $k \in \omega$ define

$$f_{A,k} := \mathbb{1}_A + 2^{-k} \sum_{j \in \omega} (q_{A,k})^j \mathbb{1}_{B_j}.$$

• $f_{A,k} \to \mathbb{1}_A$ as $k \to \infty$. So span $\{f_{A,k}\}$ is dense in ℓ_{∞} .

Lemma (Strong linear independence of geometric sequences)

Let $\lambda_1, \ldots, \lambda_n \in (0, 1)$ be mutually distinct scalars and let $\beta_1, \ldots, \beta_n \in \mathbb{R}$ not all equal to 0. Then the sequence

$$\left(\beta_1\lambda_1^j+\cdots+\beta_n\lambda_n^j\right)_{j\in\omega}$$

attains infinitely many distinct values.

Problem / Reference request

Question. Let $\lambda \leq \kappa$ be two cardinals and Γ be a set with $|\Gamma| = \kappa$. Is there a family $\mathcal{A} \subseteq [\Gamma]^{\lambda}$ with $|\mathcal{A}| = \kappa^{\lambda}$ and such that for every $A_0, A_1, \ldots, A_n \in \mathcal{A}$

$$A_0 \setminus (A_1 \cup \cdots \cup A_n)$$
 has cardinality λ ?

Yes, assuming one of the following:

- **2** λ is the least cardinal with $\kappa < \kappa^{\lambda}$ (almost-disjoint family)
- 3 $\lambda = \kappa$ (independent family).

Prize. Free beer until the end of the conference.

Thank you for your attention!