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Review

Recall:

• For f ∈ ωω, I (f ) := {(i , j) ∈ ω2 | j ≤ f (i)}.
• Suppose that Φ = ⟨φf : I (f ) → Z | f ∈ ωω⟩ is a family of

functions.
• Φ is coherent if φf ↾ I (f ∧ g) =∗ φg ↾ I (f ∧ g) for all

f , g ∈ ωω.
• Φ is trivial if there is ψ : ω2 → Z such that φf =

∗ ψ ↾ I (f ) for
all f ∈ ωω.

• d = ℵ1 ⇒ there exists a nontrivial coherent family.

• After adding ℵ2-many Cohen reals, every coherent family is
trivial.

• OCA ⇒ every coherent family is trivial.



II. Homological origins



Inverse systems

Definition

Suppose that (Γ,≤) is a directed set.
An inverse system (of abelian groups)
indexed by Γ is a family
A = ⟨Au, πuv | u ≤ v ∈ Γ⟩ such that:

• for all u ∈ Γ, Au is an abelian
group;

• for all u ≤ v ∈ Γ, πuv : Av → Au

is a group homomorphism;

• for all u ≤ v ≤ w ∈ Γ,
πuw = πuv ◦ πvw .



Level morphisms

If A and B are two inverse systems
indexed by the same directed set, Γ,
then a level morphism from A to B
is a family of group homomorphisms
f = ⟨fu : Au → Bu | u ∈ Γ⟩ such
that, for all u ≤ v ∈ Γ,
πBuv ◦ fv = fu ◦ πAuv .

With this notion of morphism, the class of all inverse systems
indexed by a fixed directed set Γ becomes a well-behaved category
AbΓ

op
(in particular, it is an abelian category).



Inverse limits

If A is an inverse system indexed by Γ, then we can form the
inverse limit, limA, which is itself an abelian group. Concretely,
limA can be seen as the subgroup of

∏
u∈Γ Au consisting of all

sequences ⟨au | u ∈ Γ⟩ such that, for all u ≤ v ∈ Γ, we have
au = πuv (av ).

If A and B are inverse systems and f : A → B, then f lifts to a
group homomorphism lim f : limA → limB. Concretely, this is
done by letting lim f(⟨au | u ∈ Γ⟩) = ⟨fu(au) | u ∈ Γ⟩ for all
⟨au | u ∈ Γ⟩ ∈ limA.

This turns lim into a functor from the category AbΓ
op

of inverse
systems indexed by Γ to the category Ab of abelian groups.

Question: How “nice” is this functor?



Exact sequences

In the category of inverse systems, kernels, images, and quotients
can be defined pointwise in the obvious way. For example, if
f : A → B is a level morphism, then ker(f) can be seen as the
inverse system ⟨ker(fu), πuv | u ≤ v ∈ Γ⟩, where πuv is simply
πAuv ↾ ker(fv ).

We say that a pair of morphisms A
f−→ B

g−→ C is exact at B if
im(f) = ker(g). A short exact sequence is a sequence

0 → A
f−→ B

g−→ C → 0 that is exact at A, B, and C.

In a short exact sequence as above, we have ker(f) = 0 (f is
injective) and im(g) = C (g is surjective). It can be helpful to
think of A as a subobject of B and to think of C as the quotient
B/A.



Exact functors

A functor F between abelian categories is said to be exact if it
preserves short exact sequences, i.e., if, whenever

0 → A
f−→ B

g−→ C → 0 is exact in the source category of F ,

0 → FA
F f−→ FB

Fg−−→ FC → 0 is exact in the target category of F .

The inverse limit functor is left exact: if 0 → A
f−→ B

g−→ C is exact
at A and B, then 0 → limA

lim f−−→ limB
lim g−−−→ limC is exact at

limA and limB. However, it fails to be exact, i.e., even if
im(g) = C, we might have im(lim g) ̸= limC.

The failure of lim to be exact essentially amounts to the failure of
lim to preserve quotients: if the quotient system B/A is defined,
then it need not be the case that limB/A ∼= limB/ limA.



An example (Γ = ω)

0 A B C 0

...
...

...
...

...

0 Z Z Z/3 0

0 Z Z Z/3 0

0 Z Z Z/3 0

f g

×2 ×2 ×2

×3

×2

mod 3

×2 ×2

×3

×2

mod 3

×2 ×2

×3 mod 3

limA = limB = 0 and limC = Z/3, so applying lim to this short
exact sequence yields 0 → 0 → 0 → Z/3 → 0, which is not exact
at Z/3.



Derived functors
Given any left exact functor F , there is a general procedure for
producing a sequence of (right) derived functors ⟨F n | n ∈ ω \ {0}⟩
that “measure” the failure of the functor F to be exact. These
derived functors then take short exact sequences

0 A B C 0f g

to long exact sequences

0 FA FB FC

F 1A F 1B F 1C

F 2A F 2B F 2C . . .

F f Fg

δ
F 1f F 1g

δ
F 2f F 2g

We will be interested in the derived functors ⟨limn | n ∈ ω \ {0}⟩.



The system A

Consider the directed set (ωω,≤), and define an inverse system
A = ⟨Af , πfg | f ≤ g ∈ ωω⟩ as follows:

• Af =
⊕

I (f ) Z
• πfg : Ag → Af is the natural projection map.

In other words, Ag is the group of finitely supported functions
φ : I (g) → Z, and, if f ≤ g , then πfg takes such a function φ to
φ ↾ I (f ).

Question: What is limA?
Answer: limA ∼=

⊕
ω

∏
ω Z.

Define B = ⟨Bf , πfg | f ≤ g ∈ ωω⟩ similarly by letting
Bf =

∏
I (f ) Z.

Question: What is limB?
Answer: limB ∼=

∏
ω2 Z.



lim1A

There is a natural inclusion morphism i : A → B and a quotient
morphism q : B → B/A = ⟨Bf /Af , πfg | f ≤ g ∈ ωω⟩. Then the
short exact sequence

0 A B B/A 0i q

gives rise to the long exact sequence

0 limA limB limB/A

lim1A lim1B lim1B/A

lim2A lim2B lim2B/A . . .

lim i lim q

δ

lim1 i lim1 q

δ

lim2 i lim2 q



lim1A

It can be shown that limn B = 0 for all n ∈ ω \ {0}, so this long
exact sequence becomes

0 limA limB limB/A

lim1A 0 lim1B/A

lim2A 0 lim2B/A . . .

lim ι lim q

δ

δ

It follows that lim1A ∼= limB/A
im(lim q) and, for n ≥ 1,

limn+1A ∼= limn(B/A).



lim1A
We have lim1A ∼= limB/A

im(lim q) .

What is limB/A? Recall that

B/A =

〈∏
I (f )

Z/
⊕
I (f )

Z, πfg

∣∣∣∣∣∣ f ≤ g ∈ ωω

〉
.

limB/A therefore consists of families ⟨[φf ] | f ∈ ωω⟩ such that

• φf ∈ Bf , i.e., φf : I (f ) → Z;
• [φf ] is the equivalence class of all functions φ : I (f ) → Z for

which φf − φ ∈ Af , i.e., all functions φ : I (f ) → Z that differ
from φf in only finitely many places;

• for all f ≤ g ∈ ωω, we have [φf ] = [πfgφg ] = [φg ↾ I (f )], i.e.,
φf =∗ φg ↾ I (f ).

Thus, limB/A consists precisely of (equivalence classes of)
coherent families of functions!



lim1A

We have lim1A ∼= limB/A
im(lim q) and limB/A consists of equivalence

classes of coherent families of functions.

What is im(limq)? limq : limB → limB/A. Recall that
limB ∼=

∏
ω2 Z, so limB can be thought of as the set of all

ψ : ω2 → Z. Such a function ψ gets sent by limq to
⟨[ψ ↾ I (f )] | f ∈ ωω⟩, which is (the equivalence class of) a coherent
family that is trivial, as witnessed by ψ.

Also, (the equivalence class of) every trivial coherent family lies in
im(limq): if ⟨φf | f ∈ ωω⟩ is trivialized by ψ : ω2 → Z, then
⟨[φf ] | f ∈ ωω⟩ = limq(ψ).

So we can think of lim1A as coherent families of functions
trivial coherent families of functions .

In particular, lim1A = 0 if and only if every coherent family of
functions is trivial.



2-dimensional nontrivial coherence

Definition

Let Φ = ⟨φfg : I (f ∧ g) → Z | f , g ∈ ωω⟩.
1 Φ is alternating if φfg = −φgf for all f , g ∈ ωω.

2 Φ is 2-coherent if it is alternating and φfg + φgh =∗ φfh for all
f , g , h ∈ ωω. (All functions restricted to I (f ∧ g ∧ h).)

3 Φ is 2-trivial if there is a family

Ψ = ⟨ψf : I (f ) → Z | f ∈ ωω⟩

such that ψg − ψf =∗ φfg for all f , g ∈ ωω.

A 2-trivial family is 2-coherent. A non-2-trivial 2-coherent family Φ
is an example of incompactness: each local family {φfg | f , g < h}
(for a fixed h ∈ ωω) is 2-trivial, as witnessed by the family
⟨−φfh | f < h⟩, but the entire family is not.



A reframing

Coherence and triviality can be reframed in terms of oriented sums
of functions indexed by maximal faces of simplices whose vertices
are elements of ωω. For a finite sequence f⃗ = ⟨f0, . . . , fn−1⟩, let
I (f⃗ ) denote I (f0) ∩ . . . ∩ I (fn−1). In particular, we let I (∅) = ω2.

A 1-dimensional family Φ = ⟨φf | f ∈ ωω⟩ is coherent if the
oriented sum on the boundary of every 1-simplex vanishes mod
finite:

It is trivial if the information in the 1-dimensional family Φ is
contained (mod finite) in a 0-dimensional family ⟨ψ∅ : I (∅) → Z⟩.



A reframing
A 2-dimensional family Φ = ⟨φfg : I (f , g) → Z | f , g ∈ ωω⟩ is
coherent if the oriented sum on the boundary of every 2-simplex
vanishes mod finite:



A reframing

A 2-dimensional family Φ = ⟨φfg : I (f , g) → Z | f , g ∈ ωω⟩ is
trivial if the information in the 2-dimensional family Φ is contained
(mod finite) in a 1-dimensional family ⟨ψf : I (f ) → Z | f ∈ ωω⟩:



A reframing

A 3-dimensional family Φ = ⟨φfgh : I (f , g , h) → Z | f , g , h ∈ ωω⟩ is
coherent if the oriented sum on the boundary of every 3-simplex
vanishes mod finite:



A reframing
A 3-dimensional family Φ = ⟨φfgh : I (f , g , h) → Z | f , g , h ∈ ωω⟩ is
trivial if the information in the 3-dimensional family Φ is contained
(mod finite) in a 2-dimensional family ⟨ψfg | f , g ∈ ωω⟩:



n-dimensional nontrivial coherence

Given a sequence f⃗ = (f0, . . . , fn−1) and i < n, f⃗ i is the sequence
of length n − 1 formed by removing fi from f⃗ .

Definition

Fix n ≥ 2, and let Φ =
〈
φ
f⃗
: I (∧f⃗ ) → Z

∣∣∣ f⃗ ∈ (ωω)n
〉
.

1 Φ is alternating if φ
f⃗
= sgn(σ)φ

σ(f⃗ )
for all f⃗ ∈ (ωω)n and all

permutations σ.

2 Φ is n-coherent if it is alternating and
∑n

i=0(−1)iφ
f⃗ i
=∗ 0 for

all f⃗ ∈ (ωω)n+1.

3 Φ is n-trivial if there is an alternating family〈
ψ
f⃗
: I (∧f⃗ ) → Z

∣∣∣ f⃗ ∈ (ωω)n−1
〉

such that
∑n−1

i=0 (−1)iψ
f⃗ i
=∗ φ

f⃗
for all f⃗ ∈ (ωω)n.



limn A and nontrivial coherence

Coherent and trivial can now be thought of as 1-coherent and
1-trivial.

Theorem (Mardešić-Prasolov (n = 1), ’88, [3], Bergfalk
(n ≥ 2), ’17, [1])

Fix n ≥ 1. Then limn A = 0 if and only if every n-coherent family

Φ =
〈
φ
f⃗

∣∣∣ f⃗ ∈ (ωω)n
〉

is n-trivial.

Thus, to prove that limn A = 0, it suffices to show that every
n-coherent family is n-trivial.



Additivity of homology

Definition

A homology theory is additive on a class of topological spaces C if,
for every natural number p and every family {Xi | i ∈ J} such that
each Xi and

∐
J Xi are in C, we have⊕

J

Hp(Xi ) ∼= Hp(
∐
J

Xi )

via the map induced by the inclusions

Xi ↪→
∐
J

Xi .



Additivity of strong homology

Let X n denote the n-dimensional infinite earring space, i.e., the
one-point compactification of an infinite countable sum of copies
of the n-dimensional open unit ball. Let H̄p(X ) denote the pth

strong homology group of X .

Theorem (Mardešić-Prasolov, ‘88, [3])

Suppose that 0 < p < n are natural numbers. Then⊕
N

H̄p(X
n) = H̄p(

∐
N

X n)

if and only if limn−p A = 0.

Consequently, if strong homology is additive on closed subsets of
Euclidean space, then limn A = 0 for all n ≥ 1.



An infinite earring (X 1)



Condensed mathematics

The question of the consistency of limn A = 0 for n ≥ 1 arose
independently in recent work of Clausen and Scholze on condensed
mathematics, a new approach to doing algebra in situations in
which the algebraic structures carry topologies. They introduce the
category of condensed abelian groups, which is a much nicer
category algebraically than the category of topological abelian
groups. The natural question of whether pro-abelian groups embed
fully faithfully into condensed abelian groups is equivalent, in its
simplest case, to the question of whether limn A = 0 for n ≥ 1.



Looking ahead

We are now interested in the following general questions:

Question

What can be said about the conditions under which limn A = 0 for
n > 1.

Question

In particular, is it consistent that limn A = 0 simultaneously for all
n ≥ 1?

Question

What happens with limn A∗ for other natural inverse systems A∗?

Some partial answers will come in the next lecture.
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