Universality and weak amalgamations

Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences

Winter School in Abstract Analysis
section Set Theory & Topology
Hejnice, Jan 25 – Feb 1, 2020
Joint work with Adam Krawczyk

Let \mathcal{F} be a fixed class of finitely generated models of a fixed countable language \mathcal{L}; we assume \mathcal{F} is closed under isomorphisms. Define

$$\sigma \mathcal{F} = \left\{ \bigcup_{n \in \omega} X_n : \{X_n\}_{n \in \omega} \text{ is a chain in } \mathcal{F} \right\}.$$
Notation

Definition

Let \mathcal{F} be a fixed class of finitely generated models of a fixed countable language \mathcal{L}; we assume \mathcal{F} is closed under isomorphisms. Define

$$\sigma \mathcal{F} = \left\{ \bigcup_{n \in \omega} X_n : \{X_n\}_{n \in \omega} \text{ is a chain in } \mathcal{F} \right\}.$$

Definition

Define

$$A \hookrightarrow B \iff A \text{ embeds into } B.$$
Notation

Definition
Let \mathcal{F} be a fixed class of finitely generated models of a fixed countable language \mathcal{L}; we assume \mathcal{F} is closed under isomorphisms. Define

$$\sigma(\mathcal{F}) = \left\{ \bigcup_{n \in \omega} X_n : \{X_n\}_{n \in \omega} \text{ is a chain in } \mathcal{F} \right\}.$$

Definition
Define

$$A \hookrightarrow B \iff A \text{ embeds into } B.$$

Definition
Define

$$\text{cov}_{\sigma}(\mathcal{F}) = \text{cf}(\sigma(\mathcal{F}), \hookrightarrow).$$
Known facts

Claim

$$\text{cov}_\sigma(\mathcal{F}) \leq 2^{\aleph_0}.$$
Known facts

Claim
\[\text{cov}_\sigma(\mathcal{F}) \leq 2^{\aleph_0}. \]

Theorem (Fraïssé)
Assume \(\mathcal{F} \) is hereditary and has both the joint embedding property and the amalgamation property. Then

\[\text{cov}_\sigma(\mathcal{F}) = 1. \]
Known facts

Claim
\[\text{cov}_\sigma(\mathcal{F}) \leq 2^{\aleph_0}. \]

Theorem (Fraïssé)
Assume \(\mathcal{F} \) is hereditary and has both the joint embedding property and the amalgamation property. Then
\[\text{cov}_\sigma(\mathcal{F}) = 1. \]

Example
Let \(P \) be a fixed nonempty set of prime numbers and let \(\mathcal{F} \) be the class of all finite fields of characteristic \(p \in P \). Then
\[\text{cov}_\sigma(\mathcal{F}) = |P|. \]
Example

Fix $k > 1$ and let G_k be the class of all finite graphs of vertex degree $\leq k$.
Fix $k > 1$ and let G_k be the class of all finite graphs of vertex degree $\leq k$.

A graph is k-regular if the degree of every vertex is equal to k.

Claim

Every finite graph in G_k embeds into a finite k-regular graph.
Graphs

Example
Fix $k > 1$ and let \mathcal{G}_k be the class of all finite graphs of vertex degree $\leq k$.
A graph is k-regular if the degree of every vertex is equal to k.

Claim
Every finite graph in \mathcal{G}_k embeds into a finite k-regular graph.

Theorem
$\text{cov}_\sigma(\mathcal{G}_2) = \aleph_0$ and $\text{cov}_\sigma(\mathcal{G}_k) = 2^{\aleph_0}$ for every $k > 2$.
Amalgamations

Definition

We say that \(F \) has amalgamations at \(Z \) if for every two embeddings \(f: Z \to X, g: Z \to Y \) with \(X, Y \in F \) there exist \(W \in F \) and embeddings \(f': X \to W, g': Y \to W \) satisfying

\[f' \circ f = g' \circ g. \]
Amalgamations

Definition

We say that \mathcal{F} has amalgamations at Z if for every two embeddings $f: Z \to X$, $g: Z \to Y$ with $X, Y \in \mathcal{F}$ there exist $W \in \mathcal{F}$ and embeddings $f': X \to W$, $g': Y \to W$ satisfying

$$f' \circ f = g' \circ g.$$

Definition

We say that \mathcal{F} has the amalgamation property (AP) if it has amalgamations at every $Z \in \mathcal{F}$.
Weakenings of amalgamation

Definition
We say that F has the cofinal amalgamation property (CAP) if for every $Z \in F$ there is an embedding $e: Z \rightarrow Z'$ such that F has amalgamations at Z'.

Definition (Ivanov, 1999)
We say that F has the weak amalgamation property (WAP) if for every $Z \in F$ there is an embedding $e: Z \rightarrow Z'$ with $Z' \in F$, such that for every embeddings $f: Z' \rightarrow X$, $g: Z' \rightarrow Y$ there exist embeddings $f': X \rightarrow W$, $g': Y \rightarrow W$ satisfying $f' \circ f \circ e = g' \circ g \circ e$.

W.Kubiš (http://www.math.cas.cz/kubis/) Universality vs. WAP 31 January 2020 7/18
Weakenings of amalgamation

Definition

We say that \mathcal{F} has the **cofinal amalgamation property (CAP)** if for every $Z \in \mathcal{F}$ there is an embedding $e: Z \to Z'$ such that \mathcal{F} has amalgamations at Z'.
Weakenings of amalgamation

Definition

We say that \mathcal{F} has the **cofinal amalgamation property (CAP)** if for every $Z \in \mathcal{F}$ there is an embedding $e: Z \to Z'$ such that \mathcal{F} has amalgamations at Z'.

Definition (Ivanov, 1999)

We say that \mathcal{F} has the **weak amalgamation property (WAP)** if for every $Z \in \mathcal{F}$ there is an embedding $e: Z \to Z'$ with $Z' \in \mathcal{F}$, such that for every embeddings $f: Z' \to X$, $g: Z' \to Y$ there exist embeddings $f': X \to W$, $g': Y \to W$ satisfying

$$f' \circ f \circ e = g' \circ g \circ e.$$
Proposition
Finite graphs of vertex degree \(\leq k \) have the CAP.

W.Kubiší (http://www.math.cas.cz/kubis/)
Proposition

Finite graphs of vertex degree $\leq k$ have the CAP.
The first example of WAP and not CAP

Example (Pouzet, 1972)

Fix a linearly ordered set \((X, <)\) and let \(R\) be the following ternary relation:

\[R(x, y, z) \iff x < y, \ x < z, \ y \neq z. \]

Let \(\mathcal{F}\) be the class of all finite linearly ordered set treated as models of the language \(\{R\}\).

Then \(\mathcal{F}\) has the WAP but not CAP.
Reference:

A quote from Pabion’s paper:

3° M. Pouzet m’a communiqué l’exemple suivant de relation uniformément préhomogène et non pseudo-homogène. Sur Q, définir $R(x, y, z)$ par $x < y, x < z$ et $y = z$.

(*) Séance du 7 février 1972.

Université Claude Bernard,
Mathématiques,
43, boulevard du Onze-Novembre 1918,
69-Villeurbanne, Rhône.
Theorem

Let \mathcal{F} be as above and assume that $\text{cov}_\sigma(\mathcal{F}) < 2^{\aleph_0}$. Then \mathcal{F} has the weak amalgamation property.
Proof.

Suppose \mathcal{F} fails the WAP.
Proof.

Suppose \mathcal{F} fails the WAP. We build a Cantor tree $\{A_s\}_{s \in 2^{<\omega}} \subseteq \mathcal{F}$ such that A_s and $A_s \upharpoonright 0$, $A_s \upharpoonright 1$ witness the failure of WAP for each $s \in 2^{<\omega}$. Given $\sigma \in 2^{\omega}$, define $A_{\sigma} = \bigcup_{n \in \omega} A_{\sigma} \upharpoonright n$. Choose $\sigma \neq \tau$ such that A_{σ} and A_{τ} are contained in a fixed $M \in \mathcal{F}$. Let $s = \sigma \cap \tau$. Then $A_s \upharpoonright 0$, $A_s \upharpoonright 1$ can be amalgamated inside M. A contradiction.
Proof.

Suppose \mathcal{F} fails the WAP. We build a Cantor tree $\{A_s\}_{s \in 2^{<\omega}} \subseteq \mathcal{F}$ such that A_s and $A_s \upharpoonright 0$, $A_s \upharpoonright 1$ witness the failure of WAP for each $s \in 2^{<\omega}$.

Given $\sigma \in 2^\omega$, define

$$A_\sigma = \bigcup_{n \in \omega} A_{\sigma \restriction n}.$$
Proof.

Suppose \mathcal{F} fails the WAP. We build a Cantor tree $\{A_s\}_{s \in 2^{<\omega}} \subseteq \mathcal{F}$ such that A_s and $A_s \upharpoonright 0$, $A_s \upharpoonright 1$ witness the failure of WAP for each $s \in 2^{<\omega}$.

Given $\sigma \in 2^\omega$, define

$$A_\sigma = \bigcup_{n \in \omega} A_\sigma \upharpoonright n.$$

Choose $\sigma \neq \tau$ such that A_σ and A_τ are contained in a fixed $M \in \sigma \mathcal{F}$.
Proof.

Suppose \mathcal{F} fails the WAP.

We build a Cantor tree $\{A_s\}_{s \in 2^{<\omega}} \subseteq \mathcal{F}$ such that A_s and A_{s^0}, A_{s^1} witness the failure of WAP for each $s \in 2^{<\omega}$.

Given $\sigma \in 2^\omega$, define

$$A_\sigma = \bigcup_{n \in \omega} A_\sigma \upharpoonright n.$$

Choose $\sigma \neq \tau$ such that A_σ and A_τ are contained in a fixed $M \in \sigma \mathcal{F}$.

Let $s = \sigma \cap \tau$. Then A_{s^0}, A_{s^1} can be amalgamated inside M.

A contradiction.
Proof.

Suppose \mathcal{F} fails the WAP.
We build a Cantor tree $\{A_s\}_{s \in 2^{<\omega}} \subseteq \mathcal{F}$ such that A_s and $A_s \upharpoonright 0$, $A_s \upharpoonright 1$ witness the failure of WAP for each $s \in 2^{<\omega}$.

Given $\sigma \in 2^\omega$, define

$$A_\sigma = \bigcup_{n \in \omega} A_\sigma \upharpoonright n.$$

Choose $\sigma \neq \tau$ such that A_σ and A_τ are contained in a fixed $M \in \sigma \mathcal{F}$.
Let $s = \sigma \cap \tau$. Then $A_s \upharpoonright 0$, $A_s \upharpoonright 1$ can be amalgamated inside M.
A contradiction.

\square
The Banach-Mazur game

Definition (BM (\(\mathcal{F}, \mathcal{M} \)))

Let \(\mathcal{F} \) be as above, \(\mathcal{M} \subseteq \sigma \mathcal{F} \). Two players, Eve and Adam, alternately choose bigger and bigger models from \(\mathcal{F} \), building a chain

\[
A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots
\]

Of course, Eve starts the game.
The Banach-Mazur game

Definition (BM (\mathcal{F}, \mathcal{M}))

Let \mathcal{F} be as above, $\mathcal{M} \subseteq \sigma \mathcal{F}$. Two players, Eve and Adam, alternately choose bigger and bigger models from \mathcal{F}, building a chain

$$A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots$$

Of course, Eve starts the game. **Adam wins** if $\bigcup_{n \in \omega} A_n$ embeds into some $M \in \mathcal{M}$. Otherwise Eve wins.
Theorem

Let \mathcal{F} be as above and assume Adam has a winning strategy in $\text{BM} (\mathcal{F}, M)$, where $|M| < 2^{\aleph_0}$. Then \mathcal{F} has the weak amalgamation property.
Theorem
Let \mathcal{F} be as above and assume Adam has a winning strategy in $\text{BM} (\mathcal{F}, M)$, where $|M| < 2^{\aleph_0}$. Then \mathcal{F} has the weak amalgamation property.

Corollary
Assume \mathcal{F} has the joint embedding property and countably many isomorphic types. The following conditions are equivalent:

(a) There is $M \subseteq \sigma \mathcal{F}$ with $|M| < 2^{\aleph_0}$ such that Adam has a winning strategy in $\text{BM} (\mathcal{F}, M)$.

(b) \mathcal{F} has the weak amalgamation property.

(c) There is $U \in \sigma \mathcal{F}$ such that Adam has a winning strategy in $\text{BM} (\mathcal{F}, \{U\})$.
Theorem

Assume \mathcal{F} fails the weak amalgamation property. Then Eve has a winning strategy in $BM(\mathcal{F}, \{V\})$ for every $V \in \sigma \mathcal{F}$.

Theorem

Assume \mathcal{F} fails the weak amalgamation property. Then Eve has a winning strategy in $BM(\mathcal{F}, \{V\})$ for every $V \in \sigma \mathcal{F}$.

Problem

Find a class \mathcal{F} of finite models of a fixed finite language such that consistently

$$\aleph_0 < \text{cov}_\sigma(\mathcal{F}) < 2^{\aleph_0}.$$
Further examples

Example

Fix a nontrivial subgroup S of $(\mathbb{R}, +)$. Let M_S be the class of all finite metric spaces with distances in S.

Theorem

If S is countable then $\text{cov}_\sigma(M_S) = 1$, otherwise $\text{cov}_\sigma(M_S) = \text{cf}(\mathbb{[}\kappa\mathbb{]}, \subseteq)$, where $\kappa = |S|$.
Further examples

Example

Fix a nontrivial subgroup S of $(\mathbb{R}, +)$. Let \mathcal{M}_S be the class of all finite metric spaces with distances in S.

Theorem

If S is countable then $\text{cov}_{\sigma}(\mathcal{M}_S) = 1$, otherwise $\text{cov}_{\sigma}(\mathcal{M}_S) = \text{cf}(\left[\kappa \right], \subseteq)\), where $\kappa = |S|$.

W. Kubiš (http://www.math.cas.cz/kubis/)
Further examples

Example

Fix a nontrivial subgroup S of $\mathbb{R}, +$. Let \mathcal{MS} be the class of all finite metric spaces with distances in S.

Theorem

If S is countable then $\text{cov}_\sigma(\mathcal{MS}) = 1$, otherwise

$$\text{cov}_\sigma(\mathcal{MS}) = \text{cf} \left([\kappa]^{\omega_0}, \subseteq \right),$$

where $\kappa = |S|$.
Example

Let \mathcal{F} be the class of all finite graphs in which different cycles of equal length do not have a common edge. Then \mathcal{F} fails the weak amalgamation property.

Thank you for your attention!