On a class of Polish-like spaces

Claudio Agostini

Università degli Studi di Torino

WS2020
27 January 2020

Joint work with Luca Motto Ros
The starting point

From classical to generalized descriptive set theory:

DST:
- Cantor space $\omega^2 \sim \kappa$-Cantor space κ^2
- Baire space $\omega^\omega \sim \kappa$-Baire space κ^κ
- Polish spaces $\sim \kappa$-Polish spaces?

GDST:

Context: cardinals κ satisfying $\kappa^{<\kappa} = \kappa$.
The starting point

From classical to generalized descriptive set theory:

DST:

Cantor space $\omega^2 \sim \kappa$-Cantor space κ^2

Baire space $\omega^\omega \sim \kappa$-Baire space κ^κ

Polish spaces $\sim \kappa$-Polish spaces?

GDST:

Context: cardinals κ satisfying $\kappa^{<\kappa} = \kappa$.

Is the assumption $\kappa^{<\kappa} = \kappa$ necessary?
The starting point

From classical to generalized descriptive set theory:

DST:

Cantor space $\omega_2 \sim \kappa$-Cantor space κ_2

Baire space $\omega_\omega \sim \kappa$-Baire space κ_κ

Polish spaces $\sim \kappa$-Polish spaces?

GDST:

Context: cardinals κ satisfying $\kappa^{<\kappa} = \kappa$.

Is the assumption $\kappa^{<\kappa} = \kappa$ necessary?

If κ regular, $\kappa^{<\kappa} = \kappa$ is equivalent to $2^{<\kappa} = \kappa$, but the latter allows to extend the definition to singular cardinals.
From classical to generalized descriptive set theory:

DST:
- Cantor space $\omega^2 \sim \lambda$-Cantor space λ^2
- Baire space $\omega_\omega \sim \lambda$-Baire space $\text{cf}(\lambda)\lambda$
- Polish spaces $\sim \lambda$-Polish spaces?

GDST:

Context: cardinals λ satisfying $2^{<\lambda} = \lambda$ (equivalent to $\lambda^{<\lambda} = \lambda$ if λ regular).
From classical to generalized descriptive set theory:

DST:

- Cantor space \(\omega^2 \) \(\sim \) \(\lambda \)-Cantor space \(\lambda^2 \)

- Baire space \(\omega_\omega \) \(\sim \) \(\lambda \)-Baire space \(\text{cf}(\lambda) \lambda \)

- Polish spaces \(\sim \) \(\lambda \)-Polish spaces?

GDST:

Context: cardinals \(\lambda \) satisfying \(2^{<\lambda} = \lambda \) (equivalent to \(\lambda^{<\lambda} = \lambda \) if \(\lambda \) regular).

V. Dimonte, L. Motto Ros and X. Shi, forthcoming paper on GDST on singular cardinals of countable cofinality.
Motivations and goals

Aim: study GDST on λ singular of uncountable cofinality.

What we want:
A suitable class λ-DST of Polish-like spaces of weight λ that:

1. includes λ^2 and $\text{cf}(\lambda)\lambda$.
2. can support most of DST tools and results.
3. for $\lambda = \omega$ gives exactly Polish spaces.
4. goes well with different definitions of λ-Polish for other known cases.

Context: T_3 (regular and Hausdorff) topological spaces, cardinals λ satisfying $2^{<\lambda} = \lambda$.
What is known: λ singular

Why should we want to study these spaces for λ singular?

Lambda singular recovers parts of classical DST that "fail" (or simply are much different/harder) in GDST on κ regular.

λ singular of countable cofinality: much can be recovered (PSP Σ^1_1, Silver Dichotomy, ...) (V. Dimonte, L. Motto Ros and X. Shi, forthcoming)

Definition

Let λ be a (singular) cardinal of countable cofinality. A λ-Polish space is a completely metrizable space of weight λ.

Remark

The λ-Cantor and λ-Baire spaces are metrizable if and only if $\text{cf}(\lambda) = \omega$.

Claudio Agostini (Univ. Torino) λ-DST spaces 27 January 2020 4 / 14
Why should we want to study these spaces for λ singular?

Lambda singular recovers parts of classical DST that "fail" (or simply are much different/harder) in GDST on κ regular.
What is known: λ singular

Why should we want to study these spaces for λ singular?

Lambda singular recovers parts of classical DST that "fail" (or simply are much different/harder) in GDST on κ regular.

λ singular of countable cofinality: much can be recovered ($\text{PSP}_{\Sigma^1_1}$, Silver Dichotomy, ...) (V. Dimonte, L. Motto Ros and X. Shi, forthcoming)

Definition

Let λ be a (singular) cardinal of countable cofinality. A λ-Polish space is a completely metrizable space of weight λ.
What is known: λ singular

Why should we want to study these spaces for λ singular?

Lambda singular recovers parts of classical DST that "fail" (or simply are much different/harder) in GDST on κ regular.

λ singular of countable cofinality: much can be recovered ($\text{PSP}_{\Sigma_1^1}$, Silver Dichotomy, ...) (V. Dimonte, L. Motto Ros and X. Shi, forthcoming)

Definition

Let λ be a (singular) cardinal of countable cofinality. A λ-Polish space is a completely metrizable space of weight λ.

Remark

The λ-Cantor and λ-Baire spaces are metrizable if and only if $\text{cf}(\lambda) = \omega$.
What is known: λ regular

Theorem

Let X be a second countable $(T_1, \text{regular})$ space. Then

- X is metrizable.
- X is Polish if and only if X is strong Choquet.
What is known: \(\lambda \) regular

Theorem

Let \(X \) be a second countable \((T_1, \text{regular})\) space. Then

- \(X \) is metrizable.
- \(X \) is Polish if and only if \(X \) is strong Choquet.

Definition

The *strong Choquet game* on \(X \) is played in the following way:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>(V_0, x_0)</td>
<td>(V_1, x_1)</td>
</tr>
<tr>
<td>II</td>
<td>(U_0)</td>
<td>(U_1)</td>
</tr>
</tbody>
</table>

- \(V_\alpha \) and \(U_\alpha \) are nonempty (if possible) open sets.
- \(V_\alpha \subseteq U_\beta \subseteq V_\gamma \) for every \(\gamma \leq \beta < \alpha < \omega \).
- \(x_\alpha \in V_\alpha \) and \(x_\alpha \in U_\alpha \) for every \(\alpha < \omega \).

The first player \(I \) wins if \(\bigcap_{\alpha < \omega} U_\alpha = \emptyset \), otherwise \(II \) wins.
What is known: λ regular

Theorem

Let X be a second countable (T_1, regular) space. Then

- X is metrizable.
- X is Polish if and only if X is strong Choquet.

Definition

The *strong δ-Choquet game* on X is played in the following way:

<table>
<thead>
<tr>
<th>I</th>
<th>V_0, x_0</th>
<th>V_1, x_1</th>
<th>...</th>
<th>V_γ, x_γ</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>U_0</td>
<td>U_1</td>
<td>...</td>
<td>U_γ</td>
<td>...</td>
</tr>
</tbody>
</table>

- V_α and U_α are nonempty (if possible) relatively open sets.
- $V_\alpha \subseteq U_\beta \subseteq V_\gamma$ for every $\gamma \leq \beta < \alpha < \delta$.
- $x_\alpha \in V_\alpha$ and $x_\alpha \in U_\alpha$ for every $\alpha < \delta$.

The first player I wins if $\bigcap_{\alpha<\delta} U_\alpha = \emptyset$, otherwise II wins.
What is known: λ regular

Coskey and Schlicht, *Generalized choquet spaces*, 2016:
Let κ be a regular cardinal. The class of strong κ-Choquet spaces has desirable properties for GDST.

Remark
Let λ be a singular cardinal. There are strong λ-Choquet topological spaces of weight λ with "patological" behaviour.

What goes wrong?
For λ regular the spaces preserve some properties of metric spaces that are not preserved for λ singular.
What is known: λ regular

Coskey and Schlicht, *Generalized choquet spaces*, 2016:
Let κ be a regular cardinal. The class of strong κ-Choquet spaces has desirable properties for GDST.

Can we take the same class for λ singular?

Remark

Let λ be a singular cardinal. There are strong λ-Choquet topological spaces of weight λ with "patological" behaviour.

What goes wrong?
For λ regular the spaces preserve some properties of metric spaces that are not preserved for λ singular.
What is known: \(\lambda \) regular

Coskey and Schlicht, *Generalized choquet spaces*, 2016:
Let \(\kappa \) be a regular cardinal. The class of strong \(\kappa \)-Choquet spaces has desirable properties for GDST.

Can we take the same class for \(\lambda \) singular?

Remark

Let \(\lambda \) be a singular cardinal. There are strong \(\lambda \)-Choquet topological spaces of weight \(\lambda \) with "patological" behaviour.

What goes wrong?
For \(\lambda \) regular the spaces preserve some properties of metric spaces that are not preserved for \(\lambda \) singular.
Restoring metrizability

<table>
<thead>
<tr>
<th>Polish</th>
<th>λ-DST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second countability</td>
<td>\sim λ-DST weight λ</td>
</tr>
<tr>
<td>Completeness</td>
<td>\sim strong $\text{cf}(\lambda)$-Choquet</td>
</tr>
<tr>
<td>Metrizability</td>
<td>\sim ?</td>
</tr>
</tbody>
</table>

Theorem (Nagata-Smirnov metrization theorem)

Let X be a topological space. Then X is metrizable if and only if X admits a σ-locally finite base.

Definition

Let X be a topological space, and A a family of subsets of X.

- We say A is locally finite if every point $x \in X$ has a neighborhood U intersecting finitely many pieces of A.
- We say A is σ-locally finite if it has a cover $A = \bigcup_{i \in \omega} A_i$ of countable size such that each A_i is locally finite.
Theorem (Nagata-Smirnov metrization theorem)

Let X be a topological space. Then X is metrizable if and only if X admits a \(\sigma \)-locally finite base.

Definition

Let X be a topological space, and \mathcal{A} a family of subsets of X. We say \mathcal{A} is locally finite if every point $x \in X$ has a neighborhood U intersecting finitely many pieces of \mathcal{A}. We say \mathcal{A} is \(\sigma \)-locally finite if it has a cover $\mathcal{A} = \bigcup_{i \in \omega} \mathcal{A}_i$ of countable size such that each \mathcal{A}_i is locally finite.
Restoring metrizability

Polish

Second countability

Completeness

Metrizability

λ-DST

λ-DST weight λ

Strong $\text{cf}(\lambda)$-Choquet

Theorem (Nagata-Smirnov metrization theorem)

Let X be a topological space. Then X is metrizable if and only if X admits a σ-locally finite base.

Definition

Let X be a topological space, and \mathcal{A} a family of subsets of X. We say \mathcal{A} is locally finite if every point $x \in X$ has a neighborhood U intersecting finitely many pieces of \mathcal{A}. We say \mathcal{A} is σ-locally finite if it has a cover $\mathcal{A} = \bigcup_{i \in \omega} A_i$ of countable size such that each A_i is locally finite.
Theorem (Nagata-Smirnov metrization theorem)

Let X be a topological space. Then X is metrizable if and only if X admits a σ-locally finite base.

Definition

Let X be a topological space, and \mathcal{A} a family of subsets of X. We say \mathcal{A} is **locally γ-small** if every point $x \in X$ has a neighborhood U intersecting $< \gamma$ many pieces of \mathcal{A}. We say \mathcal{A} is **γ-Nagata-Smirnov** if it has a cover $\mathcal{A} = \bigcup_{i \in \gamma} A_i$ of size γ such that each A_i is locally γ-small.
Theorem (Nagata-Smirnov metrization theorem)

Let X be a topological space. Then X is metrizable if and only if X admits a ω-Nagata-Smirnov base.

Definition

Let X be a topological space, and \mathcal{A} a family of subsets of X. We say \mathcal{A} is locally γ-small if every point $x \in X$ has a neighborhood U intersecting $< \gamma$ many pieces of \mathcal{A}. We say \mathcal{A} is γ-Nagata-Smirnov if it has a cover $\mathcal{A} = \bigcup_{i \in \gamma} A_i$ of size γ such that each A_i is locally γ-small.
Definition
Let λ be a cardinal. We call λ-DST a strong $\text{cf}(\lambda)$-Choquet topological space of weight λ with a $\text{cf}(\lambda)$-Nagata-Smirnov base.
Definition

Let λ be a cardinal. We call λ-DST a strong $\text{cf}(\lambda)$-Choquet topological space of weight λ with a $\text{cf}(\lambda)$-Nagata-Smirnov base.

Every base of size λ is λ-Nagata-Smirnov: it can be covered by λ many singletons.

Proposition

Let λ be a cardinal.

- If λ regular, λ-DST means strong λ-Choquet of weight λ.
Definition

Let \(\lambda \) be a cardinal. We call \(\lambda \)-DST a strong cf(\(\lambda \))-Choquet topological space of weight \(\lambda \) with a cf(\(\lambda \))-Nagata-Smirnov base.

Every base of size \(\lambda \) is \(\lambda \)-Nagata-Smirnov: it can be covered by \(\lambda \) many singletons.

Proposition

Let \(\lambda \) be a cardinal.

- If \(\lambda \) regular, \(\lambda \)-DST means strong \(\lambda \)-Choquet of weight \(\lambda \).
- If \(\lambda = \omega \), \(\lambda \)-DST means Polish.
Definition

Let λ be a cardinal. We call λ-DST a strong $\text{cf}(\lambda)$-Choquet topological space of weight λ with a $\text{cf}(\lambda)$-Nagata-Smirnov base.

Every base of size λ is λ-Nagata-Smirnov: it can be covered by λ many singletons.

Proposition

Let λ be a cardinal.

- If λ regular, λ-DST means strong λ-Choquet of weight λ.
- If $\lambda = \omega$, λ-DST means Polish.
- If λ uncountable of countable cofinality, λ-DST means completely metrizable of weight λ. (proof to be checked)
Examples and non-examples

Examples of λ-DST spaces:

1. The λ-Cantor and λ-Baire spaces.
2. Completely metrizable spaces of weight λ.
3. For every tree T of density λ and uniform height, $[T]$ with the bounded topology is λ-DST.
4. If X is λ-DST, then $\mathcal{K}(X)$ with the Vietoris topology is λ-DST.
5. Disjoint unions of λ-many λ-DST spaces are λ-DST.
6. Products of $\text{cf}(\lambda)$-many λ_i-DST spaces are $\sup(\lambda_i)$-DST.
7. Open subspaces of a λ-DST are λ-DST.

Non-examples:

1. Products of $> \text{cf}(\lambda)$ many non-trivial spaces are never λ-DST.
2. If $\text{cf}(\lambda) > \omega$, there is a closed subspace of λ^2 which is not λ-DST.
3. If $\text{cf}(\lambda) > \omega$, there is a λ-DST space whose perfect part is not λ-DST.
Some results

How much can we restore of classical descriptive set theory?
How much can we restore of classical descriptive set theory?

Theorem ([2, Theorem 7.9])

Let X be a Polish space. There is a continuous surjective function $f : \omega \omega \to X$ and a closed $C \subseteq \omega \omega$ such that $f \upharpoonright C$ is bijective.
Some results

How much can we restore of classical descriptive set theory?

Theorem ([2, Theorem 7.9])

Let X be a Polish space. There is a continuous surjective function $f : \omega^\omega \to X$ and a closed $C \subseteq \omega^\omega$ such that $f \restriction C$ is bijective.

Coskey, Schlicht [1]: similar result for strong λ-Choquet, λ regular.
V. Dimonte, L. Motto Ros, X. Shi: similar results for λ-Polish, $\text{cf}(\lambda) = \omega$.

Some results

How much can we restore of classical descriptive set theory?

Theorem ([2, Theorem 7.9])

Let X be a Polish space. There is a continuous surjective function $f : \omega_\omega \to X$ and a closed $C \subseteq \omega_\omega$ such that $f \upharpoonright C$ is bijective.

Coskey, Schlicht [1]: similar result for strong λ-Choquet, λ regular.
V. Dimonte, L. Motto Ros, X. Shi: similar results for λ-Polish, $\text{cf}(\lambda) = \omega$.

Theorem (A., Motto Ros)

Let X be a λ-DST space. There is a continuous surjective function $f : \text{cf}(\lambda) \lambda \to X$ and a closed $C \subseteq \text{cf}(\lambda) \lambda$ such that $f \upharpoonright C$ is bijective.
We can get more:

Theorem (A., Motto Ros)

Suppose X is a $\text{cf}(\lambda)$-additive λ-DST space and $\text{cf}(\lambda) > \omega$. Then X is homeomorphic to a (super)closed subspace of $\text{cf}(\lambda) \lambda$.

(needs some cardinal assumption if λ-singular)

Recall: X is γ additive if the intersection of $< \gamma$ open sets is open.

Recall: C superclosed if $C = [T]$ for T homogeneous in height.

Recall: A tree T is homogeneous in height if every branch has same height.
Theorem ([2, Theorem 6.2])

Let \(X \) be a prefect Polish space. There is an embedding of \(\omega^2 \) into \(X \).
Theorem ([2, Theorem 6.2])

Let X be a prefect Polish space. There is an embedding of ω_2 into X.

Coskey, Schlicht [1]: let X be λ-perfect, strong λ-Choquet for λ regular. There is a continuous injective function from λ^2 into X.

V. Dimonte, L. Motto Ros, X. Shi: let X be λ-perfect λ-Polish space. There is an embedding of λ^2 into X with closed image.

Definition: X λ-perfect if no intersection of $< \text{cf}(\lambda)$ opens has size $< \lambda$.
Theorem ([2, Theorem 6.2])

Let X be a prefect Polish space. There is an embedding of ω_2 into X.

Coskey, Schlicht [1]: let X be λ-perfect, strong λ-Choquet for λ regular. There is a continuous injective function from $^{\lambda}2$ into X.

V. Dimonte, L. Motto Ros, X. Shi: let X be λ-perfect λ-Polish space. There is an embedding of $^{\lambda}2$ into X with closed image.

Theorem (A., Motto Ros)

Let X be a λ-perfect λ-DST space. There is a continuous injective function from $^{\lambda}2$ into X with λ-Borel inverse.

Theorem (A., Motto Ros)

Let X be a λ-perfect $\text{cf}(\lambda)$-additive λ-DST space. There is an embedding of $^{\lambda}2$ into X with closed image.
Can we use a Cantor-Bendixson argument and get PSP for λ-DST spaces?
Can we use a Cantor-Bendixson argument and get PSP for λ-DST spaces?

Theorem (A., Motto Ros)

If there exists $A \subseteq \text{cf}(\lambda) \lambda$ without the Perfect Set Property, then there exists a λ-DST subset $B \subseteq \text{cf}(\lambda) \lambda$ without the PSP.

Super λ-Choquet game:

- Same game as before, but players can play only big open sets (of size λ).

Super λ-DST:

- Super λ-Choquet game instead of strong λ-Choquet.

Theorem (A., Motto Ros)

Let X be a λ-DST space. Then the perfect kernel of X is λ-DST if and only if X is super λ-DST.

Corollary

Let X be super λ-DST. Then either X divides λ or there is a continuous injective function from 2^{λ} into X.

Claudio Agostini (Univ. Torino)

λ-DST spaces

27 January 2020 13 / 14
Can we use a Cantor-Bendixson argument and get PSP for λ-DST spaces?

Theorem (A., Motto Ros)

If there exists $A \subseteq \text{cf}(\lambda) \lambda$ without the Perfect Set Property, then there exists a λ-DST subset $B \subseteq \text{cf}(\lambda) \lambda$ without the PSP.

Super λ-Choquet game: same game as before, but players can play only big open sets (of size $> \lambda$).

Super λ-DST: super λ-Choquet game instead of strong λ-Choquet.
Can we use a Cantor-Bendixson argument and get PSP for λ-DST spaces?

Theorem (A., Motto Ros)

If there exists $A \subseteq \text{cf}(\lambda)$ without the Perfect Set Property, then there exists a λ-DST subset $B \subseteq \text{cf}(\lambda)$ without the PSP.

Super λ-Choquet game: same game as before, but players can play only big open sets (of size $> \lambda$).

Super λ-DST: super λ-Choquet game instead of strong λ-Choquet.

Theorem (A., Motto Ros)

Let X be a λ-DST space. Then the perfect kernel of X is λ-DST if and only if X is super λ-DST.

Corollary

Let X be super λ-DST. Then $|X| \leq \lambda$ or there is a continuous injective function from λ^2 into X.
S. Coskey and P. Schlicht.
Generalized choquet spaces.

A. Kechris.
Classical descriptive set theory, volume 156.