A category-theoretic framework for Fraïssé theory

Adam Bartoš
drekin@gmail.com

Institute of Mathematics, University of Wrocław

Winter School in Abstract Analysis
Section Set Theory & Topology
Hejnice, Jan 25 – Feb 1 2020

This is joint work with Wiesław Kubiś.
Definition

Let $\mathcal{K} \subseteq \mathcal{L}$ be categories. We say that an \mathcal{L}-object U is

- **universal or cofinal** in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{K}-object X there is an \mathcal{L}-map $X \to U$,

- **homogeneous** in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-maps $f, g : X \to U$ from a \mathcal{K}-object there is an \mathcal{L}-automorphism $h : U \to U$ such that $f = h \circ g$,

- **injective** (or that it has the extension property) in $\langle \mathcal{K}, \mathcal{L} \rangle$ if for every \mathcal{L}-map $f : X \to U$ from a \mathcal{K}-object and every \mathcal{K}-map $g : X \to Y$ there is an \mathcal{L}-map $h : Y \to U$ such that $f = h \circ g$.

Observation

A universal homogeneous object is injective, but a universal injective object may not be homogeneous.
Applications – Classical Fraïssé theory

- The ambient category consists of all structures and all embeddings of a fixed first-order language.
- \mathcal{K} is a full subcategory of some finitely generated structures.
- \mathcal{L} is the full subcategory of all unions of increasing chains of \mathcal{K}-objects.

<table>
<thead>
<tr>
<th>\mathcal{K}</th>
<th>\mathcal{L}</th>
<th>universal homogeneous object in $\langle \mathcal{K}, \mathcal{L} \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite linear orders</td>
<td>countable linear orders</td>
<td>the rationals</td>
</tr>
<tr>
<td>finite graphs</td>
<td>countable graphs</td>
<td>Rado graph</td>
</tr>
<tr>
<td>finite groups</td>
<td>locally finite countable groups</td>
<td>Hall’s universal group</td>
</tr>
<tr>
<td>finite rational metric spaces</td>
<td>countable rational metric spaces</td>
<td>rational Urysohn space</td>
</tr>
</tbody>
</table>
Applications – Projective Fraïssé theory [Irwin–Solecki, 2006]

- A *topological structure* is a first-order structure endowed with a compact Hausdorff zero-dimensional topology such that the functions are continuous and the relations are closed.

- A *quotient map* of topological structures is a continuous surjective homomorphism such that every satisfied relation in the codomain has a witness in the domain.

- The ambient category is the opposite category to the category consisting of all topological structures and all quotient maps of a fixed first-order language.

- \mathcal{K} is a subcategory whose objects are some finite structures.

- \mathcal{L} is the category of limits of sequences in \mathcal{K} (the sequences are inverse sequences of quotient maps).
Applications – Projective Fraïssé theory [Irwin–Solecki, 2006]

- The ambient category is the opposite category to the category consisting of all topological structures and all quotient maps of a fixed first-order language.
- \mathcal{K} is a subcategory whose objects are some finite structures.
- \mathcal{L} is the category of limits of sequences in \mathcal{K} (the sequences are inverse sequences of quotient maps).

<table>
<thead>
<tr>
<th>\mathcal{K}</th>
<th>universal homogeneous object in $\langle \mathcal{K}, \mathcal{L} \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite connected linear graphs and all quotients</td>
<td>pseudo-arc pre-space</td>
</tr>
<tr>
<td></td>
<td>[Irwin–Solecki, 2006]</td>
</tr>
<tr>
<td>finite connected graphs and connected quotients</td>
<td>Menger curve pre-space</td>
</tr>
<tr>
<td></td>
<td>[Panagiotopoulos–Solecki, 2019]</td>
</tr>
</tbody>
</table>
Introduction

How to obtain a universal homogeneous object?

1. Start with a sufficiently nice category \mathcal{K}, so it is possible to build a Fraïssé sequence.

2. Observe that it is possible to interpret the Fraïssé sequence as a universal homogeneous object in the category of sequences.

3. If \mathcal{K} is nicely placed in a larger category, then we may move from sequences to their limits – the limit of the Fraïssé sequence is a universal and homogeneous object.
1. Fraïssé sequences

Theorem

A category $\mathcal{K} \neq \emptyset$ has a Fraïssé sequence if and only if the following conditions hold:

1. \mathcal{K} has a countable dominating subcategory,
2. \mathcal{K} is directed,
3. \mathcal{K} has the amalgamation property.

Definition

We will call such category a *Fraïssé category*.
1. Fraïssé sequences

Definition

Let \mathcal{K} be a category.

- \mathcal{K} is countable if there are only countably many \mathcal{K}-maps.

- \mathcal{K} is directed if for every two \mathcal{K}-objects X, Y there are \mathcal{K}-maps $f : X \rightarrow W$, $g : Y \rightarrow W$ to a common codomain.

- \mathcal{K} has the amalgamation property (AP) if for every \mathcal{K}-maps $f : Z \rightarrow X$, $g : Z \rightarrow Y$ from a common domain there are \mathcal{K}-maps $f' : X \rightarrow W$, $g' : Y \rightarrow W$ to a common codomain such that $f' \circ f = g' \circ g$.
1. Fraïssé sequences

By a *sequence* in \mathcal{K} we mean a direct sequence $\langle X_*, f_* \rangle$, i.e.
- $X_* = \langle X_n \rangle_{n \in \omega}$ is a sequence of \mathcal{K}-objects,
- $f_* = \langle f_n : X_n \to X_{n+1} \rangle_{n \in \omega}$ is a sequence of \mathcal{K}-maps.

The sequence may have a (co)limit $\langle X_\infty, f_*^\infty \rangle$, where
- X_∞ is the limit object, and
- $f_*^\infty = \langle f_n^\infty : X_n \to X_\infty \rangle_{n \in \omega}$ is the limit cone.

$$
X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \xrightarrow{f_3} \cdots X_n \xrightarrow{f_n} X_{n+1} \to \cdots X_\infty
$$
Definition

Let S be a subcategory of \mathcal{K} or a sequence $\langle X_*, f_* \rangle$ in \mathcal{K}.

- S is **cofinal** in \mathcal{K} if for every \mathcal{K}-object X there is a \mathcal{K}-map $f : X \to Y$ to an S-object.

- S is **absorbing** in \mathcal{K} if for every \mathcal{K}-map f from an S-object there is a \mathcal{K}-map f' such that $f' \circ f$ is an S-map.
 In the sequence case, $\text{dom}(f) = X_n$ for a fixed n and $f' \circ f$ has to be f^m_n for some $m \geq n$.

- S is **injective** in \mathcal{K} if for every \mathcal{K}-maps f, g from a common domain and with $\text{cod}(f)$ being an S-object there exist an S-map f' and a \mathcal{K}-map g' such that $f' \circ f = g' \circ g$.
 In the sequence case, $\text{cod}(f) = X_n$ for a fixed n and f' has to be f^m_n for some $m \geq n$.

- S is **dominating** in \mathcal{K} if it is cofinal and absorbing in \mathcal{K}.

- S is **Fraïssé** in \mathcal{K} if it is cofinal and injective in \mathcal{K}.
1. Fraïssé sequences

Figure: Implications between the properties of S in \mathcal{K}.
1. Fraïssé sequences

Theorem

A category $\mathcal{K} \neq \emptyset$ has a Fraïssé sequence if and only if the following conditions hold:

1. \mathcal{K} has a countable dominating subcategory,
2. \mathcal{K} is directed,
3. \mathcal{K} has the amalgamation property.

Definition

We will call such category a *Fraïssé category*.
2. Categories of sequences

Theorem

Let \mathcal{K} be a category and let $\langle X_*, f_* \rangle$ be a sequence in \mathcal{K}. The following conditions are equivalent.

1. $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K}.
2. $\langle X_*, f_* \rangle$ is a universal and injective object in $\langle \mathcal{K}, \sigma_0 \mathcal{K} \rangle$.
3. $\langle X_*, f_* \rangle$ is a universal and homogeneous object in $\langle \mathcal{K}, \sigma_0 \mathcal{K} \rangle$.

Moreover, a sequence satisfying the conditions is unique up to isomorphism in $\sigma_0 \mathcal{K}$, and it is universal in $\langle \sigma_0 \mathcal{K}, \sigma_0 \mathcal{K} \rangle$.
Definition

- A **transformation** \(\langle F_*, \varphi \rangle : \langle X_*, f_* \rangle \to \langle Y_*, g_* \rangle \) between sequences in \(\mathcal{K} \) is a pair \(\langle F_*, \varphi \rangle \) such that
 - \(\varphi : \omega \to \omega \) is an increasing cofinal map, and
 - \(F_* = \langle F_n : X_n \to Y_{\varphi(n)} \rangle_{n \in \omega} \) is a sequence of \(\mathcal{K} \)-maps such that
 \[
 g_{\varphi(n)}^m \circ F_n = F_m \circ f_n^m \quad \text{for every } n \leq m \in \omega,
 \]
i.e. it is a natural transformation from \(\langle X_*, f_* \rangle \) to \(\langle Y_*, g_* \rangle \circ \varphi \).

- \(\text{Seq} (\mathcal{K}) \) denotes the category of all sequences in \(\mathcal{K} \) and all transformations between them.

- Two transformations \(\langle F_*, \varphi \rangle, \langle G_*, \psi \rangle : \langle X_*, f_* \rangle \to \langle Y_*, g_* \rangle \) are **equivalent** if for every \(n \in \omega \) we have \(F_n \approx g_* \circ G_n \), i.e. there is \(m \geq \varphi(n), \psi(n) \) such that
 \[
 g_{\varphi(n)}^m \circ F_n = g_{\psi(n)}^m \circ G_n.
 \]
We write \(\langle F_*, \varphi \rangle \approx \langle G_*, \psi \rangle \).

- The relation \(\approx \) is a congruence on the category \(\text{Seq} (\mathcal{K}) \).
 \(\sigma_0 \mathcal{K} \) denotes the quotient category \(\text{Seq} (\mathcal{K}) / \approx \).
2. Categories of sequences

Let $J: \mathcal{K} \to \text{Seq}(\mathcal{K})$ be the functor that assigns to every \mathcal{K}-object X the constant sequence $\langle \langle X \rangle_{n \in \omega}, \langle \text{id}_X \rangle_{n \in \omega} \rangle$, and to every \mathcal{K}-map $f: X \to Y$ the constant transformation $\langle \langle f \rangle_{n \in \omega}, \text{id}_\omega \rangle$.

- A $\sigma_0\mathcal{K}$-map $\langle F_*, \varphi \rangle: \langle X_*, f_* \rangle \to \langle Y_*, g_* \rangle$ is determined by \mathcal{K}-maps $F_{n_k}: X_{n_k} \to Y_{\varphi(n_k)}$ such that $F_{n_k} \approx g_* \circ F_{n_{k+1}} \circ f_{n_k}^{n_{k+1}}$ for an increasing sequence $\langle n_k \rangle_{k \in \omega}$.

- A $\sigma_0\mathcal{K}$-map $J(X) \to \langle Y_*, g_* \rangle$ is determined by a \mathcal{K}-map $f: X \to Y_n$ for some n.

- A $\sigma_0\mathcal{K}$-map $J(X) \to J(Y)$ is determined by a unique \mathcal{K}-map $f: X \to Y$, so $J: \mathcal{K} \to \sigma_0\mathcal{K}$ is a full embedding, and we may identify \mathcal{K} with the full subcategory of $\sigma_0\mathcal{K}$ consisting of constant sequences.

- For every sequence \mathcal{X} in $\sigma_0\mathcal{K}$, the diagonal sequence in \mathcal{K} is the limit of \mathcal{X} in $\sigma_0\mathcal{K}$. In particular, every sequence $\langle X_*, f_* \rangle$ in \mathcal{K} is its own limit in $\sigma_0\mathcal{K}$. So we have constructed $\sigma_0\mathcal{K}$ essentially by adding formal limits of sequences in \mathcal{K}.

2. Categories of sequences

Proposition (back and forth)

Let \(\langle X_*, f_* \rangle \) and \(\langle Y_*, g_* \rangle \) be sequences in \(\mathcal{K} \).

1. If the sequences are absorbing, then every \(\mathcal{K} \)-map \(F_{n_0} : X_{n_0} \to Y_{m_0} \) can be extended to a \(\sigma_0 \mathcal{K} \)-isomorphism \(F_* : \langle X_*, f_* \rangle \to \langle Y_*, g_* \rangle \).

2. If the sequences are injective, then for every \(\mathcal{K} \)-maps \(F : Z \to X_n \) and \(G : Z \to Y_m \) there is a \(\sigma_0 \mathcal{K} \)-isomorphism \(H_* : \langle X_*, f_* \rangle \to \langle Y_*, g_* \rangle \) such that \(G \approx_{g_*} H_n \circ F \).

Corollary

Fraïssé sequences are unique up to \(\sigma_0 \mathcal{K} \)-isomorphism.

Corollary

An injective sequence in \(\mathcal{K} \) is a homogeneous object in \(\langle \mathcal{K}, \sigma_0 \mathcal{K} \rangle \).
2. Categories of sequences

Theorem

Let \mathcal{K} be a category and let $\langle X_*, f_* \rangle$ be a sequence in \mathcal{K}. The following conditions are equivalent.

1. $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K}.
2. $\langle X_*, f_* \rangle$ is a universal and injective object in $\langle \mathcal{K}, \sigma_0 \mathcal{K} \rangle$.
3. $\langle X_*, f_* \rangle$ is a universal and homogeneous object in $\langle \mathcal{K}, \sigma_0 \mathcal{K} \rangle$.

Moreover, a sequence satisfying the conditions is unique up to isomorphism in $\sigma_0 \mathcal{K}$, and it is universal in $\langle \sigma_0 \mathcal{K}, \sigma_0 \mathcal{K} \rangle$.
3. Nice extensions

\[\mathcal{K} \text{ is often a subcategory of a larger category } \mathcal{L} \text{ such that sequences in } \mathcal{K} \text{ have limits in } \mathcal{L}. \text{ In that case, we want to move from sequences to their limits and consider the corresponding category } \sigma \mathcal{K} \subseteq \mathcal{L}. \]

Theorem

Let \(\mathcal{K} \) be a *nicely placed* subcategory of \(\mathcal{L} \). For every sequence \(\langle \mathcal{X}_*, f_* \rangle \) in \(\mathcal{K} \) the following conditions are equivalent.

1. \(\langle \mathcal{X}_*, f_* \rangle \) is a Fraïssé sequence in \(\mathcal{K} \).
2. \(\mathcal{X}_\infty \) is a universal and injective object in \(\langle \mathcal{K}, \sigma \mathcal{K} \rangle \).
3. \(\mathcal{X}_\infty \) is a universal and homogeneous object in \(\langle \mathcal{K}, \sigma \mathcal{K} \rangle \).

Moreover, such \(\sigma \mathcal{K} \)-object \(\mathcal{X}_\infty \) is unique up to isomorphism, and it is universal in \(\langle \sigma \mathcal{K}, \sigma \mathcal{K} \rangle \).
Let $\mathcal{K} \subseteq \mathcal{L}$ be categories such that sequences in \mathcal{K} have limits in \mathcal{L}.

- For every Seq(\mathcal{K})-map $\langle F_*, \varphi \rangle: \langle X_*, f_* \rangle \to \langle Y_*, g_* \rangle$ and every choice of limit cones $\langle X_\infty, f_\infty \rangle, \langle Y_\infty, g_\infty \rangle$ there is a unique \mathcal{L}-map $F_\infty: X_\infty \to Y_\infty$ such that $g_{\varphi(n)} \circ F_n = F_\infty \circ f_{\infty}$ for every $n \in \omega$ – we shall call it the limit of the transformation.

- This assignment defines a limit functor $L: \text{Seq}(\mathcal{K}) \to \mathcal{L}$. The functor factorizes through \approx, and hence also $L: \sigma_0 \mathcal{K} \to \mathcal{L}$.

- By $\sigma \mathcal{K}$ we denote the subcategory of \mathcal{L} generated by limits of all transformations of sequences in \mathcal{K} for all choices of their limit cones.
3. Nice extensions

Let $\mathcal{K} \subseteq \mathcal{L}$ and let $L : \sigma_0 \mathcal{K} \to \sigma \mathcal{K}$ be a limit functor. Let us consider the following conditions.

(L1) For every \mathcal{K}-maps $f : X \to Y_n$, $f' : X \to Y_{n'}$ from a \mathcal{K}-object X to a sequence $\langle Y_*, g_* \rangle$ in \mathcal{K} such that $g_n^\infty \circ f = g_{n'}^\infty \circ f'$ there exists $m \geq n, n'$ such that $g_m^n \circ f = g_{n'}^m \circ f'$.

(L2) For every sequence $\langle Y_*, g_* \rangle$ in \mathcal{K} and every $\sigma \mathcal{K}$-map $f : X \to Y_\infty$ from a \mathcal{K}-object there exists a \mathcal{K}-map $f' : X \to Y_n$ such that $g_n^\infty \circ f' = f$.

Proposition

1. (L1) \iff L is “faithful from small” \iff L is faithful.

2. (L2) \iff L is “full from small” \iff L is full \iff (L1) & (L2).
3. Nice extensions

Definition

\(\mathcal{K} \) is *nicely placed* in \(\mathcal{L} \) if \(\mathcal{K} \subseteq \mathcal{L} \), every sequence in \(\mathcal{K} \) has a limit in \(\mathcal{L} \), and \(\langle \mathcal{K}, \mathcal{L} \rangle \) satisfies (L1) and (L2).

Observation

1. If \(\mathcal{K} \) is nicely placed in \(\mathcal{L} \), then any limit functor \(L: \sigma_0 \mathcal{K} \to \sigma \mathcal{K} \) is an equivalence of categories.
2. (L1) holds if \(\sigma \mathcal{K} \) consists of monomorphisms.
3. (L2) holds if and only if there is a \(\sigma_0 \mathcal{K} \)-isomorphism \(F_*: \langle X_*, f_* \rangle \to \langle Y_*, g_* \rangle \) with \(F_\infty = \text{id} \) whenever \(X_\infty = Y_\infty \).
4. In the classical model-theoretical setting and in the projective Fraïssé theory, the conditions (L1) and (L2) are satisfied.
3. Nice extensions

Let us recall the main result of this section.

Theorem

Let \mathcal{K} be a *nicely placed* subcategory of \mathcal{L}. For every sequence $\langle X_*, f_* \rangle$ in \mathcal{K} the following conditions are equivalent.

1. $\langle X_*, f_* \rangle$ is a Fraïssé sequence in \mathcal{K}.
2. X_∞ is a universal and injective object in $\langle \mathcal{K}, \sigma\mathcal{K} \rangle$.
3. X_∞ is a universal and homogeneous object in $\langle \mathcal{K}, \sigma\mathcal{K} \rangle$.

Moreover, such $\sigma\mathcal{K}$-object X_∞ is unique up to isomorphism, and it is universal in $\langle \sigma\mathcal{K}, \sigma\mathcal{K} \rangle$.

Remark

If $\sigma\mathcal{K}$ is a full subcategory of \mathcal{L}, then a universal homogeneous object in $\langle \mathcal{K}, \sigma\mathcal{K} \rangle$ is also universal and homogeneous in $\langle \mathcal{K}, \mathcal{L} \rangle$, but universal homogeneous objects in $\langle \mathcal{K}, \mathcal{L} \rangle$ are not unique in general.
A summarizing definition

We say that an \(\mathcal{L} \)-object \(X \) is a *Fraïssé limit* of \(\mathcal{K} \) in \(\mathcal{L} \), and we write \(X = \text{Flim}_\mathcal{L}(\mathcal{K}) \), if \(\mathcal{K} \) is nicely placed in \(\mathcal{L} \) and \(X \) satisfies the following equivalent conditions:

- \(X \) is universal and homogeneous in \(\langle \mathcal{K}, \mathcal{L} \rangle \);
- \(X \) is universal and injective in \(\langle \mathcal{K}, \mathcal{L} \rangle \);
- \(X \) is a limit in \(\mathcal{L} \) of a Fraïssé sequence in \(\mathcal{K} \).

Necessarily, \(\mathcal{K} \) is a Fraïssé category.
The presented framework can be extended in at least three orthogonal ways:

1. beyond the countable case – when uncountable sequences or directed diagrams are considered,
2. by weakening the amalgamation property – which is closely connected with the abstract Banach–Mazur game,
3. beyond the discrete case – when the strict commutativity of diagrams is replaced by ε-commutativity with better and better ε (in the metric-enriched setting).