Nontrivial coherent families of functions
Lecture 2

Chris Lambie-Hanson

Institute of Mathematics
Czech Academy of Sciences

Winter School 2022



Review

Recall:
® For f € “w, I(f):={(i,j) € w?|j < f(i)}.
® Suppose that ® = (¢ : I(f) > Z | f € “w) is a family of

functions.
® o is coherent if pr [ I(f A g) =" @g | I(f A g) for all
f,g € “w.
® & is trivial if there is v : w? — Z such that pr =" 1 | I(f) for
all f € “w.

® 0 = N; = there exists a nontrivial coherent family.

o After adding No-many Cohen reals, every coherent family is
trivial.

® OCA = every coherent family is trivial.



Il. Homological origins




Inverse systems

Definition
Suppose that (I', <) is a directed set. Aw
An inverse system (of abelian groups) ﬂ
indexed by I is a family ““"J/
A= (A,, Ty | u<verT) such that: -
. . Naw
e forall ueTl, A, is an abelian A
group; v
o forall u<verl, my: A, — A, TY'A’J,
is a group homomorphism; 114
o forallu<v<werT, AUL

Tuw = Tyv © Tyw-



Level morphisms

If A and B are two inverse systems

indexed by the same directed set, I, A _i\lffgv
then a level morphism from A to B v
: . ) A 8
is a family of group homomorphisms waJ/ }TI'N,
f=(f,: Ay, — B, | u€erT) such !
that, forall u < v €T, _Z -

B A Ath 7gu~

Ty ©1Iv = fu O Ty -

With this notion of morphism, the class of all inverse systems
indexed by a fixed directed set I' becomes a well-behaved category
Ab™ (in particular, it is an abelian category).



Inverse limits

If A is an inverse system indexed by I, then we can form the
inverse limit, lim A, which is itself an abelian group. Concretely,
lim A can be seen as the subgroup of [], . A, consisting of all
sequences (a, | u € T') such that, for all u < v €T, we have

a, = mw(ay).

If A and B are inverse systems and f : A — B, then f lifts to a
group homomorphism limf : lim A — lim B. Concretely, this is
done by letting limf((a, | u € ")) = (fu(ay) | u € T) for all

(ay |ueTl) elimA.

This turns lim into a functor from the category Ab"™" of inverse
systems indexed by ' to the category Ab of abelian groups.

Question: How “nice” is this functor?



Exact sequences

In the category of inverse systems, kernels, images, and quotients
can be defined pointwise in the obvious way. For example, if

f: A — B is a level morphism, then ker(f) can be seen as the
inverse system (ker(f,),m,, | u < v €T), where m,, is simply
7, | ker(f,).

We say that a pair of morphisms A B & Cis exact at B if
im(f) = ker(g). A short exact sequence is a sequence

0—>AL>BE>C—>0thatisexactatA, B, and C.

In a short exact sequence as above, we have ker(f) = 0 (f is
injective) and im(g) = C (g is surjective). It can be helpful to
think of A as a subobject of B and to think of C as the quotient
B/A.



Exact functors

A functor F between abelian categories is said to be exact if it
preserves short exact sequences, i.e., if, whenever

f . .
0> A B2 C—0is exact in the source category of F,

0 FA 5 FB 5 FC =5 0 is exact in the target category of F.

The inverse limit functor is left exact: if 0 — A 5 B & Cis exact
at A and B, then 0 — lim A ™% jim B ™8, |im C is exact at
lim A and lim B. However, it fails to be exact, i.e., even if

im(g) = C, we might have im(limg) # lim C.

The failure of lim to be exact essentially amounts to the failure of
lim to preserve quotients: if the quotient system B/A is defined,
then it need not be the case that limB/A = limB/lim A.



An example ([ = w)

0 A—‘",B—%.,C 0
X2 X2 X2

0 7 2,7 ™45 7/3 0
X2 X2 X2
X2 X2 X2

0 7 =2, 7 ™43 7/3 0

limA =1limB =0 and lim C = Z/3, so applying lim to this short
exact sequence yields 0 — 0 — 0 — Z/3 — 0, which is not exact
at Z/3.



Derived functors

Given any left exact functor F, there is a general procedure for
producing a sequence of (right) derived functors (F" | n € w\ {0})
that “measure” the failure of the functor F to be exact. These
derived functors then take short exact sequences

0 A‘.B-E.cC 0
to long exact sequences

0 FA —ff, Fg _'®

ch

é
1
& Fia £ Fig 28, Fic D
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LF2Ai> F2B &, F2c — ..

We will be interested in the derived functors (lim” | n € w \ {0}).



The system A

Consider the directed set (“w, <), and define an inverse system
A = (A, T | f < g € “w) as follows:

* Ar =Dy Z

® g 1 Ag — Ar is the natural projection map.

In other words, Ag is the group of finitely supported functions
¢ :1(g) = Z, and, if f < g, then 7, takes such a function ¢ to

@ [ I(f).

Question: What is lim A?

Answer: IimA =@ T[], Z.

Define B = (Bf, 7g | f < g € “w) similarly by letting
Question: What is lim B?

Answer: |imB = [[ »Z.



lim! A

There is a natural inclusion morphism i : A — B and a quotient
morphism q : B — B/A = (Bf/Af, g | f < g € “w). Then the
short exact sequence

0 A—5B—*sB/A—0

gives rise to the long exact sequence

0 — limA —mi, impB _imd

lim B/A
)

[
a q iml
L>Hm1A“mH>Hmlqu>HmlB/A}

[
g q im2
L>nm2A“m“>nm2B'“>nm2B/A».”



lim! A

It can be shown that lim" B = 0 for all n € w \ {0}, so this long
exact sequence becomes

limq

0 —— limA '™ imB

lim B/A
)

6
L lim! A 0 lim! B/A j

é
L lim? A 0 lim?B/A —— ...

It follows that lim" A = 3/% and, for n > 1,
q)

lim™ 1 A = lim"(B/A).



lim' A
lim B/A
im(limq) "

What is lim B/A? Recall that

B/A:<HZ/@Z T | f<g€ w>

I(F)  I(f)

We have lim! A =

lim B/A therefore consists of families ([¢f] | f € “w) such that
® or € B, ie., pr: I(f) = Z;
® [pr] is the equivalence class of all functions ¢ : I(f) — Z for
which ¢f — ¢ € A¢, i.e., all functions ¢ : I(f) — Z that differ
from f in only finitely many places;
e forall f < g € “w, we have [pr] = [Tee] = [@g | I(f)], ie.,
pf =* Pg I I(f)-
Thus, lim B/A consists precisely of (equivalence classes of)
coherent families of functions!



lim! A

We have lim! A = ImB/A 514 lim B/A consists of equivalence

T :
classes of coherent families of functions.
What is im(limq)? limq : limB — lim B/A. Recall that
limB =[] 2Z, so limB can be thought of as the set of all
1 : w?> = Z. Such a function 1) gets sent by limq to
([ T1(F)] | f € “w), which is (the equivalence class of) a coherent
family that is trivial, as witnessed by 1.

Also, (the equivalence class of) every trivial coherent family lies in
im(limq): if (pf | f € “w) is trivialized by ¢ : w? — Z, then
([pr] | F € “w) =lima().

. -1 coherent families of functions
So we can think of lim® A as trivial coherent families of functions*

In particular, lim! A = 0 if and only if every coherent family of
functions is trivial.




2-dimensional nontrivial coherence

Definition
Let ® = (o I(fAg) = Z | f,g € w).
1 @ is alternating if g = —pgr for all f, g € “w.

2 ®is 2-coherent if it is alternating and g + Qgn =" g, for all
f,g, h e “w. (All functions restricted to /(f A g A h).)

3 ® is 2-trivial if there is a family
V= {(r: I(f) > Z|fe“w)
such that 1z — ¥r =" g for all f,g € “w.

A 2-trivial family is 2-coherent. A non-2-trivial 2-coherent family ®
is an example of incompactness: each local family {¢g | f,g < h}
(for a fixed h € “w) is 2-trivial, as witnessed by the family

(—pm | f < h), but the entire family is not.



A reframing

Coherence and triviality can be reframed in terms of oriented sums
of functions indexed by maximal faces of simplices whose vertices
are elements of “w. For a finite sequence f= (fo,...,fa—1), let
I(f) denote I(fo) N ... N I(f,_1). In particular, we let /() = w?.

A 1-dimensional family ® = (pr | f € “w) is coherent if the
oriented sum on the boundary of every 1-simplex vanishes mod

finite:
/7
L
\Pj+ (‘\'P#):*D

It is trivial if the information in the 1-dimensional family ® is
contained (mod finite) in a 0-dimensional family (v : 1(0) — Z).



A reframing

A 2-dimensional family ® = (g : I(f,g) = Z | f,g € “w) is
coherent if the oriented sum on the boundary of every 2-simplex

vanishes mod finite:
h
AN
oN
o—T—‘_'?‘
= B3

LP-F§+ 3h ¥ \PH’- =
‘PS\N’LPH*%S:*O



A reframing
A 2-dimensional family ® = (g : I(f,g) > Z | f,g € “w) is

trivial if the information in the 2-dimensional family ¢ is contained
(mod finite) in a 1-dimensional family (¢¢ : I(f) = Z | f € “w):

3

9y



A reframing

A 3-dimensional family ® = (g - I(f,g,h) = Z | f, g, h € “w) is
coherent if the oriented sum on the boundary of every 3-simplex
vanishes mod finite:

LP;.%};-P \P; 14 +k€:°-fl.{3s+ -ro‘gzr':

°°3

=¥
‘&.F&'“ecc,clt;“p;f,g' ﬁ,r,rl =*0



A reframing
A 3-dimensional family ® = (g - I(f,g,h) = Z | f, g, h € “w) is
trivial if the information in the 3-dimensional family ® is contained
(mod finite) in a 2-dimensional family (¢, | f, g € “w):
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n-dimensional nontrivial coherence

Given a sequence f = (fo,...,fn—1) and i < n, f1 is the sequence
of length n — 1 formed by removing f; from f.

Definition

Fix n > 2, and let @ = (i I(AF) - Z]fe(w )">

1 & is alternating if @7 = sgn(o)p, 7y for all f € (“w)" and all
permutations o.

2 & is n-coherent if it is alternating and Y°7_o(—1)"¢z =* 0 for
all £ e (Yw)™H,

3 & is n-trivial if there is an alternating family
<¢F: IN) = Z | Fe (ww)"*1>

such that 370 (—1)/4ps =* 7 for all f € (“w)".



lim” A and nontrivial coherence

Coherent and trivial can now be thought of as 1-coherent and
1-trivial.

Theorem (Mardegi¢-Prasolov (n = 1), '88, [3], Bergfalk
(n>2),'17, [1])
Fix n > 1. Then lim" A = 0 if and only if every n-coherent family

fe (ww)">

is n-trivial.

Thus, to prove that lim” A = 0, it suffices to show that every
n-coherent family is n-trivial.



Additivity of homology

Definition

A homology theory is additive on a class of topological spaces C if,
for every natural number p and every family {X; | i € J} such that
each Xj and [], X; are in C, we have

D H(X) = Hy([] %)
J J

via the map induced by the inclusions

X,' = HX,‘.
J



Additivity of strong homology

Let X" denote the n-dimensional infinite earring space, i.e., the
one-point compactification of an infinite countable sum of copies
of the n-dimensional open unit ball. Let H,(X) denote the p*®
strong homology group of X.

Theorem (Mardesi¢-Prasolov, ‘88, [3])
Suppose that 0 < p < n are natural numbers. Then

B, = [
if and only if lim""P A = 0.

Consequently, if strong homology is additive on closed subsets of
Euclidean space, then lim” A =0 for all n > 1.






Condensed mathematics

The question of the consistency of lim” A =0 for n > 1 arose
independently in recent work of Clausen and Scholze on condensed
mathematics, a new approach to doing algebra in situations in
which the algebraic structures carry topologies. They introduce the
category of condensed abelian groups, which is a much nicer
category algebraically than the category of topological abelian
groups. The natural question of whether pro-abelian groups embed
fully faithfully into condensed abelian groups is equivalent, in its
simplest case, to the question of whether lim” A =0 for n > 1.



Looking ahead

We are now interested in the following general questions:

Question

What can be said about the conditions under which lim" A = 0 for
n>1.

Question

In particular, is it consistent that lim" A = 0 simultaneously for all
n>17

Question

What happens with lim™ A* for other natural inverse systems A*?

Some partial answers will come in the next lecture.



References

Jeffrey Bergfalk, Strong homology, derived limits, and set
theory, Fund. Math. 236 (2017), no. 1, 71-82.

Alan Dow, Petr Simon, and Jerry E. Vaughan, Strong
homology and the proper forcing axiom, Proc. Amer. Math.
Soc. 106 (1989), no. 3, 821-828.

S. Mardesi¢ and A. V. Prasolov, Strong homology is not
additive, Trans. Amer. Math. Soc. 307 (1988), no. 2, 725-744.

Stevo Todor&evi¢, Partition problems in topology,
Contemporary Mathematics, vol. 84, American Mathematical
Society, Providence, RI, 1989.



