
Big Ramsey degrees of homogeneous structures
part 3: current developments and open problems

Jan Hubička

Department of Applied Mathematics
Charles University

Prague

Winter school 2022, Hejnice

Big picture: known big Ramsey results by proof techniques

Ramsey’s Theorem

Ultrametric spaces

Λ-ultrametric

ω, Unary languages

Local cyclic
order

Big picture: known big Ramsey results by proof techniques

Ramsey’s Theorem

Ultrametric spaces

Λ-ultrametric

ω, Unary languages

Milliken’s Tree Theorem

Order of rationals

Random graph

Simple structures
in binary laguage

Binary structures
with unaries
(bipartite graphs)

Local cyclic
order

Big picture: known big Ramsey results by proof techniques

Ramsey’s Theorem

Ultrametric spaces

Λ-ultrametric

ω, Unary languages

Milliken’s Tree Theorem

Order of rationals

Random graph

Simple structures
in binary laguage

Binary structures
with unaries
(bipartite graphs)

Free amalgamation
in binary laguages
finitely many cliques

Triangle–free graphs
Coding
trees and
forcing

Local cyclic
order

Kk -free
graphs,
k > 3

SDAP

Big picture: known big Ramsey results by proof techniques

Ramsey’s Theorem

Ultrametric spaces

Λ-ultrametric

ω, Unary languages

Milliken’s Tree Theorem

Order of rationals

Random graph

Simple structures
in binary laguage

Binary structures
with unaries
(bipartite graphs)

Free amalgamation
in binary laguages
finitely many cliques

Triangle–free graphs
Coding
trees and
forcing

Product Milliken Tree Theorem

Random structures
in finite language

Local cyclic
order

Kk -free
graphs,
k > 3

SDAP

Triangle constrained
free amalgamation

Big picture: known big Ramsey results by proof techniques

Ramsey’s Theorem

Ultrametric spaces

Λ-ultrametric

ω, Unary languages

Milliken’s Tree Theorem

Order of rationals

Random graph

Simple structures
in binary laguage

Binary structures
with unaries
(bipartite graphs)

Free amalgamation
in binary laguages
finitely many cliques

Triangle–free graphs

Partial orders

Generalised
metric
spaces

Coding
trees and
forcing

Carlson–Simpson
Theorem

Product Milliken Tree Theorem

Random structures
in finite language

Local cyclic
order

Kk -free
graphs,
k > 3

SDAP

Can we find one theorem to rule them all?

S.M. Prokudin-Gorsky: Alim Khan, emir of Bukhara, 1911

Why parameter words are not good for K4-free graphs?

λ λ

λ

λ λ

λ

λ

λ

λ

Why parameter words are not good for K4-free graphs?

λ λ

λ

λ λ

λ

λ

λ

λ

Why parameter words are not good for K4-free graphs?

λ λ

λ

λ λ

λ

λ

λ

λ

Why parameter words are not good for K4-free graphs?

λ λ

λ

λ λ

λ

λ

λ

λ

Coding tree (Dobrinen, Zucker)

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Coding tree (Dobrinen, Zucker)

0 1

00 01 10 11

000 001 010 011 100 101 110

Why Laver’s argument is not good for hypergraphs?

H3

Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!

Why Laver’s argument is not good for hypergraphs?

H3

v0

Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!

Why Laver’s argument is not good for hypergraphs?

H3

v0

v1

Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!

Why Laver’s argument is not good for hypergraphs?

H3

v0

v1

v2

Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!

Why Laver’s argument is not good for hypergraphs?

H3

v0

v1

v2

v3

Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold

Year later we observed that neighbourhood of a vertex is the Random graph!

Why Laver’s argument is not good for hypergraphs?

H3

v0

v1

v2

v3

Colour of a subgraph = shape of meet closure in the tree
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!

Why Laver’s argument is not good for hypergraphs?

H3

v0

v1

v2

R

v0

v1

v2

Colour of a subgraph = shape of meet closure in both trees
Problem: Ramsey theorem for this type of tree does not hold
Year later we observed that neighbourhood of a vertex is the Random graph!

“Unrestricted” structures

Theorem (Balko, Chodounsky, Jan Hubika, Konečný, Vena, 2022)

Big Ramsey degrees of the universal 3-uniform hypergraph are finite.

Theorem (Braunfeld, Chodounsky, de Rancourt, Jan Hubika, Kawach, Konečný, 2022+)

Big Ramsey degrees of the universal hypergraph are finite.

Theorem (Braunfeld, Chodounsky, de Rancourt, Jan Hubika, Kawach, Konečný, 2022+)

Let L be a relational language. Let M be a Fraïssé limit of a free amalgamation class
defined by a set of forbidden structures F . Assume that:

1 for every F ∈ F there exists R ∈ L and x⃗ ∈ RF containing all vertices of F, and
2 M is ω-categorical.

Then M has finite big Ramsey degrees.

1 All results makes use of the product (or vector) form of the Milliken tree theorem.
2 Lower bounds are currently work in progress.
3 We know that the
4 The results can be extended by interposing linear orders and unary functions.

All enumerations tree

Basic idea: produce an amalgamation of all tree of types of enumerations of K4-free
graphs and make type remember the initial segment of enumeration it belongs to.

1 Type is an K4-free graph on vertex set {0, 1, . . . , n − 1, t}. t is a type vertex denoted
by cross.

2 Order is inclusion.

All enumerations tree

Basic idea: produce an amalgamation of all tree of types of enumerations of K4-free
graphs and make type remember the initial segment of enumeration it belongs to.

1 Type is an K4-free graph on vertex set {0, 1, . . . , n − 1, t}. t is a type vertex denoted
by cross.

2 Order is inclusion.

All enumerations tree

Basic idea: produce an amalgamation of all tree of types of enumerations of K4-free
graphs and make type remember the initial segment of enumeration it belongs to.

1 Type is an K4-free graph on vertex set {0, 1, . . . , n − 1, t}. t is a type vertex denoted
by cross.

2 Order is inclusion.

All enumerations tree

1 Every enumeration is a subtree.

2 K4-free graph can be defined naturally on top of this tree.
3 Can we find a good Ramsey theorem for trees like this?

All enumerations tree

1 Every enumeration is a subtree.
2 K4-free graph can be defined naturally on top of this tree.

3 Can we find a good Ramsey theorem for trees like this?

All enumerations tree

1 Every enumeration is a subtree.
2 K4-free graph can be defined naturally on top of this tree.

3 Can we find a good Ramsey theorem for trees like this?

All enumerations tree

1 Every enumeration is a subtree.
2 K4-free graph can be defined naturally on top of this tree.

3 Can we find a good Ramsey theorem for trees like this?

All enumerations tree

1 Every enumeration is a subtree.
2 K4-free graph can be defined naturally on top of this tree.

3 Can we find a good Ramsey theorem for trees like this?

All enumerations tree

1 Every enumeration is a subtree.
2 K4-free graph can be defined naturally on top of this tree.

3 Can we find a good Ramsey theorem for trees like this?

All enumerations tree

1 Every enumeration is a subtree.
2 K4-free graph can be defined naturally on top of this tree.
3 Can we find a good Ramsey theorem for trees like this?

S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:

S1 If S(a, p̄, c) is defined for some a ∈ T , p̄ ∈ T<ω and c ∈ Σ, then S(a, p̄, c) is an
immediate successor of a and all nodes in p̄ have levels at most ℓ(a)− 1.

S2 Injectivity: If S(a, p̄, c) = S(b, q̄, d), then a = b, p̄ = q̄ and c = d .
S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ

such that S(a|ℓ(a)−1, p̄, c) = a.

Example

Consider the binary tree of {0, 1}-words (B,⊑) and denote by r its root. S can be defined
only for empty p̄ as a concatenation.

01011 = S(S(S(S(S(r , (), 0), (), 1), (), 0), (), 1), (), 1).

S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:
S1 If S(a, p̄, c) is defined for some a ∈ T , p̄ ∈ T<ω and c ∈ Σ, then S(a, p̄, c) is an

immediate successor of a and all nodes in p̄ have levels at most ℓ(a)− 1.

S2 Injectivity: If S(a, p̄, c) = S(b, q̄, d), then a = b, p̄ = q̄ and c = d .
S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ

such that S(a|ℓ(a)−1, p̄, c) = a.

Example

Consider the binary tree of {0, 1}-words (B,⊑) and denote by r its root. S can be defined
only for empty p̄ as a concatenation.

01011 = S(S(S(S(S(r , (), 0), (), 1), (), 0), (), 1), (), 1).

S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:
S1 If S(a, p̄, c) is defined for some a ∈ T , p̄ ∈ T<ω and c ∈ Σ, then S(a, p̄, c) is an

immediate successor of a and all nodes in p̄ have levels at most ℓ(a)− 1.
S2 Injectivity: If S(a, p̄, c) = S(b, q̄, d), then a = b, p̄ = q̄ and c = d .

S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ
such that S(a|ℓ(a)−1, p̄, c) = a.

Example

Consider the binary tree of {0, 1}-words (B,⊑) and denote by r its root. S can be defined
only for empty p̄ as a concatenation.

01011 = S(S(S(S(S(r , (), 0), (), 1), (), 0), (), 1), (), 1).

S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:
S1 If S(a, p̄, c) is defined for some a ∈ T , p̄ ∈ T<ω and c ∈ Σ, then S(a, p̄, c) is an

immediate successor of a and all nodes in p̄ have levels at most ℓ(a)− 1.
S2 Injectivity: If S(a, p̄, c) = S(b, q̄, d), then a = b, p̄ = q̄ and c = d .
S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ

such that S(a|ℓ(a)−1, p̄, c) = a.

Example

Consider the binary tree of {0, 1}-words (B,⊑) and denote by r its root. S can be defined
only for empty p̄ as a concatenation.

01011 = S(S(S(S(S(r , (), 0), (), 1), (), 0), (), 1), (), 1).

S-trees
A tree is a (possibly empty) partially ordered set (T ,⪯) such that, for every a ∈ T , the set
{b ∈ T : b ≺ a} is finite and linearly ordered by ⪯.
We denote by ℓ(a) the level of a and by a|n the predecessor of a at level n.

Definition (S-tree)

An S-tree is a quadruple (T ,⪯,Σ,S) where (T ,⪯) is a countable finitely branching tree
with finitely many nodes of level 0, Σ is a set called the alphabet and S is a partial function
S : T ×T<ω ×Σ → T called the successor operation satisfying the following three axioms:
S1 If S(a, p̄, c) is defined for some a ∈ T , p̄ ∈ T<ω and c ∈ Σ, then S(a, p̄, c) is an

immediate successor of a and all nodes in p̄ have levels at most ℓ(a)− 1.
S2 Injectivity: If S(a, p̄, c) = S(b, q̄, d), then a = b, p̄ = q̄ and c = d .
S3 Constructivity: For every node a ∈ T of level at least 1, there exist p̄ ∈ T<ω and c ∈ Σ

such that S(a|ℓ(a)−1, p̄, c) = a.

Example

Consider the binary tree of {0, 1}-words (B,⊑) and denote by r its root. S can be defined
only for empty p̄ as a concatenation.

01011 = S(S(S(S(S(r , (), 0), (), 1), (), 0), (), 1), (), 1).

Level-decomposition

Definition (S-term)

Given an S-tree (T ,⪯,Σ,S), we call a term α an S-term if and only if α ∈ T , or
α = (β, (γ0, γ1, . . . , γn−1), c) where n ∈ ω, all of β, γ0, γ1 . . . γn−1 are S-terms and c ∈ Σ.

Definition (Level decomposition)

Let (T ,⪯,Σ,S) be an S-tree. Given a ∈ T and n < ω, the level n decomposition of a,
denoted by Dn(a), is an S-term defined recursively:

1 If ℓ(a) ≤ n, then
Dn(a) = a.

2 For a = S(b, (p0, . . . , pn−1), c) such that ℓ(a) > n, we let

Dn(a) = (Dn(b), (Dn(p0),Dn(p1), . . . ,Dn(pn−1)), c).

Example

D1(001) = ((0, (), 0), (), 1).

Level-decomposition

Definition (S-term)

Given an S-tree (T ,⪯,Σ,S), we call a term α an S-term if and only if α ∈ T , or
α = (β, (γ0, γ1, . . . , γn−1), c) where n ∈ ω, all of β, γ0, γ1 . . . γn−1 are S-terms and c ∈ Σ.

Definition (Level decomposition)

Let (T ,⪯,Σ,S) be an S-tree. Given a ∈ T and n < ω, the level n decomposition of a,
denoted by Dn(a), is an S-term defined recursively:

1 If ℓ(a) ≤ n, then
Dn(a) = a.

2 For a = S(b, (p0, . . . , pn−1), c) such that ℓ(a) > n, we let

Dn(a) = (Dn(b), (Dn(p0),Dn(p1), . . . ,Dn(pn−1)), c).

Example

D1(001) = ((0, (), 0), (), 1).

Manipulating nodes

We denote the class of all S-terms by T . For a set S ⊆ T and a function f : S → T , we
denote by f (α) the S-term defined recursively as:

f (α) =


f (α) if α ∈ S,
α if α ∈ T \ S,
(f (β), (f (γ0), f (γ1), . . . , f (γn−1)), c) if α = (β, (γ0, γ1, . . . , γn−1), c).

Definition (Level removal)

Given a ∈ T and n < ℓ(a), we let Rn(a) be a node b ∈ T satisfying Dn(b) = rn(Dn+1(a))
where rn is a function rn : T (n + 1) → T defined by rn(d) = d |n. If there is no such node b,
we say that Rn(a) is undefined.

Definition (Level duplication)

Given a ∈ T and m < n ≤ ℓ(a), we let Cn
m(a) be a node b ∈ T satisfying

Dn(b) = cn
m(Dn(a)) where cn

m is a function cn
m : T (n) → T defined by cn

m(d) = (d , p̄, c)
where d |m+1 = S(dm, p̄, c). If there is no such node b, we say that Cn

m(a) is undefined.

Manipulating nodes

We denote the class of all S-terms by T . For a set S ⊆ T and a function f : S → T , we
denote by f (α) the S-term defined recursively as:

f (α) =


f (α) if α ∈ S,
α if α ∈ T \ S,
(f (β), (f (γ0), f (γ1), . . . , f (γn−1)), c) if α = (β, (γ0, γ1, . . . , γn−1), c).

Definition (Level removal)

Given a ∈ T and n < ℓ(a), we let Rn(a) be a node b ∈ T satisfying Dn(b) = rn(Dn+1(a))
where rn is a function rn : T (n + 1) → T defined by rn(d) = d |n. If there is no such node b,
we say that Rn(a) is undefined.

Definition (Level duplication)

Given a ∈ T and m < n ≤ ℓ(a), we let Cn
m(a) be a node b ∈ T satisfying

Dn(b) = cn
m(Dn(a)) where cn

m is a function cn
m : T (n) → T defined by cn

m(d) = (d , p̄, c)
where d |m+1 = S(dm, p̄, c). If there is no such node b, we say that Cn

m(a) is undefined.

Manipulating nodes

We denote the class of all S-terms by T . For a set S ⊆ T and a function f : S → T , we
denote by f (α) the S-term defined recursively as:

f (α) =


f (α) if α ∈ S,
α if α ∈ T \ S,
(f (β), (f (γ0), f (γ1), . . . , f (γn−1)), c) if α = (β, (γ0, γ1, . . . , γn−1), c).

Definition (Level removal)

Given a ∈ T and n < ℓ(a), we let Rn(a) be a node b ∈ T satisfying Dn(b) = rn(Dn+1(a))
where rn is a function rn : T (n + 1) → T defined by rn(d) = d |n. If there is no such node b,
we say that Rn(a) is undefined.

Definition (Level duplication)

Given a ∈ T and m < n ≤ ℓ(a), we let Cn
m(a) be a node b ∈ T satisfying

Dn(b) = cn
m(Dn(a)) where cn

m is a function cn
m : T (n) → T defined by cn

m(d) = (d , p̄, c)
where d |m+1 = S(dm, p̄, c). If there is no such node b, we say that Cn

m(a) is undefined.

Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call a function F : T → T a shape-preserving function if

1 F is level preserving, and

2 F is weakly S-preserving: If a = S(b, p̄, c) then F (a) ⪯ S(F (b),F (p̄), c)
Function f : S → T , S ⊆ T is shape-preserving if it extends to a shape-pres. F : T → T .

Shape(S,S′) is the set all shape-preserving functions f : S → T , f [S] ⊆ S′.

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T , n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω, g ∈ Shape(T (≤n),T) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T)) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T), there exists
F ∈ Shape(T ,T) such that χ is constant when restricted to Shape(T (≤k),F [T]).

Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call a function F : T → T a shape-preserving function if

1 F is level preserving, and

2 F is weakly S-preserving: If a = S(b, p̄, c) then F (a) ⪯ S(F (b),F (p̄), c)
Function f : S → T , S ⊆ T is shape-preserving if it extends to a shape-pres. F : T → T .

Shape(S,S′) is the set all shape-preserving functions f : S → T , f [S] ⊆ S′.

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T , n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω, g ∈ Shape(T (≤n),T) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T)) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T), there exists
F ∈ Shape(T ,T) such that χ is constant when restricted to Shape(T (≤k),F [T]).

Definition (Shape-preserving functions)

Let (T ,⪯,Σ,S) be an S-tree. We call a function F : T → T a shape-preserving function if

1 F is level preserving, and

2 F is weakly S-preserving: If a = S(b, p̄, c) then F (a) ⪯ S(F (b),F (p̄), c)
Function f : S → T , S ⊆ T is shape-preserving if it extends to a shape-pres. F : T → T .

Shape(S,S′) is the set all shape-preserving functions f : S → T , f [S] ⊆ S′.

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T , n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω, g ∈ Shape(T (≤n),T) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T)) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T), there exists
F ∈ Shape(T ,T) such that χ is constant when restricted to Shape(T (≤k),F [T]).

Ramsey theorem for shape-preserving functions

Theorem (Balko, Chodounský, Dobrinen, H., Konečný, Nešetřil, Zucker, Vena, 2021+)

Let (T ,⪯,Σ,S) be an S-tree. Assume that S satisfies the following conditions:

S4 Level removal: For every a ∈ T , n < ℓ(a) such that Dn+1(a) does not use any nodes of
level n, the node Rn(a) is defined.

S5 Level duplication: For every a ∈ T ,m < n ≤ ℓ(a), the node Cn
m(a) is defined.

S6 Decomposition: For every n ∈ ω, g ∈ Shape(T (≤n),T) such that n > 0 and
g̃(n) > g̃(n − 1) + 1, there exists g1 ∈ Shape(T (≤n),T) and
g2 ∈ Shapeg̃(n)−1(T (≤(g̃(n)− 1),T)) such that g̃1(n) = g̃(n)− 1 and g2 ◦ g1 = g.

Then, for every k ∈ ω and every finite colouring χ of Shape(T (≤k),T), there exists
F ∈ Shape(T ,T) such that χ is constant when restricted to Shape(T (≤k),F [T]).

Proof outline (5 pages)
1 Use Hales-Jewett theorem to prove 1-dimensional pigeonhole
2 Use combinatorial forcing to prove ω-dimensional pigeonhole
3 Use fusion like in proof of Milliken’s theorem to prove the theorem

Application to K4-free graphs

Definition (Type)

Type of level n is a K4-free graph A with vertices {0, 1, . . . , n − 1, t}, where t is the type
vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

Application to K4-free graphs

Definition (Type)

Type of level n is a K4-free graph A with vertices {0, 1, . . . , n − 1, t}, where t is the type
vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

A

New vertex:

Application to K4-free graphs

Definition (Type)

Type of level n is a K4-free graph A with vertices {0, 1, . . . , n − 1, t}, where t is the type
vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

A

New vertex:

Application to K4-free graphs

Definition (Type)

Type of level n is a K4-free graph A with vertices {0, 1, . . . , n − 1, t}, where t is the type
vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

A B

New vertex:

Application to K4-free graphs

Definition (Type)

Type of level n is a K4-free graph A with vertices {0, 1, . . . , n − 1, t}, where t is the type
vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

flA(4) = 2

A B P

New vertex:

Application to K4-free graphs

Definition (Type)

Type of level n is a K4-free graph A with vertices {0, 1, . . . , n − 1, t}, where t is the type
vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

flA(4) = 2

A B P E

New vertex:

Application to K4-free graphs

Definition (Type)

Type of level n is a K4-free graph A with vertices {0, 1, . . . , n − 1, t}, where t is the type
vertex.

Definition (Levelled type)

Levelled type of level n is a pair a = (A, flA) where A is a type of level n and fl : n \ {0} → n
is a function satisfying:

1 fla(i) < i .
2 whenever i < j forms an edge of A then flA(j) > i .

Nodes of an S-tree are levelled types ordered by inclusion. Successor operation is an
amalgamation.

0

1

2

3

4

t

flA(4) = 2

A B P E

New vertex:

S(A, (P),E)

Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
7 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)

Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.

3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
7 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)

Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property

6 Define structure on nodes of the S-tree and verify that shape-preserving functions
preserve the structure

7 Verify that envelopes are bounded for nice copies inside nice enumerations (same
was as in Zucker’s paper)

Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure

7 Verify that envelopes are bounded for nice copies inside nice enumerations (same
was as in Zucker’s paper)

Non-forcing proof of Zucker’s theorem

1 Build an S-tree of levelled types:

0

1

2

t

2 Axioms S1, S2, S3 follows by construction.
3 Axiom S4 (level removal) follows from hereditarity of the types
4 Axiom S5 (level duplication) follows from free amalgamation property
5 Axiom S6 (decomposition) follows from free amalgamation property
6 Define structure on nodes of the S-tree and verify that shape-preserving functions

preserve the structure
7 Verify that envelopes are bounded for nice copies inside nice enumerations (same

was as in Zucker’s paper)

Remarks

1 The proof generalizes naturally to strong amalgamation classes including partial
orders, special metric spaces.
(general theorem in work in progress.)

2 Optimal upper bounds on big Ramsey degrees can be achieved.
3 For languages with relations of higher arity the S-tree can be defined analogously

using n-types instead of 1-types. Surprising complication occurs when forbidding
some substructures: the case of free amalgamation classes in finite languages is still
open.

Open problems

1 Big Ramsey degrees for free amalgamation classes in finite binary languages with
infinitely many forbidden substructures.

2 What is the right structural condition for non-free amalgamation classes in finite
binary languages for them to have finite big Ramsey degrees?

3 What about non-unary function symbols?
4 Big Ramsey degrees for free amalgamation classes in finite languages (of higher

arity).
In particular we do not know how to forbid the following:

Open problems

1 Big Ramsey degrees for free amalgamation classes in finite binary languages with
infinitely many forbidden substructures.

2 What is the right structural condition for non-free amalgamation classes in finite
binary languages for them to have finite big Ramsey degrees?

3 What about non-unary function symbols?
4 Big Ramsey degrees for free amalgamation classes in finite languages (of higher

arity).
In particular we do not know how to forbid the following:

Open problems

1 Big Ramsey degrees for free amalgamation classes in finite binary languages with
infinitely many forbidden substructures.

2 What is the right structural condition for non-free amalgamation classes in finite
binary languages for them to have finite big Ramsey degrees?

3 What about non-unary function symbols?

4 Big Ramsey degrees for free amalgamation classes in finite languages (of higher
arity).
In particular we do not know how to forbid the following:

Open problems

1 Big Ramsey degrees for free amalgamation classes in finite binary languages with
infinitely many forbidden substructures.

2 What is the right structural condition for non-free amalgamation classes in finite
binary languages for them to have finite big Ramsey degrees?

3 What about non-unary function symbols?
4 Big Ramsey degrees for free amalgamation classes in finite languages (of higher

arity).
In particular we do not know how to forbid the following:

In a Land of Fantastic Cacti, Fred Payne Clatworthy, Autochrome, 7 x 5", c1929
Mark Jacobs Collection

Optimality

Known characterisations of big Ramsey degrees:
1 1979 Devlin: the order of rationals
2 2008 laflamme, Nguyen Van Th,́ Sauer: Ultrametric spaces
3 2010 Laflamme, Sauer, Vuskanovic: the Rado graph
4 2010 Balko, Chodounský, Hubička, Konečný, Vena, Zucker; independenty Dobrinen:

Triangle free graphs
5 2021+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: universal

partial order
6 2022+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: Free

amalgamation classes in finite binary languages with finitely many forbidden
substructures (96 pages draft)

So far the main application of such result is the completion flow introduced in:
A. Zucker, Big Ramsey degrees and topological dynamics, Groups Geom. Dyn., 2018.

We expect that understanding these types will help to develop structural Ellentuck-type
theorems as well as help in understanding other aspects of homogeneous structures
(such as the Cherlin-Lachlan classification programme).

Optimality

Known characterisations of big Ramsey degrees:
1 1979 Devlin: the order of rationals
2 2008 laflamme, Nguyen Van Th,́ Sauer: Ultrametric spaces
3 2010 Laflamme, Sauer, Vuskanovic: the Rado graph
4 2010 Balko, Chodounský, Hubička, Konečný, Vena, Zucker; independenty Dobrinen:

Triangle free graphs
5 2021+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: universal

partial order
6 2022+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: Free

amalgamation classes in finite binary languages with finitely many forbidden
substructures (96 pages draft)

So far the main application of such result is the completion flow introduced in:
A. Zucker, Big Ramsey degrees and topological dynamics, Groups Geom. Dyn., 2018.

We expect that understanding these types will help to develop structural Ellentuck-type
theorems as well as help in understanding other aspects of homogeneous structures
(such as the Cherlin-Lachlan classification programme).

Optimality

Known characterisations of big Ramsey degrees:
1 1979 Devlin: the order of rationals
2 2008 laflamme, Nguyen Van Th,́ Sauer: Ultrametric spaces
3 2010 Laflamme, Sauer, Vuskanovic: the Rado graph
4 2010 Balko, Chodounský, Hubička, Konečný, Vena, Zucker; independenty Dobrinen:

Triangle free graphs
5 2021+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: universal

partial order
6 2022+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: Free

amalgamation classes in finite binary languages with finitely many forbidden
substructures (96 pages draft)

So far the main application of such result is the completion flow introduced in:
A. Zucker, Big Ramsey degrees and topological dynamics, Groups Geom. Dyn., 2018.

We expect that understanding these types will help to develop structural Ellentuck-type
theorems as well as help in understanding other aspects of homogeneous structures
(such as the Cherlin-Lachlan classification programme).

Optimality

Known characterisations of big Ramsey degrees:
1 1979 Devlin: the order of rationals
2 2008 laflamme, Nguyen Van Th,́ Sauer: Ultrametric spaces
3 2010 Laflamme, Sauer, Vuskanovic: the Rado graph
4 2010 Balko, Chodounský, Hubička, Konečný, Vena, Zucker; independenty Dobrinen:

Triangle free graphs
5 2021+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: universal

partial order
6 2022+ Balko, Chodounský, Dobrinen, Hubička, Konečný, Vena, Zucker: Free

amalgamation classes in finite binary languages with finitely many forbidden
substructures (96 pages draft)

So far the main application of such result is the completion flow introduced in:
A. Zucker, Big Ramsey degrees and topological dynamics, Groups Geom. Dyn., 2018.

We expect that understanding these types will help to develop structural Ellentuck-type
theorems as well as help in understanding other aspects of homogeneous structures
(such as the Cherlin-Lachlan classification programme).

Devlin-type

Given n, the big Ramsey degree of linear order of size n is to the number of Devlin-types.

Notation:
• Σ<ω is the set of all finite words in alphabet Σ.
• Given S ⊆ Σ<ω by S we denote the set of all initial segments of words in S.
• By Si we denote the set of all initial segments of S of length i .
• By w⌢c we denote word w extended by character c (concatenation).
• S⌢c = {w⌢c : w ∈ S}.

Definition (Devlin-type, alternative definition)

A Devlin-type is any subset S of 2<ω that is an antichain and for
every ℓ ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ Sℓ such that Sℓ+1 = (Sℓ \ {w})⌢0.
2 Branching: There is w ∈ Sℓ such that Sℓ+1 = w⌢1 ∪ (Sℓ)

⌢0.

00

110

1000

Devlin-type

Given n, the big Ramsey degree of linear order of size n is to the number of Devlin-types.

Notation:
• Σ<ω is the set of all finite words in alphabet Σ.
• Given S ⊆ Σ<ω by S we denote the set of all initial segments of words in S.
• By Si we denote the set of all initial segments of S of length i .
• By w⌢c we denote word w extended by character c (concatenation).
• S⌢c = {w⌢c : w ∈ S}.

Definition (Devlin-type, alternative definition)

A Devlin-type is any subset S of 2<ω that is an antichain and for
every ℓ ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ Sℓ such that Sℓ+1 = (Sℓ \ {w})⌢0.
2 Branching: There is w ∈ Sℓ such that Sℓ+1 = w⌢1 ∪ (Sℓ)

⌢0.

00

110

1000

Type of a Rado graph

Definition (Devlin-type)

A Devlin-type is any subset S of 2<ω that is an antichain and for
every ℓ ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ Sℓ such that Sℓ+1 = (Sℓ \ {w})⌢0.
2 Branching: There is w ∈ Sℓ such that Sℓ+1 = w⌢1 ∪ (Sℓ)

⌢0.

00

110

1000

Definition (Rado graph-type, Laflamme–Sauer–Vuksanovic)

A Rado graph-type is any subset S of 2<ω that is an antichain and
for every ℓ ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ Sℓ such that Sℓ+1 has precisely one
successor of each of Sℓ \ {w}.

2 Branching: There is w ∈ Sℓ such that Sℓ+1 = w⌢1 ∪ (Sℓ)
⌢0.

00

110

1010

Canonizing embeddings

Definition (Recall: graph G)

We will consider graph G:
1 Vertices: 2<ω

2 Vertices a, b ∈ 2<ω satisfying |a| < |b| forms and edge if and only if b(|a|) = 1.
3 There are no other edges.

Proposition (On canonical forms of embeddings from G to G)

Let f : G → G be an (graph and not necessarily tree) embedding. Then there exists a
strong subtree S of T and a sequence (Ni)i∈ω of integers satisfying:

1 for every a ∈ S it holds that N|a| ≤ |f (φS(a))| < N|a|+1,
2 for every a, b ∈ S and every ℓ < min(|a|, |b|) such that a|ℓ = b|ℓ it holds that

f (φS(a))|Nℓ
= f (φS(b))|Nℓ

.

Canonizing embeddings

Proposition (On canonical forms of embeddings from G to G)

Let f : G → G be an (graph and not necessarily tree) embedding. Then there exists a
strong subtree S of T and a sequence (Ni)i∈ω of integers satisfying:

1 for every a ∈ S it holds that N|a| ≤ |f (φS(a))| < N|a|+1,
2 for every a, b ∈ S and every ℓ < min(|a|, |b|) such that a|ℓ = b|ℓ it holds that

f (φS(a))|Nℓ
= f (φS(b))|Nℓ

.

G G

f

Canonizing embeddings

Proposition (On canonical forms of embeddings from G to G)

Let f : G → G be an (graph and not necessarily tree) embedding. Then there exists a
strong subtree S of T and a sequence (Ni)i∈ω of integers satisfying:

1 for every a ∈ S it holds that N|a| ≤ |f (φS(a))| < N|a|+1,
2 for every a, b ∈ S and every ℓ < min(|a|, |b|) such that a|ℓ = b|ℓ it holds that

f (φS(a))|Nℓ
= f (φS(b))|Nℓ

.

G G

f

S
ϕ : G → S

Canonizing embeddings

Proposition (On canonical forms of embeddings from G to G)

Let f : G → G be an (graph and not necessarily tree) embedding. Then there exists a
strong subtree S of T and a sequence (Ni)i∈ω of integers satisfying:

1 for every a ∈ S it holds that N|a| ≤ |f (φS(a))| < N|a|+1,
2 for every a, b ∈ S and every ℓ < min(|a|, |b|) such that a|ℓ = b|ℓ it holds that

f (φS(a))|Nℓ
= f (φS(b))|Nℓ

.

G G

f

S
ϕ : G → S

N0

N1

N2

00

110

1010

Canonizing embeddings

Proposition (On canonical forms of embeddings from G to G)

Let f : G → G be an (graph and not necessarily tree) embedding. Then there exists a
strong subtree S of T and a sequence (Ni)i∈ω of integers satisfying:

1 for every a ∈ S it holds that N|a| ≤ |f (φS(a))| < N|a|+1,
2 for every a, b ∈ S and every ℓ < min(|a|, |b|) such that a|ℓ = b|ℓ it holds that

f (φS(a))|Nℓ
= f (φS(b))|Nℓ

.

G G

f

S
ϕ : G → S

N0

N1

N2

00

110

1010

Canonizing embeddings

Proposition (On canonical forms of embeddings from G to G)

Let f : G → G be an (graph and not necessarily tree) embedding. Then there exists a
strong subtree S of T and a sequence (Ni)i∈ω of integers satisfying:

1 for every a ∈ S it holds that N|a| ≤ |f (φS(a))| < N|a|+1,
2 for every a, b ∈ S and every ℓ < min(|a|, |b|) such that a|ℓ = b|ℓ it holds that

f (φS(a))|Nℓ
= f (φS(b))|Nℓ

.

G G

f

S
ϕ : G → S

N0

N1

N2

00

110

1010

Proof

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.

3 Now assume that Si and Ni are already constructed. Put:
Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.

4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels
are precisely first i − 1 levels of Si .

5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all
leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.

Proof

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.
3 Now assume that Si and Ni are already constructed. Put:

Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.
4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels

are precisely first i − 1 levels of Si .

5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all
leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.

Proof

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.
3 Now assume that Si and Ni are already constructed. Put:

Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.
4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels

are precisely first i − 1 levels of Si .
5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all

leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.

Proof

v0
f (v0) N0

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.
3 Now assume that Si and Ni are already constructed. Put:

Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.
4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels

are precisely first i − 1 levels of Si .
5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all

leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.

Proof

N0

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.
3 Now assume that Si and Ni are already constructed. Put:

Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.
4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels

are precisely first i − 1 levels of Si .
5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all

leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.

Proof

N0

S1

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.
3 Now assume that Si and Ni are already constructed. Put:

Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.
4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels

are precisely first i − 1 levels of Si .
5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all

leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.

Proof

N0

S1

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.
3 Now assume that Si and Ni are already constructed. Put:

Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.
4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels

are precisely first i − 1 levels of Si .
5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all

leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.

Proof

N0

S1
N1

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.
3 Now assume that Si and Ni are already constructed. Put:

Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.
4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels

are precisely first i − 1 levels of Si .
5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all

leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.

Proof

N0

S1
N1

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.
3 Now assume that Si and Ni are already constructed. Put:

Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.
4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels

are precisely first i − 1 levels of Si .
5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all

leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.

Proof

N0

N1

1 Fix embedding f : G → G. Produce a sequences of sub-trees (Si)i∈ω and integers
(Ni)i∈ω.

2 Put S0 = T , N0 = 0.
3 Now assume that Si and Ni are already constructed. Put:

Ni+1 = max{|f (φSi (a))|+ 1 : a is in level i of Si}.
4 Let Ti be the collection of all strong sub-trees of Si of depth i such that first i − 1 levels

are precisely first i − 1 levels of Si .
5 Define colouring χ of Ti : Given T ′ ∈ T i let (a0, a1, . . . , an−1) be an enumeration of all

leafs (lexicographically). Now let χ(T ′) be the function from {0, 1, . . . , n − 1} defined
by χ(T ′)(j) = f (φSi (aj))|Ni+1 .

6 Apply (product) Millken theorem to obtain Si+1.

What are the types

Vertex (t0 → x0),Branch (t0 → t1, t2),
Vertex (t2 → x1),Branch (t2 → t3, t4),
Vertex (t1 → x2),Branch (t1 → t5, t6),
Vertex (t3 → x3),Branch (t3 → t7, t8),
Vertex (t4 → x4),Branch (t4 → t9, t10),
Vertex (t5 → x5),Branch (t5 → t11, t12),
Vertex (t7 → x6),Branch (t7 → t13, t14),

What are the types

x0

Vertex (t0 → x0),Branch (t0 → t1, t2),

Vertex (t2 → x1),Branch (t2 → t3, t4),
Vertex (t1 → x2),Branch (t1 → t5, t6),
Vertex (t3 → x3),Branch (t3 → t7, t8),
Vertex (t4 → x4),Branch (t4 → t9, t10),
Vertex (t5 → x5),Branch (t5 → t11, t12),
Vertex (t7 → x6),Branch (t7 → t13, t14),

What are the types

x0

> x0< x0

x1

Vertex (t0 → x0),Branch (t0 → t1, t2),
Vertex (t2 → x1),Branch (t2 → t3, t4),

Vertex (t1 → x2),Branch (t1 → t5, t6),
Vertex (t3 → x3),Branch (t3 → t7, t8),
Vertex (t4 → x4),Branch (t4 → t9, t10),
Vertex (t5 → x5),Branch (t5 → t11, t12),
Vertex (t7 → x6),Branch (t7 → t13, t14),

What are the types

x0

> x0,< x1< x0

x1

> x1

x2

Vertex (t0 → x0),Branch (t0 → t1, t2),
Vertex (t2 → x1),Branch (t2 → t3, t4),
Vertex (t1 → x2),Branch (t1 → t5, t6),

Vertex (t3 → x3),Branch (t3 → t7, t8),
Vertex (t4 → x4),Branch (t4 → t9, t10),
Vertex (t5 → x5),Branch (t5 → t11, t12),
Vertex (t7 → x6),Branch (t7 → t13, t14),

What are the types

x0

x1

x2

x3

x4

x6

x5

Vertex (t0 → x0),Branch (t0 → t1, t2),
Vertex (t2 → x1),Branch (t2 → t3, t4),
Vertex (t1 → x2),Branch (t1 → t5, t6),
Vertex (t3 → x3),Branch (t3 → t7, t8),
Vertex (t4 → x4),Branch (t4 → t9, t10),
Vertex (t5 → x5),Branch (t5 → t11, t12),
Vertex (t7 → x6),Branch (t7 → t13, t14),

Level-structures

Definition

Given level ℓ of the tree of types, we can consider its level-structure:
1 Vertices are nodes (types) of level ℓ.
2 We write a ⪯ b if it is true that a′ ≤ b′ for every successor a′ of a and b′ of b.
3 We write a ⊴ b if it is true that a′ ≤ b′ for some successor a′ of a and b′ of b.
4 We write a ⊥ b if it is true that a′ ⊥ b′ for every successor a′ of a and b′ of b.

Fun fact

It turns out that both ⪯ and ⊴ are partial orders and whenever a ⪯ b also a ⊴ b. One can
think of the level structure (A,⪯,⊴) as of an finite approximation of the infinite partial order
located above the given level.

Level-structures

Definition

Given level ℓ of the tree of types, we can consider its level-structure:
1 Vertices are nodes (types) of level ℓ.
2 We write a ⪯ b if it is true that a′ ≤ b′ for every successor a′ of a and b′ of b.
3 We write a ⊴ b if it is true that a′ ≤ b′ for some successor a′ of a and b′ of b.
4 We write a ⊥ b if it is true that a′ ⊥ b′ for every successor a′ of a and b′ of b.

Fun fact

It turns out that both ⪯ and ⊴ are partial orders and whenever a ⪯ b also a ⊴ b. One can
think of the level structure (A,⪯,⊴) as of an finite approximation of the infinite partial order
located above the given level.

Level-structures

Definition

Given level ℓ of the tree of types, we can consider its level-structure:
1 Vertices are nodes (types) of level ℓ.
2 We write a ⪯ b if it is true that a′ ≤ b′ for every successor a′ of a and b′ of b.
3 We write a ⊴ b if it is true that a′ ≤ b′ for some successor a′ of a and b′ of b.
4 We write a ⊥ b if it is true that a′ ⊥ b′ for every successor a′ of a and b′ of b.

≺

Fun fact

It turns out that both ⪯ and ⊴ are partial orders and whenever a ⪯ b also a ⊴ b. One can
think of the level structure (A,⪯,⊴) as of an finite approximation of the infinite partial order
located above the given level.

Level-structures

Definition

Given level ℓ of the tree of types, we can consider its level-structure:
1 Vertices are nodes (types) of level ℓ.
2 We write a ⪯ b if it is true that a′ ≤ b′ for every successor a′ of a and b′ of b.
3 We write a ⊴ b if it is true that a′ ≤ b′ for some successor a′ of a and b′ of b.
4 We write a ⊥ b if it is true that a′ ⊥ b′ for every successor a′ of a and b′ of b.

≺

C C

C

Fun fact

It turns out that both ⪯ and ⊴ are partial orders and whenever a ⪯ b also a ⊴ b. One can
think of the level structure (A,⪯,⊴) as of an finite approximation of the infinite partial order
located above the given level.

Level-structures

Definition

Given level ℓ of the tree of types, we can consider its level-structure:
1 Vertices are nodes (types) of level ℓ.
2 We write a ⪯ b if it is true that a′ ≤ b′ for every successor a′ of a and b′ of b.
3 We write a ⊴ b if it is true that a′ ≤ b′ for some successor a′ of a and b′ of b.
4 We write a ⊥ b if it is true that a′ ⊥ b′ for every successor a′ of a and b′ of b.

≺

C C

⊥

C

Fun fact

It turns out that both ⪯ and ⊴ are partial orders and whenever a ⪯ b also a ⊴ b. One can
think of the level structure (A,⪯,⊴) as of an finite approximation of the infinite partial order
located above the given level.

Level-structures

Definition

Given level ℓ of the tree of types, we can consider its level-structure:
1 Vertices are nodes (types) of level ℓ.
2 We write a ⪯ b if it is true that a′ ≤ b′ for every successor a′ of a and b′ of b.
3 We write a ⊴ b if it is true that a′ ≤ b′ for some successor a′ of a and b′ of b.
4 We write a ⊥ b if it is true that a′ ⊥ b′ for every successor a′ of a and b′ of b.

Fun fact

It turns out that both ⪯ and ⊴ are partial orders and whenever a ⪯ b also a ⊴ b. One can
think of the level structure (A,⪯,⊴) as of an finite approximation of the infinite partial order
located above the given level.

Definition (Poset-type)

A set S ⊆ {L,X,R}∗ is called a poset-type if precisely one of the following four conditions is satisfied
for every level ℓ with 0 ≤ ℓ < maxw∈S |w |:

1 Leaf: There is w ∈ Sℓ related to every u ∈ Sℓ \ {w} and Sℓ+1 = (Sℓ \ {w})⌢X.

2 Branching: There is w ∈ Sℓ such that

Sℓ+1 = {z ∈ Sℓ : z <lex w}⌢X ∪ {w⌢X,w⌢R} ∪ {z ∈ Sℓ : w <lex z}⌢R.

3 New ⊥: There are unrelated words v <lex w ∈ Sℓ such that

Sℓ+1 = {z ∈ Sℓ : z <lex v}⌢X ∪ {v⌢R} ∪ {z ∈ Sℓ : v <lex z <lex w and z ⊥ v}⌢X

∪ {z ∈ Sℓ : v <lex z <lex w and z ̸⊥ v}⌢R ∪ {w⌢X} ∪ {z ∈ Sℓ : w <lex z}⌢R.

Moreover for every u ∈ Sℓ, v <lex u <lex w implies that at least one of u ⊥ v or u ⊥ w holds.

4 New ≺: There are unrelated words v <lex w ∈ Sℓ such that

Sℓ+1 = {z ∈ Sℓ : z <lex v and z ⊥ v}⌢X ∪ {z ∈ Sℓ : z <lex v and z ̸⊥ v}⌢L ∪ {v⌢L}

∪ {z ∈ Sℓ : v <lex z <lex w}⌢X ∪ {w⌢R} ∪ {z ∈ Sℓ : w <lex z and w ⊥ z}⌢X

∪ {z ∈ Sℓ : w <lex z and w ̸⊥ z}⌢R.

Moreover for every u ∈ Sℓ such that u <lex v , at least one of u ⪯ w or u ⊥ v holds.
Symmetrically for every u ∈ Sℓ such that w <lex u, at least one of v ⪯ u or w ⊥ u holds.

Definition (Devlin-type)

A Devlin-type is any subset S of {0, 1}∗ such that for every
ℓ ≤ maxw∈S |w | precisely one of the following happens:

1 Leaf: There is w ∈ Sℓ such that Sℓ+1 = (Sℓ \ {w})⌢0.
2 Branching: There is w ∈ Sℓ such that Sℓ+1 = w⌢1 ∪ (Sℓ)

⌢0.

00

110

1000

Definition (Poset-type)

A Poset-type is any subset S of {L,X,R}∗ such that for every ℓ ≤ maxw∈S |w | precisely
one of the following happens:

w

XRX R

w

X

v

R XR/X

S` w

L/X

v

L RX R/X

w

X X

Leaf Branching New ⊥ New ≺

Main result

Given a finite partial order (A,≤), we let T (A,≤) be the set of all poset-types S such that
(S,⪯) is isomorphic to (A,≤).

Theorem (M. Balko, D. Chodounský, N. Dobrinen, J. H., M. Konečný, L. Vena, A. Zucker)

For every finite partial order (O,≤), the big Ramsey degree of (O,≤) in the universal
partial order (P,≤) equals |T (O,≤)| · |Aut(O,≤)|.

Example

Denote by An the anti-chain with with n vertices and by Cn the chain with n vertices.

T (A1) = T (C1) = {∅} T (A2) = {{XR,RXX}, {XRX,RX}}
T (C2) = {{XL,RRX}, {XLX,RR}}

|T (C3)| = 52, |T (C4)| = 11000,

|T (A3)| = 84, |T (A4)| = 75642
Overall there are:
• 1 poset-types a vertex,
• 4 poset-types of posets of size 2,

• 464 poset-types of posets of size 3,
• 1874880 poset-types of posets of size 4.

Main result

Given a finite partial order (A,≤), we let T (A,≤) be the set of all poset-types S such that
(S,⪯) is isomorphic to (A,≤).

Theorem (M. Balko, D. Chodounský, N. Dobrinen, J. H., M. Konečný, L. Vena, A. Zucker)

For every finite partial order (O,≤), the big Ramsey degree of (O,≤) in the universal
partial order (P,≤) equals |T (O,≤)| · |Aut(O,≤)|.

Example

Denote by An the anti-chain with with n vertices and by Cn the chain with n vertices.

T (A1) = T (C1) = {∅} T (A2) = {{XR,RXX}, {XRX,RX}}
T (C2) = {{XL,RRX}, {XLX,RR}}

|T (C3)| = 52, |T (C4)| = 11000,

|T (A3)| = 84, |T (A4)| = 75642
Overall there are:
• 1 poset-types a vertex,
• 4 poset-types of posets of size 2,

• 464 poset-types of posets of size 3,
• 1874880 poset-types of posets of size 4.

Main result

Given a finite partial order (A,≤), we let T (A,≤) be the set of all poset-types S such that
(S,⪯) is isomorphic to (A,≤).

Theorem (M. Balko, D. Chodounský, N. Dobrinen, J. H., M. Konečný, L. Vena, A. Zucker)

For every finite partial order (O,≤), the big Ramsey degree of (O,≤) in the universal
partial order (P,≤) equals |T (O,≤)| · |Aut(O,≤)|.

Example

Denote by An the anti-chain with with n vertices and by Cn the chain with n vertices.

T (A1) = T (C1) = {∅} T (A2) = {{XR,RXX}, {XRX,RX}}
T (C2) = {{XL,RRX}, {XLX,RR}}

|T (C3)| = 52, |T (C4)| = 11000,

|T (A3)| = 84, |T (A4)| = 75642

Overall there are:
• 1 poset-types a vertex,
• 4 poset-types of posets of size 2,

• 464 poset-types of posets of size 3,
• 1874880 poset-types of posets of size 4.

Main result

Given a finite partial order (A,≤), we let T (A,≤) be the set of all poset-types S such that
(S,⪯) is isomorphic to (A,≤).

Theorem (M. Balko, D. Chodounský, N. Dobrinen, J. H., M. Konečný, L. Vena, A. Zucker)

For every finite partial order (O,≤), the big Ramsey degree of (O,≤) in the universal
partial order (P,≤) equals |T (O,≤)| · |Aut(O,≤)|.

Example

Denote by An the anti-chain with with n vertices and by Cn the chain with n vertices.

T (A1) = T (C1) = {∅} T (A2) = {{XR,RXX}, {XRX,RX}}
T (C2) = {{XL,RRX}, {XLX,RR}}

|T (C3)| = 52, |T (C4)| = 11000,

|T (A3)| = 84, |T (A4)| = 75642
Overall there are:
• 1 poset-types a vertex,
• 4 poset-types of posets of size 2,

• 464 poset-types of posets of size 3,
• 1874880 poset-types of posets of size 4.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Approximating posets

Definition (Approximate poset)

An approximate poset is a structure (A,⪯,⊴,P) where
1 both ⪯ and ⊴ are partial order.
2 P is an unary predicate denoting “finished vertices”.
3 ⪯⊆⊴ (whenever a ⪯ b also a ⊴ b).
4 a ⪯ b ⊴ c =⇒ a ⪯ c and a ⊴ b ⪯ c =⇒ a ⪯ c.
5 If a ∈ p then for every b ∈ A, b ̸= a it holds one of a ⪯ b,

b ⪯ a or a ⊥ b (a ⊥ b is a shortcut for a ̸⊴ b, b ̸⊴ a.)

⪯ is black, ⊴ is blue
P is black, ¬P is red

Goal

Approximation

Definition

Poset-type of a poset (B,≤) is equivalently sequence of approximations of (B,≤) where
on each step one of the following happens:

1 Leaf: New vertex is added to predicate P.
2 Branching: A vertex u is split into vertices u1 ⊴ u2.
3 New ⊥: A pair is removed from relation ⊴.
4 New ≺: A new pair is added to relation ⪯.

Definition (Trianglefree-type)

A set S ⊆ Σ∗ is called a triangle-free-type if S = S and precisely one of the following four
conditions is satisfied for every i with 0 ≤ i < maxw∈S |w |:

1 Leaf: There is w ∈ Si containing at least one 1 such that

Si+1 = {z ∈ Si \ {w} : z ⊥ w}⌢0 ∪ {z ∈ Si \ {w} : z ̸⊥ w}⌢1.

2 Branching: There is w ∈ Si such that

Si+1 = S⌢
i 0 ∪ {w}⌢1.

3 First neighbour: There is w ∈ Si containing no 1 such that

Si+1 = (Si \ {w})⌢0 ∪ {w}⌢1.

4 New ⊥: There are distinct words v ,w ∈ Si each containing at least one 1 satisfying
v ̸⊥ w such that

Si+1 = (Si \ {v ,w})⌢0 ∪ {v ,w}⌢1.

Thank you!

Sleeping Child, Fred Payne Clatworthy, Autochrome, 7 x 5 inches, c1916
Mark Jacobs Collection

	Recall

