Rosenthal compact spaces

Antonio Avilés
(joint work with S. Todorcevic)

Universidad de Murcia
AEI - Government of Spain, FEDER/ERDF (MTM2017-86182-P)
Fundación Séneca - Región de Murcia (20797/PI/18)

Hejnice 2020
$f : X \to \mathbb{R}$ is Baire$_1$ if it is the pointwise limit of continuous functions.
$f : X \rightarrow \mathbb{R}$ is Baire$_1$ if it is the pointwise limit of continuous functions.

Definition

K is **Rosenthal compact** if $K \subset Baire_1(X, \mathbb{R})$.
$f : X \longrightarrow \mathbb{R}$ is Baire$_1$ if it is the pointwise limit of continuous functions.

Definition

K is **Rosenthal compact** if $K \subset \text{Baire}_1(X, \mathbb{R})$.

- X is Polish.
Rosenthal compact spaces

\[f : X \rightarrow \mathbb{R} \] is Baire\(_1\) if it is the pointwise limit of continuous functions.

Definition

K is **Rosenthal compact** if \(K \subseteq \text{Baire}_1(X, \mathbb{R}) \).

- \(X \) is Polish.
- We take the pointwise topology.
Rosenthal compact spaces

\[f : X \to \mathbb{R} \] is Baire$_1$ if it is the pointwise limit of continuous functions.

Definition

\(K \) is **Rosenthal compact** if \(K \subseteq \text{Baire}_1(X, \mathbb{R}) \).

- \(X \) is Polish.
- We take the pointwise topology.

Arbitrary sets \(\leftrightarrow \) Analytic sets

Arbitrary compacta \(\leftrightarrow \) Separable Rosenthal compacta
Rosenthal compact spaces are Fréchet-Urysohn (Bourgain-Fremlin-Talagrand)
Rosenthal compact spaces are Fréchet-Urysohn (Bourgain-Fremlin-Talagrand) in a Borel way (Debs)
Separable Rosenthal compact spaces

“Perfect set theorems”:

- K is not metrizable $\iff K \supset C_1$ or $K \supset C_2$ or $K \supset C_3$.
- K is not hereditarily separable $\iff K \supset C_2$ or $K \supset C_3$.
- K is not scattered $\iff K \supset C_0$ or $K \supset C_1$ or $K \supset C_2$.
- K is not a continuous image of a 4-to-1 preimage of a metric space $\iff K \supset C_4$ or \cdots or $K \supset C_4$.

Problems:
- K is not fragmentable $\iff K \supset C_1$, $K \supset C_2^1$, \cdots?

Antonio Avilés (joint work with S. Todorcevic)
“Perfect set theorems”:

- K is not metrizable $\iff K \supset C_1$ or $K \supset C_2$ or $K \supset C_3$.
"Perfect set theorems":

- K is not metrizable $\iff K \supset C_1$ or $K \supset C_2$ or $K \supset C_3$.
- K is not hereditarily separable $\iff K \supset C_2$ or $K \supset C_3$.
"Perfect set theorems":

- K is not metrizable $\iff K \supset C_1$ or $K \supset C_2$ or $K \supset C_3$.
- K is not hereditarily separable $\iff K \supset C_2$ or $K \supset C_3$.
- K is not scattered $\iff K \supset C_0$ or $K \supset C_1$ or $K \supset C_2$.
“Perfect set theorems”:

- K is not metrizable $\iff K \supset C_1$ or $K \supset C_2$ or $K \supset C_3$.
- K is not hereditarily separable $\iff K \supset C_2$ or $K \supset C_3$.
- K is not scattered $\iff K \supset C_0$ or $K \supset C_1$ or $K \supset C_2$.
- K is not a continuous image of a 4-to-1 preimage of a metric space $\iff K \supset C_4^1$ or \cdots or $K \supset C_8^4$.
“Perfect set theorems”:

- K is not metrizable $\iff K \supset C_1$ or $K \supset C_2$ or $K \supset C_3$.
- K is not hereditarily separable $\iff K \supset C_2$ or $K \supset C_3$.
- K is not scattered $\iff K \supset C_0$ or $K \supset C_1$ or $K \supset C_2$.
- K is not a continuous image of a 4-to-1 preimage of a metric space $\iff K \supset C_1^4$ or \cdots or $K \supset C_8^4$.

Problems:
“Perfect set theorems”:

- K is not metrizable $\iff K \supset C_1$ or $K \supset C_2$ or $K \supset C_3$.
- K is not hereditarily separable $\iff K \supset C_2$ or $K \supset C_3$.
- K is not scattered $\iff K \supset C_0$ or $K \supset C_1$ or $K \supset C_2$.
- K is not a continuous image of a 4-to-1 preimage of a metric space $\iff K \supset C_1^4$ or \cdots or $K \supset C_8^4$.

Problems:

- K is not fragmentable $\iff K \supset C_1$, $K \supset C_2^2$, \cdots?
“Perfect set theorems”:
- K is not metrizable $\iff K \supseteq C_1 \text{ or } K \supseteq C_2 \text{ or } K \supseteq C_3$.
- K is not hereditarily separable $\iff K \supseteq C_2 \text{ or } K \supseteq C_3$.
- K is not scattered $\iff K \supseteq C_0 \text{ or } K \supseteq C_1 \text{ or } K \supseteq C_2$.
- K is not a continuous image of a 4-to-1 preimage of a metric space $\iff K \supseteq C_4^1 \text{ or } \cdots \text{ or } K \supseteq C_8^4$.

Problems:
- K is not fragmentable $\iff K \supseteq C_1, K \supseteq C_2, \ldots$?

d fragments K if for every $L \subset K$ there is a point of continuity $L \rightarrow (L, d)$.
“Perfect set theorems”:

- K is not metrizable \iff $K \supset C_1$ or $K \supset C_2$ or $K \supset C_3$.
- K is not hereditarily separable \iff $K \supset C_2$ or $K \supset C_3$.
- K is not scattered \iff $K \supset C_0$ or $K \supset C_1$ or $K \supset C_2$.
- K is not a continuous image of a 4-to-1 preimage of a metric space \iff $K \supset C_1^4$ or \cdots or $K \supset C_8^4$.

Problems:

- K is not fragmentable \iff $K \supset C_1$, $K \supset C_1^2$, \cdots ?
- K is something \iff $K \supset C_1$?

d fragments K if for every $L \subset K$ there is a point of continuity $L \rightarrow (L, d)$.
Localized perfect set theorem:

- If x is not G_δ, then $x \in C_1 \subset K$.
Localized perfect set theorem:

- If x is not G_δ, then $x \in C_1 \subset K$.
- Problem: A multidimensional version?
 - If x is not “double G_δ”, then $x \in C_1^2 \subset K$??
Localized perfect set theorem:

- If \(x \) is not \(G_\delta \), then \(x \in C_1 \subset K \).
- Problem: A multidimensional version?
 - If \(x \) is not “double \(G_\delta \)”, then \(x \in C_1^2 \subset K \) ??

“Double \(G_\delta \)-point”

\[\exists \mathcal{U} \text{ countable family of open sets} \]
\[\forall y \neq z \neq x \exists W_x, W_y, W_z \in \mathcal{U} \quad W_x \cap W_y \cap W_z = \emptyset. \]
The LUR problem

LUR problem

If K is separable Rosenthal compact, does $C(K)$ have a LUR renorming?

Antonio Avilés (joint work with S. Todorcevic)

Rosenthal compact spaces
The LUR problem

LUR problem
If K is separable Rosenthal compact, does $C(K)$ have a LUR renorming?

A more set-theoretic version of this problem
If \mathcal{B} is a Borel subalgebra of $\mathcal{P}(\omega)$ that does not contain $\mathcal{P}(\omega)$, is \mathcal{B} σ-scattered in the pointwise topology?
Functions with countably many discontinuities

Partial answer (Haydon, Moltó, Orihuela)
Yes, if K is made of functions with countably many discontinuities.
Partial answer (Haydon, Moltó, Orihuela)

Yes, if K is made of functions with countably many discontinuities.

$$CD \subset R$$

Separable compact spaces:

R made of Baire$_1$ functions on Polish space

CD made of functions with \aleph_0 discontinuities
Partial answer (Haydon, Moltó, Orihuela)

Yes, if K is made of functions with countably many discontinuities.

\[CD \subset RK \subset \mathbb{R} \]

Separable compact spaces:

- \mathbb{R} made of Baire$_1$ functions on Polish space
- RK made of Baire$_1$ functions on compact metric
- CD made of functions with \aleph_0 discontinuities
Functions with countably many discontinuities

Partial answer (Haydon, Moltó, Orihuela)

Yes, if K is made of functions with countably many discontinuities.

$$CD \subset RK \subset R$$

Separable compact spaces:

- R made of Baire$_1$ functions on Polish space
- RK made of Baire$_1$ functions on compact metric
- CD made of functions with \aleph_0 discontinuities

Pol, Marciszewski-Pol: $RK \neq R$ A.-Todorcevic: $CD \neq RK$
Proposition

If K is CD, then K is a Corson-to-one preimage of a metric space.
Proposition

If K is CD, then K is a Corson-to-one preimage of a metric space.

Proof

$K \subset \{ f : X \rightarrow \mathbb{R} \}$
Proposition

If K is CD, then K is a Corson-to-one preimage of a metric space.

Proof

$K \subset \{ f : X \rightarrow \mathbb{R} \}$

$D \subset X$ countable dense, and $r : K \rightarrow \mathbb{R}^D$ the restriction.

Example: Take K the space of all functions $f : [0,1]^2 \rightarrow \{0,1\}$ lexicographically non-decreasing.
A problem

Problem

Is every separable Rosenthal compactum a continuous image of a CD space?
Problem

Is every separable Rosenthal compactum a continuous image of a CD space?

We know that this is the case for (separable supplementations of) lexicographically increasing functions $[0,1]^n \to \mathbb{R}$. But what about larger ordinals?