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III. Higher dimensions



Review

Let n ≥ 2. For f⃗ ∈ (ωω)n, I (f⃗ ) = I (f0) ∩ . . . ∩ I (fn−1).

Let F ⊆ ωω, and let Φ = ⟨φ
f⃗
: I (f⃗ ) → Z | f⃗ ∈ Fn⟩ be an

alternating family of functions.

Φ is n-coherent if, for all f⃗ ∈ Fn+1, we have
∑n

i=0(−1)iφ
f⃗ i
=∗ 0.

For n = 2, this becomes φgh − φfh + φfg =∗ 0 for all f , g , h ∈ F .

Φ is n-trivial if there is an alternating family〈
ψ
f⃗
: I (∧f⃗ ) → Z

∣∣∣ f⃗ ∈ Fn−1
〉

such that
∑n−1

i=0 (−1)iψ
f⃗ i
=∗ φ

f⃗
for all f⃗ ∈ (ωω)n.

For n = 2, this is a family ⟨ψf | f ∈ F⟩ such that φfg =∗ ψg − ψf

for all f , g ∈ F .

limn A = 0 iff every n-coherent family on (ωω)n is n-trivial.



Two basic lemmata

Lemma

Suppose that F ⊆ ωω and Φ = ⟨φf | f ∈ F⟩ is coherent. Then the
following are equivalent:

1 Φ is trivial;

2 there is a family ⟨ψf : I (f ) → Z | f ∈ F⟩ of finitely supported
functions such that, for all f , g ∈ F ,

φf − ψf = φg − ψg .



Two basic lemmata

Lemma

Suppose that F ⊆ ωω, n > 1, and Φ = ⟨φ
f⃗
| f⃗ ∈ Fn⟩ is

n-coherent. Then the following are equivalent:

1 Φ is trivial;

2 there is an alternating family ⟨τ
f⃗
: I (f⃗ ) → Z | f⃗ ∈ Fn⟩ of

finitely supported functions such that, for all f⃗ ∈ Fn+1,∑n
i=0(−1)i (φ

f⃗ i
− τ

f⃗ i
) = 0.

Sketch of proof (n = 2).

1 ⇒ 2: If ⟨ψf | f ∈ F⟩ witnesses that Φ is trivial, then, for all
f , g ∈ F , let τfg = φfg − (ψg − ψf ).

2 ⇒ 1: Given ⟨τfg | f , g ∈ F⟩: for each x ∈ ω2, find fx ∈ F such
that x ∈ I (fx). For all f ∈ F and all x ∈ I (f ), let
ψf (x) = (τf ,fx (x)− φf ,fx (x)).



Lemma

Suppose that F ⊆ ωω is countable and Φ = ⟨φf | f ∈ F⟩ is
coherent. Then Φ is trivial.



Lemma

Suppose that n ≥ 1, F ⊆ ωω, |F| < ℵn, and Φ = ⟨φ
f⃗
| f⃗ ∈ Fn⟩ is

n-coherent. Then Φ is trivial.

Proof for n = 2.

Enumerate F as ⟨fα | α < ω1⟩ and, for each α < β < ω1, denote
φfαfβ by φαβ. By recursion on α < ω1, we will define functions
ψα : I (fα) → Z such that, for all α < β < ω1, we have
ψβ − ψα =∗ φαβ. Suppose that β < ω1 and we have defined
⟨ψα | α < β⟩. For each α < β, let τα = φαβ + ψα.

Claim: ⟨τα | α < β⟩ is 1-coherent.
Proof of claim: For all α < α′ < β, we have

τα′ − τα = φα′β + ψα′ − φαβ − ψα

= φα′β − φαβ + (ψα′ − ψα)

=∗ φα′β − φαβ + φαα′

=∗ 0.



Proof (cont.)

Since β is countable, ⟨τα | α < β⟩ is trivial, so we can let
ψβ : I (fβ) → Z trivialize it.

Then, for all α < β, we have

ψβ − ψα =∗ τα − ψα

= (φαβ + ψα)− ψα

= φαβ.

Thus, ψβ is as desired, and we can continue with our construction.
At the end, we have arranged that ⟨ψα | α < ω1⟩ trivializes Φ.

Corollary

For all n > 1, if d < ℵn, then limn A = 0.



Theorem (Dow-Simon-Vaughan, ’89)

If d = ℵ1, then lim1A ̸= 0.



Theorem (Bergfalk, ’17, [2])

Suppose that b = d = ℵ2 and ♢(Sℵ2
ℵ1
) holds. Then lim2A ̸= 0.

Proof sketch.

Fix a sequence ⟨fα | α < ω2⟩ that is <∗-increasing and <∗-cofinal
in ωω. It will suffice to construct a nontrivial 2-coherent family
⟨φαβ : I (fα ∧ fβ) → Z | α < β < ω2⟩.

By ♢(Sℵ2
ℵ1
), we can fix a sequence of sequences

⟨⟨ψβ
α : I (fα) → Z | α < β⟩ | β ∈ Sℵ2

ℵ1
⟩

such that, for every sequence ⟨ψα : I (fα) → Z | α < ω2⟩, there are
stationarily many β ∈ Sℵ2

ℵ1
such that

⟨ψα | α < β⟩ = ⟨ψβ
α | α < β⟩.



Proof (cont.)

We now construct ⟨φαβ | α < β < ω2⟩ by recursion on β. Suppose
that β < ω2 and ⟨φαα′ | α < α′ < β⟩ has been defined.

Case 1: β ∈ Sℵ2
ℵ1

and ⟨ψβ
α | α < β⟩ 2-trivializes

⟨φαα′ | α < α′ < β⟩. Since cf(β) = ω1, by a construction from the
first lecture, we can find a nontrivial 1-coherent family of functions
⟨τβα : I (fα) → Z | α < β⟩. Now let φαβ = −ψβ

α − τβα for all α < β.

Claim: This maintains 2-coherence.
Proof of claim: For all α < α′ < β, we have

φα′β − φαβ + φαα′ = −ψβ
α′ − τβα′ + ψβ

α + τβα + φαα′

= −(ψβ
α′ − ψβ

α)− (τβα′ − τβα ) + φαα′

=∗ −φαα′ − 0 + φαα′

= 0.



Proof (conclusion).

Case 2: Otherwise. Since ⟨φαα′ | α < α′ < β⟩ is 2-coherent and
β < ω2, it is also 2-trivial. Let ⟨−φαβ | α < β⟩ be an arbitrary
witness to its triviality.

Claim: ⟨φαβ | α < β < ω2⟩ is nontrivial.

Suppose for sake of contradiction that ⟨ψα | α < ω2⟩ satisfies
ψβ − ψα =∗ φαβ for all α < β < ω2. Find β ∈ Sℵ2

ℵ1
such that

⟨ψα | α < β⟩ = ⟨ψβ
α | α < β⟩. Then at β we were in Case 1 of the

construction. Therefore, for all α < β, we have

ψβ − ψα =∗ φαβ = −ψα − τβα

so −ψβ =∗ τβα , i.e., −ψβ trivializes ⟨τβα | α < β⟩, contradicting the

fact that ⟨τβα | α < β⟩ is nontrivial.



Consistent nonvanishing

Corollary (Bergfalk, ’17, [2])

PFA ⇒ lim2A ̸= 0.

Recall that PFA ⇒ limn A = 0 for all n ∈ ω \ {0, 2}.

Theorem (Veličković-Vignati, ’21, [5])

Let n ≥ 1. If b = d = ℵn and w♢(S
ℵk+1

ℵk
) holds for all k < n, then

limn A ̸= 0.

Therefore, for any n ≥ 1, it is consistent with ZFC that limn A ̸= 0.



Simultaneous nonvanishing

Theorem (Bergfalk-LH, ’21, [4])

(Assuming the consistency of a weakly compact cardinal), it is
consistent that limn A = 0 for all n ≥ 1 (simultaneously).

More precisely, if κ is a weakly compact cardinal and P is a
length-κ finite support iteration of Hechler forcing, then, in V P,
limn A = 0 for all n ≥ 1.



Sketch of proof (n=2).

P adds a sequence ⟨fα | α < κ⟩ that is <∗-increasing and
<∗-cofinal in ωω. Fix p ∈ P and a name Φ̇ = ⟨φ̇ḟ ġ | ḟ , ġ ∈ ωω⟩ for
a 2-coherent family. We will find q ≤ p that forces Φ̇ to be
2-trivial.

It suffices to show that q forces the existence of an unbounded
Ȧ ⊆ κ such that ⟨φ̇αβ | α < β ∈ Ȧ⟩ is trivial, where φ̇αβ denotes
φ̇fαfβ .

In turn, it suffices to show that q forces the existence of a family
⟨ψ̇αβ | α < β ∈ Ȧ⟩ of finitely supported functions such that

(φ̇βγ − ψ̇βγ)− (φ̇αγ − ψ̇αγ) + (φ̇αβ − ψ̇αβ) = 0

for all α < β < γ ∈ Ȧ. Let ė(α, β, γ) denote φ̇βγ − φ̇αγ + φ̇αβ.
The above equation then becomes

ė(α, β, γ) = ψ̇βγ − ψ̇αγ + ψ̇αβ.



Proof sketch (cont.)

For all α < β < γ < κ, ė(α, β, γ) is forced to be a finitely
supported function, so we can find qαβγ ≤ p deciding the value of
the restriction of ė(α, β, γ) to its support, say as e(α, β, γ). We
can also arrange that qαβγ ⊩ “ḟα ≤ ḟβ ≤ ḟγ”.

Using the weak compactness of κ, we can find an unbounded
H ⊆ κ and a finite partial function e∗ : ω2 → Z such that

• for all α < β < γ ∈ H, we have e(α, β, γ) = e∗;

• the sequence ⟨qαβγ | α < β < γ ∈ H⟩ exhibits some strong
uniformities (in particular, it forms a kind of 3-dimensional
∆-system, with a “root”, q∅).



Proof (cont.)

q∅ then forces the existence of

• an unbounded Ȧ ⊆ H;

• for each α < β ∈ Ȧ, an ordinal ε̇αβ ∈ H \ (β + 1);

• for each α < β < γ ∈ Ȧ, an ordinal
ε̇αβγ ∈ H \ (max{εαβ, εαγ , εβγ) + 1)

such that, for all α < β < γ ∈ Ȧ, the conditions qα,εαβ ,εαβγ
,

qα,εαγ ,εαβγ
, qβ,εαβ ,εαβγ

, qβ,εβγ ,εαβγ
, qγ,εαγ ,εαβγ

, and qγ,εβγ ,εαβγ
are

all in Ġ (the generic filter).



Proof (cont.)

Let G be P-generic over V with q∅ ∈ G . Let A, ⟨εαβ | α < β ∈ A⟩,
and ⟨εαβγ | α < β < γ ∈ A⟩ be as on the previous slide. It suffices

to show that ⟨φαβ | α < β ∈ A⟩ is trivial. To this end, for all
α < β ∈ A, let ψαβ = e(α, β, εαβ) = φβεαβ

− φαεαβ
+ φαβ.

Each ψαβ is finitely supported, by the 2-coherence of Φ. We claim
that it witnesses that ⟨φαβ | α < β ∈ A⟩ is trivial.
We must show that, for all α < β < γ ∈ A, we have

e(α, β, γ) = ψβγ − ψαγ + ψαβ.
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Proof (cont.)

Fix α < β < γ ∈ A. Adding up all of the e(· · · )-values
corresponding to the interior triangles in the above figure (oriented
counterclockwise) yields, through cancellation of like terms,
precisely e(α, β, γ).
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Proof (cont.)

The e(· · · )-values of the blue interior triangles all equal ±e∗, as
their corresponding q··· conditions are all in G . These values
cancel, leaving only e(β, γ, εβγ) + e(γ, α, εαγ) + e(α, β, εαβ)
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Proof (cont.)

e(α, β, γ) = e(β, γ, εβγ) + e(γ, α, εαγ) + e(α, β, εαβ)

= e(β, γ, εβγ)− e(α, γ, εαγ) + e(α, β, εαβ)

= ψβγ − ψαγ + ψαβ.



Further results

Theorem (Bannister-Bergfalk-Moore, ’2X, [1])

In the model obtained by adding weakly compact-many Hechler
reals, strong homology is additive on the class of locally compact
separable metric spaces.

Theorem (Bergfalk-Hrušák-LH, ’2X, [3])

Let P be the forcing to add ℶω-many Cohen reals. Then, in V P,
limn A = 0 for all n ≥ 1.



More general systems

Suppose that κ and λ are infinite cardinals. Given a function
f : κ→ [λ]<ω, let I (f ) denote the set {(i , j) ∈ κ× λ | j ∈ f (i)}.
We can then define an inverse system
Aκ,λ = ⟨Af , πfg | f , g : κ→ [λ]<ω, f ≤ g⟩, where

• f ≤ g if, for all i ∈ κ, f (i) ⊆ g(i);

• for all f : κ→ [λ]<ω, Af =
⊕

I (f ) Z;
• the maps πfg are the obvious projection maps.

Note that our original system A is isomorphic to a cofinal
subsystem of Aℵ0,ℵ0 .



More general systems

Theorem (Bergfalk-LH, ’2X)

If κ and λ are infinite cardinals, with λ > ℵ0, then lim1Aκ,λ ̸= 0.

Corollary (Bergfalk-LH, ’2X)

Let X n
ω1

denote the generalized n-dimensional infinite earring
space, i.e., the one-point compactification of the sum of ω1-many
copies of the n-dimensional open unit ball. Then X 2

ω1
(together

with countable disjoint unions thereof) is a ZFC counterexample to
the additivity of strong homology.

Corollary (Bergfalk-LH, ’2X)

The category of pro-abelian groups does not embed fully faithfully
into the category of condensed abelian groups (in the context of
derived categories).



Questions

Question

Is ℵω+1 the minimum value of the continuum consistent with the
statement ‘limn A = 0 for all n ≥ 1’?

Question

For n ≥ 2, if b = d = ℵn, must it be the case that limn A ̸= 0?

Question

What can be said about limn Aκ,λ for n ≥ 2 and uncountable
values of κ or λ? For example:

• For n ≥ 2, is it the case that limn Aκ,λ ̸= 0 whenever λ ≥ ℵn?

• For n ≥ 2 and uncountable κ, is it the case that
‘limn Aκ,ω = 0 if and only if limn A = 0’?
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