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Theorem (Bowen–Kun–S.)

Any bipartite hyperfinite a.e. one-ended regular graphing admits a
measurable perfect matching.
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Recall

Structure of extreme points

If ϕ is an extreme point of CG, then for a.e. edge e ∈ E(G) we
have

ϕ(e) ∈ {0, 1

2
, 1}

and the set of edges on which ϕ = 1
2 is a disjoint union of lines,

which we denote L(ϕ).

Connected toasts
Any hyperfinite a.e. one-ended regular graphing admits a
connected toast.
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Lemma
Suppose G is hyperfinite and one-ended and L ⊆ G is a family of
disjoint lines of positive measure. For every K there exists are
Borel families C1, . . . , CK , each consisting of pariwise
edge-disjoint cycles such that

I each edge in G \ L is
covered by at most one of
C1 ∪ . . . ∪ CK ,

I at least half of the edges in
L are covered by all
C1 ∩ . . . ∩ CK
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Proof
The proof uses a connected toast to inscribe cycles into bigger and
bigger elements of the toast.
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Claim
Any regular graphing admits a measurable fractional perfect
matching τ which is positive on all its edges.

Proof

Put

τ(e) =
1

d
,

where d is the degree of G.
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Lemma
Given an extreme point ϕ of CG such that µ(L(ϕ)) > 0 there
exists an extreme point ψ of CG such that

µ(L(ψ)) < µ(L(ϕ)).

Improvement measure

To estimate µ(L(ψ)) for ψ in CG we will use the fact that

µ(L(ψ)) = 1− 2

∫
E(G)

|ψ(e)− 1

2
|dµ
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Proof of the lemma
Given an extreme point ϕ of CG such that µ(L(ϕ)) > 0 we will
find an extreme point ψ of CG such that∫

E(G)
|ϕ(e)− 1

2
|dµ <

∫
E(G)

|ψ(e)− 1

2
|dµ.

Proof
Choose K very big and λ very small and consider

ρ = (1− λ)ϕ+ λτ

where τ = 1
d as in the previous claim.
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Note that ρ is still a fractional perfect matching such that

0 < ρ(e) < 1

on every edge. It does not lie on the extreme boundary of CG, and
it can be distorted slightly at every edge and still be in CG.

Choose a small ε < λ.
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Circuits
Use the previous lemma to find families of cycles C1, . . . , CK for
L = L(ϕ).

Alternating circuits

For each i ≤ K consider the function ζi :
⋃
Ci → {±ε} which

alternates ±ε on the edges of (necessarily even) cycles in Ci
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Random circuits
Consider independent identically distributed (iid) random
variables:

Z1(t), Z2(t) . . . ∈ {−1, 1}.

(for example for t ∈ {−1, 1}N let Zi(t) = t(i)).

For every t consider the following distorted fractional perfect
matching

ρt = ρ+

K∑
i−1

Zi(t)ζi
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Theorem (Berry–Esseen)

If Y1, Y2 . . . are iid with EYi = 0, then

lim
k→∞

E|
k∑
i=1

Yi|/
√
k = E|N | > 0,

where N has normal distribution.
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Consequence

The latter implies that given K large enough, for an edge
e ∈ L(ϕ) we have

Et|ρt(e)−
1

2
| = ε · Ω(

√
K)

On the other hand, for an edge e ∈ G \ L(ϕ) we have
ϕ(e) ∈ {0, 1} and the distortion |ρt(e)− ϕ(e)| is small

|ρt(e)−
1

2
| > 1

2
− 2λ
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Expected distortion

By Fubini’s theorem, we get that in expected value:∫
E(G)

|ϕ(e)− 1

2
|dµ < Et

∫
E(G)

|ρt(e)−
1

2
|dµ.

Find a witness
Since this is a convex condition, we can find t0 such that∫

E(G)
|ϕ(e)− 1

2
|dµ <

∫
E(G)

|ρt0(e)− 1

2
|dµ.
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Theorem (Choquet–Bishop–de Leeuw)

Each element of a compact convex set is a barycenter of a
probability measure supported by the set of extreme points.
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Applying this to ρt0 , we can find an extreme point ψ which
satisfies the same property as ρt0 , i.e.∫

E(G)
|ϕ(e)− 1

2
|dµ <

∫
E(G)

|ψ(e)− 1

2
|dµ.

This implies that µ(L(ψ)) < µ(L(ϕ)) and ends the proof of the
lemma.
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Limit construction
To get a perfect matching, we apply the above lemma a countable
number of times.

For countable ordinals α we construct extreme points ϕα of
the set of fractional perfect matchings such that

µ(L(ϕα)) decrease

and the sequence is a.e. convergent

After countably many times we get µ(L(ϕα)) = 0 and ϕα is
then a measurable perfect matching.
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More general version

The proof does not use regularity in an essential way and also
proves the following slightly more general version.

Therem (BKS)

If a bipartite hyperfinite one-ended graphing admits a measurable
fractional perfect matching which is everywhere positive,
then it admits measurable perfect matching.
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A further slightly more general version

Given a function f : V (G)→ Z, a fractional perfect f-matching
in a graph G is a function ϕ : E(G)→ [0, 1] such that∑

y∈NG(x)

ϕ(y) = f(x)

for every x ∈ V (G).

Theorem (BKS)

Given a measurable function f : V → Z If a bipartite hyperfinite
one-ended graphing admits a measurable fractional perfect
f-matching which is everywhere positive and bounded by c, then
it admits an integer-valued measurable fractional perfect
f-matching bounded by c.
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Schreier graphings

Note that any Schreier graphing of a group is regular (r-regular
when r is the size of the symmetric generating set).

Bernoulli shifts
The Bernoulli shift of a group Γ is the action

Γ y [0, 1]Γ

by shift: γ · x(δ) = x(γ−1δ).
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Marked groups

By a marked group (Γ, S) we mean a finitely generated grop Γ
with a fixed set S of generators.

Cayley graphs

From the point of graph theory, a marked group is the same as its
Cayley graph

Bernoulli graphing

Given marked group, we consider the Schreier graphing of the
Bernoulli shift.
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Factor of iid perfect matching

A factor of iid perfect matching of a marked group is a
measurable perfect matching in the Bernoulli graphing.

Equivalently, a factor of iid perfect matching of a Cayley graph G
can be defined as a probability measure on the set of all
perfect matchings on G, which is a factor of the product
measure on [0, 1]Γ.
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Factor probability measure

Given two actions Γ y (V1, ν1) and Γ y (V2, ν2) the measure ν2 is
a factor of ν1 is there exists a Γ-invariant

f : V1 → V2

such that ν2 is the pushforward of ν1 by f .

In case of a factor iid of perfect matching on a Cayley graph, we
consider the natural action of Γ on the set of perfect matchings
by left multiplication.
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Theorem (Lyons–Nazarov)

For any nonamenable finitely generated group Γ, any bipartite
Cayley graph of Γ has a factor of iid perfect matching.

Question (Lyons–Nazarov)

Which Cayley graphs admit a factor of iid perfect matching?
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Corollary (to the perfect matching theorem)

Any bipartite Cayley graph of a one-ended amenable group
admits a factor of iid perfect matching.

Theorem (Bowen–Kun–S.)

A two-ended group admits a factor of iid perfect matching if and
only if it is not isomorphic to Zn∆ with ∆ finite of odd order.

Marcin Sabok McGill University

Hyperfinite graphings



Circuits Improving a fractional perfect matching Random small distortions Applications

Corollary (to the perfect matching theorem)

Any bipartite Cayley graph of a one-ended amenable group
admits a factor of iid perfect matching.

Theorem (Bowen–Kun–S.)

A two-ended group admits a factor of iid perfect matching if and
only if it is not isomorphic to Zn∆ with ∆ finite of odd order.

Marcin Sabok McGill University

Hyperfinite graphings



Circuits Improving a fractional perfect matching Random small distortions Applications

Corollary

I if Γ is isomorphic to Z n ∆ with |∆| odd, then every
bipartite Cayley graph of Γ does not admit a factor of iid
perfect matching

I if Γ is not isomorphic to Z n ∆ with |∆| odd, then every
bipartite Cayley graph of Γ admits a factor of iid perfect
matching.
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Perfect matchings have applications also in equidecompositions.

Given an action Γ y X, two sets A,B ⊆ X are
equidecomposable if A can be partitioned as

⋃n
i=1Ai such that

B is partitioned as B =
⋃n
i=1 γiAi for some γi ∈ Γ.
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Equidecompositions

The existence of an equidecomposition can be restated as an
existence of a perfect matching in a certain bipartite graphing.

Assuming the sets A and B are disjoint,A and B are
equidecomposable using elements from a finite generating subset
S ⊆ Γ

if and only if

the bipartite Schreier graphing induced on A ∪B has a
perfect matching.
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Theorem (Laczkovich)

Cicrle squaring is possible, i.e. the unit disc and the unit
square on the plane are equidecomposable by translations.
The same holds for any A,B ⊆ Rn of the same positive measure
and dimbox(∂A) < n, dimbox(∂B) < n

Theorem (Grabowski–Máthé–Pikhurko)

Measurable circle squaring is possible, i.e. the unit disc and
the unit square on the plane are equidecomposable by
translations, using measurable pieces.
The same holds for any A,B ⊆ Rn of the same positive measure
and dimbox(∂A) < n, dimbox(∂B) < n
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Corollary (to the perfect matching theorem)

Measurable circle squaring is possible.

and, again, the same holds for any A,B ⊆ Rn of the same positive
measure and dimbox(∂A) < n, dimbox(∂B) < n

The group used in circle squaring is always Zd for d� 1. The
Schreier graphing is thus hyperfinite and one-ended.
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Definition
A subset A ⊆ Rd is uniformly spread (with density α) if there is a
bijection f : A→ 1

d√αZ
d such that supx∈A |f(x)− x| <∞.
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The action of Zd is such that both sets are uniformly spread
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Toast
The bipartite graphing can be approximated by a regular graphing
coming from the distance graph on 1

d√αZ
d ∪ ( 1

d√αZ
d + (1, . . . , 1))
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Positive fractional perfect matching

From this one can easily construct a measurable fractional perfect
matching which is positive on a one-ended set of edges.

Corollary

The bipartite restriction of the Schreier graphing to the union of
disjoint copies circle and the square admits a measurable
perfect matching.
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Balanced orientations
Given a 2r-regular graph G, a balanced orientation of G is an
assignment of orientations to the edges such that for every vertex
x we have

in-deg(x) = out-deg(x)
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Factor of iid balanced orientation
A factor of iid balanced orientation for a (unimodular) graph is
defined as a measurable balanced orientation in a certain graphing.

For Cayley graphs, it is simply a measurable balanced orientation
of the Bernoulli shift.
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Theorem (Bencs, Hrušková, Tóth)

Any non-amenable, quasi-transitive, unimodular graph with all
vertices of even degree has a factor ofiid balanced orientation

Question (Bencs, Hrušková, Tóth)

Does there exist a vertex-transitive graph that is not
quasi-isometric to Z and has no factor of iid balanced orientation?

The perfect matching theorem can be used to answer this question
in the negative.
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Any non-amenable, quasi-transitive, unimodular graph with all
vertices of even degree has a factor ofiid balanced orientation

Question (Bencs, Hrušková, Tóth)
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Given a graph 2r-regular graph G consider its barycentric
subdivision G′ and let f : V (G′)→ N be 1 on the new vertices
and r on V (G).
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Any perfect f-matching in G′ gives a balanced orientation:
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Fractional perfect f -matching

It is easy to see that G′ admits a positive fractional perfect
f-matching.
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Any amenable vertex-transitive graph G which is not
quasi-isometric to Z must be one-ended.

Corollary (to the perfect matching theorem)

Any amenable one-ended 2r-regular graph admits a factor of
of iid balanced orientation.

Corollary

Any vertex-transitive graph that is not quasi-isometric to Z has
a factor of iid balanced orientation.
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