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Let λ be an infinite cardinal.

A λ-tree is a tree (T , <T ) of height λ all whose levels are
smaller than λ.

Definition

1 A λ-Aronszajn tree is a λ-tree which has no branch.

2 A λ+-tree T is called special if there exists a function
f : T → λ such that for s, t ∈ T, if s <T t, then f (s) 6= f (t).

3 A λ-Kurepa tree is a λ-tree which has more than λ many
branches.
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Definition

1 A λ-Aronszajn tree is a λ-tree which has no branch.

2 A λ+-tree T is called special if there exists a function
f : T → λ such that for s, t ∈ T, if s <T t, then f (s) 6= f (t).

i.e., a specializing function is injective on linearly ordered sets
a branch would induce an injection from λ+ to λ:

special trees have no branches!

a λ+-tree is special ⇐⇒ it is the union of λ many antichains

- one of the λ many antichains would have size λ+

- Therefore, a Suslin tree cannot be special
- . . . you can also view it in the following way: if there were a

special Suslin tree, forcing with it would result in a special tree
which has a branch, so λ+ would be collapsed, contradicting
the λ+-c.c. of the Suslin tree.
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Definition

1 A λ-Aronszajn tree is a λ-tree which has no branch.

2 A λ+-tree T is called special if there exists a function
f : T → λ such that for s, t ∈ T, if s <T t, then f (s) 6= f (t).

Fact

1 There are no ℵ0-Aronszajn trees. (König’s Lemma)

2 There are always ℵ1-Aronszajn trees.
3 the existence of ℵ2-Aronszajn trees is independent of ZFC:

under CH, there exists an ℵ2-Aronszajn tree
in Mitchell’s model, the tree property on ℵ2 holds (needs a
weakly compact cardinal)

4 If 2λ = λ+, then there exists a special λ++-Aronszajn tree.

5 If κ is inaccessible, then

there is a κ-Aronszajn tree ⇐⇒ κ is not weakly compact.
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Definition

A λ-Kurepa tree is a λ-tree which has more than λ many
branches.

Fact

1 There is an ℵ0-Kurepa tree (namely 2<ω).
2 the existence of ℵ1-Kurepa trees is independent of ZFC:

under ♦+ (i.e., in particular in V = L), there exists an
ℵ1-Kurepa tree
it is consistent that there exists no ℵ1-Kurepa tree (needs an
inaccessible cardinal)



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

Definition

A λ-Kurepa tree is a λ-tree which has more than λ many
branches.

Fact

1 There is an ℵ0-Kurepa tree (namely 2<ω).

2 the existence of ℵ1-Kurepa trees is independent of ZFC:

under ♦+ (i.e., in particular in V = L), there exists an
ℵ1-Kurepa tree
it is consistent that there exists no ℵ1-Kurepa tree (needs an
inaccessible cardinal)



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

Definition

A λ-Kurepa tree is a λ-tree which has more than λ many
branches.

Fact

1 There is an ℵ0-Kurepa tree (namely 2<ω).
2 the existence of ℵ1-Kurepa trees is independent of ZFC:

under ♦+ (i.e., in particular in V = L), there exists an
ℵ1-Kurepa tree
it is consistent that there exists no ℵ1-Kurepa tree (needs an
inaccessible cardinal)



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

Main Theorem

Theorem

There exists a model of ZFC in which for all 0 < n ∈ ω

there exists an ℵn-Aronszajn tree,

all ℵn-Aronszajn trees are special,

and there exists no ℵn-Kurepa tree.
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Theorem

There exists a model of ZFC in which

there exists an ℵ2-Aronszajn tree,

all ℵ2-Aronszajn trees are special,

and there exists no ℵ2-Kurepa tree and no ℵ1-Kurepa tree.
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Theorem (Laver-Shelah)

There exists a model of ZFC in which

there exists an ℵ2-Aronszajn tree,

all ℵ2-Aronszajn trees are special.

and there exists no ℵ1-Kurepa tree and no ℵ2-Kurepa tree.



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

Theorem (Baumgartner-Malitz-Reinhardt)

There exists a model of ZFC in which

there exists an ℵ1-Aronszajn tree,

all ℵ1-Aronszajn trees are special.

and there exists no ℵ1-Kurepa tree and no ℵ2-Kurepa tree.
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Theorem (Baumgartner-Malitz-Reinhardt)

There exists a model of ZFC in which

there exists an ℵ1-Aronszajn tree, (always true)

all ℵ1-Aronszajn trees are special.

and there exists no ℵ1-Kurepa tree and no ℵ2-Kurepa tree.
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Specializing ℵ1-trees

Definition

Let T be an ℵ1-Aronszajn tree. Let S(T ) be the forcing consisting
of conditions p satisfying the following:

1 p : T → ω is a finite partial function

2 if s, t ∈ dom(p) and s <T t, then p(s) 6= p(t).

The order is given by q ≤ p if q ⊇ p.

1 For t ∈ T , the set of conditions p with t ∈ dom(p) is dense

the generic function f : T → ω is total,
the generic function is a specializing function.

2 if T has a branch b, then S(T ) adds an injection f : b → ω

ω1 is collapsed to ω.

3 If T is Aronszajn, then S(T ) does not collapse cardinals

it has the c.c.c. (difficult)
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Theorem (Baumgartner-Malitz-Reinhardt)

There exists a model of ZFC in which

there exists an ℵ1-Aronszajn tree, (always true)

all ℵ1-Aronszajn trees are special.

1 Start with a model of 2ℵ1 = ℵ2.

2 Use a finite support iteration of length ω2 to specialize
ℵ1-Aronszajn trees.

3 The iteration is c.c.c. (f.s.i. of c.c.c. forcings is c.c.c.)
4 2ℵ1 = ℵ2 stays true during the iteration.
5 Since ℵ1-Aronszajn trees have size ℵ1, there are only ℵ2 many.
6 Use a bookkeeping to specialize all ℵ1-Aronszajn trees.
7 If T is special, then it stays special.
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1 Start with a model of 2ℵ1 = ℵ2.
2 Use a finite support iteration of length ω2 to specialize
ℵ1-Aronszajn trees.

3 The iteration is c.c.c. (f.s.i. of c.c.c. forcings is c.c.c.)
4 2ℵ1 = ℵ2 stays true during the iteration.
5 Since ℵ1-Aronszajn trees have size ℵ1, there are only ℵ2 many.
6 Use a bookkeeping to specialize all ℵ1-Aronszajn trees.

7 If T is special, then it stays special.
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Back to ℵ2-trees:

Theorem (Laver-Shelah)

There exists a model of ZFC in which

there exists an ℵ2-Aronszajn tree,

all ℵ2-Aronszajn trees are special.

In fact, their aim was to get a model of

CH + no ℵ2-Suslin tree.
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Theorem (Laver-Shelah)

There exists a model of ZFC in which

there exists an ℵ2-Aronszajn tree,

all ℵ2-Aronszajn trees are special.

Specializing ℵ1-Aronszajn trees:

Definition

Let T be an ℵ1-Aronszajn tree. Let S(T ) be the forcing consisting
of conditions p satisfying the following:

1 p : T → ω is a finite partial function

2 if s, t ∈ dom(p) and s <T t, then p(s) 6= p(t).

The order is given by q ≤ p if q ⊇ p.

S(T ) has the c.c.c.
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Theorem (Laver-Shelah)

There exists a model of ZFC in which

there exists an ℵ2-Aronszajn tree,

all ℵ2-Aronszajn trees are special.

Specializing ℵ2-Aronszajn trees:

Definition

Let T be an ℵ2-Aronszajn tree. Let S(T ) be the forcing consisting
of conditions p satisfying the following:

1 p : T → ω1 is a countable partial function

2 if s, t ∈ dom(p) and s <T t, then p(s) 6= p(t).

The order is given by q ≤ p if q ⊇ p.

Want S(T ) to have the ℵ2-c.c. (needs a weakly compact)
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Theorem (Laver-Shelah)

There exists a model of ZFC in which

there exists an ℵ2-Aronszajn tree,

all ℵ2-Aronszajn trees are special.

Lemma (Laver-Shelah)

If κ2 is weakly compact, then in the extension by col(ℵ1, <κ2),

κ2 = ℵ2

and S(T ) has the ℵ2-c.c. for each ℵ2-Aronszajn tree T .

1 Use a countable support iteration of length ω3 and
bookkeeping to specialize all ℵ2-Aronszajn trees.

2 It is shown “by hand” that also the iteration has the ℵ2-c.c.
3 Warning: there is no iteration theorem for countable support

iterations with ℵ2-c.c. iterands.
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Theorem (Laver-Shelah)

There exists a model of ZFC in which

there exists an ℵ2-Aronszajn tree,

all ℵ2-Aronszajn trees are special.

There exists an ℵ2-Aronszajn tree, because:

1 col(ℵ1, <κ2) collapses 2ℵ0 to ℵ1.
2 Both col(ℵ1, <κ2) and the subsequent iteration are σ-closed,

so there are no new reals added.
3 So CH holds in the final model (which implies its existence).
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Theorem

There exists a model of ZFC in which

there exists an ℵ2-Aronszajn tree,

all ℵ2-Aronszajn trees are special,

and there exists no ℵ2-Kurepa tree and no ℵ1-Kurepa tree.
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How to avoid Kurepa trees?

Theorem (Silver)

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
There is no ℵn-Kurepa tree in the extension by L.

Lemma (Silver)

Let R be a forcing which is <ℵn-closed. Then R does not add
branches to ℵn-trees.
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How to avoid Kurepa trees?

Theorem (Silver)

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
There is no ℵn-Kurepa tree in the extension by L.

Lemma (Silver)

Let R be a forcing which is <ℵn-closed. Then R does not add
branches to ℵn-trees.

Lemma (Unger)

In V , let

P be a forcing which has the ℵn-c.c., and

R be a forcing which is <ℵn-closed.

In V P, let T be an ℵn-tree. Then forcing with R over V P does not
add branches to T .



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

How to avoid Kurepa trees?

Theorem (Silver)

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
There is no ℵn-Kurepa tree in the extension by L.

The following is a generalization of Silver’s Theorem:

Lemma

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
In V L, let Q be a forcing of size ≤ ℵn such that

either Q is <ℵn-distributive

or Q has the ℵn-c.c.

Then there is no ℵn-Kurepa tree in V L∗Q.



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

How to avoid Kurepa trees?

Theorem (Silver)

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
There is no ℵn-Kurepa tree in the extension by L.

The following is a generalization of Silver’s Theorem:

Lemma

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.

In V L, let Q be a forcing of size ≤ ℵn such that

either Q is <ℵn-distributive

or Q has the ℵn-c.c.

Then there is no ℵn-Kurepa tree in V L∗Q.



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

How to avoid Kurepa trees?

Theorem (Silver)

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
There is no ℵn-Kurepa tree in the extension by L.

The following is a generalization of Silver’s Theorem:

Lemma

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
In V L, let Q be a forcing of size ≤ ℵn such that

either Q is <ℵn-distributive

or Q has the ℵn-c.c.

Then there is no ℵn-Kurepa tree in V L∗Q.



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

How to avoid Kurepa trees?

Theorem (Silver)

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
There is no ℵn-Kurepa tree in the extension by L.

The following is a generalization of Silver’s Theorem:

Lemma

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
In V L, let Q be a forcing of size ≤ ℵn such that

either Q is <ℵn-distributive

or Q has the ℵn-c.c.

Then there is no ℵn-Kurepa tree in V L∗Q.



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

How to avoid Kurepa trees?

Theorem (Silver)

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
There is no ℵn-Kurepa tree in the extension by L.

The following is a generalization of Silver’s Theorem:

Lemma

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
In V L, let Q be a forcing of size ≤ ℵn such that

either Q is <ℵn-distributive

or Q has the ℵn-c.c.

Then there is no ℵn-Kurepa tree in V L∗Q.



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

How to avoid Kurepa trees?

Theorem (Silver)

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
There is no ℵn-Kurepa tree in the extension by L.

The following is a generalization of Silver’s Theorem:

Lemma

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
In V L, let Q be a forcing of size ≤ ℵn such that

either Q is <ℵn-distributive

or Q has the ℵn-c.c.

Then there is no ℵn-Kurepa tree in V L∗Q.



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

Lemma

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
In V L, let Q be a forcing of size ≤ ℵn such that

either Q is <ℵn-distributive

or Q has the ℵn-c.c.

Then there is no ℵn-Kurepa tree in V L∗Q.

L = col(ℵn, <λ) =
∏
α<λ col(ℵn, α) = L<µ ∗ L[µ,λ), with

L<µ = col(ℵn, <µ) =
∏
α<µ col(ℵn, α),

L[µ,λ) =
∏
µ≤α<λ col(ℵn, α).

Let T be an ℵn-tree in V L∗Q.
We can fix µ < λ such that

Q ∈ V L<µ , and
T ∈ V L<µ∗Q.

Note that, in V L<µ∗Q, we have

2ℵn < λ,
and hence |[T ]| < λ.
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V L<µ∗Q |= |[T ]| < λ.
L = L<µ ∗ L[µ,λ).

Now L ∗Q is forcing equivalent to L<µ ∗Q ∗ Ľ[µ,λ).

1 If Q is <ℵn-distributive, L[µ,λ) is <ℵn-closed in V L<µ∗Q.
So, by Silver’s Lemma, it does not add branches to T .

2 If Q has the ℵn-c.c., Unger’s Lemma implies that
L[µ,λ) does not add branches to T .

Thus T has less than λ = ℵn+1 many branches in V L∗Q,
so T is not a Kurepa tree.
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so T is not a Kurepa tree.
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Theorem

There exists a model of ZFC in which

there exists an ℵ2-Aronszajn tree,

all ℵ2-Aronszajn trees are special,

and there exists no ℵ2-Kurepa tree and no ℵ1-Kurepa tree.

Start with a ground model in which
κ2 is supercompact, and
κ3 is weakly compact, with κ3 > κ2.

Force with L2 ∗ L3 := col(ℵ1, <κ2) ∗ col(κ2, <κ3),
so κ2 becomes ℵ2, and κ3 becomes ℵ3.

Then use forcings S(T ) to specialize all ℵ2-Aronszajn trees.

Use a countable support iteration of length ω3 and
bookkeeping to get a model in which all of them are special.
Denote the specializing iteration by Sω3

CH holds in final model: so there exists an ℵ2-Aronszajn tree.
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and there exists no ℵ2-Kurepa tree and no ℵ1-Kurepa tree.

All iterands S(T ) and the whole iteration Sω3 have the ℵ2-c.c.

Use the supercompact embedding of κ2 together with a
combinatorial argument (quite involved).

It remains to show that in the final model V L2∗L3∗Sω3 ,
1 there are no ℵ1-Kurepa trees, and
2 there are no ℵ2-Kurepa trees.



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

Theorem

There exists a model of ZFC in which

there exists an ℵ2-Aronszajn tree,

all ℵ2-Aronszajn trees are special,

and there exists no ℵ2-Kurepa tree and no ℵ1-Kurepa tree.

All iterands S(T ) and the whole iteration Sω3 have the ℵ2-c.c.

Use the supercompact embedding of κ2 together with a
combinatorial argument (quite involved).

It remains to show that in the final model V L2∗L3∗Sω3 ,
1 there are no ℵ1-Kurepa trees, and
2 there are no ℵ2-Kurepa trees.



Definitions and facts Main Theorem Aronszajn trees Kurepa trees Aronszajn and Kurepa trees All ℵn Successors of regulars

No ℵ1-Kurepa trees

Lemma (Capturing ℵ1-trees by suitable subforcings)

Let T be an ℵ1-tree in V L2∗L3∗Sω3 . Then, in V L2 , there exists Q
such that

1 Q is a regular subforcing of L3 ∗ Sω3 such that T ∈ V L2∗Q,

2 |Q| < ℵ2,

3 Q is σ-closed, and

4 (L3 ∗ Sω3)/Q is σ-closed.

Lemma

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
In V L, let Q be a forcing of size ≤ ℵn such that

(either) Q is <ℵn-distributive

Then there is no ℵn-Kurepa tree in V L∗Q.
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3 Q is σ-closed, and

4 (L3 ∗ Sω3)/Q is σ-closed.

Apply the generalization of Silver’s Theorem: T is not an
ℵ1-Kurepa tree in V L2∗Q.

By (4), using Silver’s Lemma, (L3 ∗ Sω3)/Q does not add
branches to T .
So T is not an ℵ1-Kurepa tree in V L2∗L3∗Sω3 .
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We use the following lemma:

Lemma (Mitchell)

Let P be a forcing where P× P has the ℵn-c.c.. Then P does not
add branches to trees of height ℵn.

Let T ∈ V L2∗L3∗Sω3 be an ℵ2-tree.
Since Sω3 has the ℵ2-c.c., there exists α < ω3 such that
T ∈ V L2∗L3∗Sα .

Lemma

Let λ be an inaccessible cardinal and L = col(ℵn, <λ) with n ≥ 1.
In V L, let Q be a forcing of size ≤ ℵn such that

(or) Q has the ℵn-c.c.

Then there is no ℵn-Kurepa tree in V L∗Q.
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ℵ2-c.c., so Sω3/Sα does not add branches to T .
So T is not an ℵ2-Kurepa tree in V L2∗L3∗Sω3 .
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Theorem

It follows from ω-many supercompact cardinals, that there exists a
model of ZFC in which for all 0 < n ∈ ω

there exists an ℵn-Aronszajn tree,

all ℵn-Aronszajn trees are special,

and there exists no ℵn-Kurepa tree.

Use an iteration of Lévy collapses, to make the supercompact
cardinals become the ℵn’s.

Use forcings to specialize all ℵn-Aronszajn trees in a mixed
support iteration.

The iteration can be factorized into a forcing which is
<ℵn-closed, followed by a forcing which has the ℵn-c.c.

Capture an ℵn-tree with a subforcing of size at most ℵn.

Show that it is not an ℵn-Kurepa tree here.

Show that the quotient forcing does not add branches.
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The iteration can be factorized into a forcing which is
<ℵn-closed, followed by a forcing which has the ℵn-c.c.

Capture an ℵn-tree with a subforcing of size at most ℵn.

Show that it is not an ℵn-Kurepa tree here.

Show that the quotient forcing does not add branches.
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Theorem

It follows from a proper class of supercompact cardinals, that there
exists a model of ZFC in which for all regular cardinals κ

there exists a κ+-Aronszajn tree,

all κ+-Aronszajn trees are special,

and there exists no κ+-Kurepa tree.

Use an Easton support iteration to combine the forcings which
work for ω-many successive regular cardinals.
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It follows from a proper class of supercompact cardinals, that there
exists a model of ZFC in which for all regular cardinals κ

there exists a κ+-Aronszajn tree,

all κ+-Aronszajn trees are special,

and there exists no κ+-Kurepa tree.

Use an Easton support iteration to combine the forcings which
work for ω-many successive regular cardinals.
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Thank you!
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Question

Can we specialize trees of height ℵn which have no cofinal branches
but levels of size ≥ ℵn? Is it possible to specialize these trees and
control the existence of ℵn-Kurepa trees at the same time?

We can also be more precise about the Kurepa trees:

Question

Can we control the exact number of branches of the ℵn-Kurepa
trees in a model in which all ℵn-Aronszajn trees are special?

Question

Is it possible to specialize Aronszajn trees while keeping limit
cardinals strong limit?

Question

Is it possible to obtain a model for the main theorem (at all
successors of regulars) in which there are still inaccessibles?
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