Fréchet-like properties and ad families

César Corral (joint with Michael Hrušák)

UNAM-UMSNH

Hejnice, January 2020
Fréchet, α_i and strong Fréchet properties

A point $x \in X$ is a **Fréchet point** if whenever $x \in \overline{A}$ there is a sequence $\{x_n : n \in \omega\} \subseteq A$ such that $x_n \rightarrow x$.

Definition (Arhangel’skii, 79)

A point $x \in X$ is an α_i-point ($i = 1, 2, 3, 4$) if given a family $\{S_n : n \in \omega\}$ of sequences converging to x, there is a sequence $S \rightarrow x$ (we identify a convergent sequence with its range) such that:

1. (α_1) $S \setminus S_n$ is finite for all $n \in \omega$,
2. (α_2) $S \cap S_n \neq \emptyset$ for all $n \in \omega$,
3. (α_3) $|S \cap S_n| = \omega$ for infinitely many $n \in \omega$,
4. (α_4) $S \cap S_n \neq \emptyset$ for infinitely many $n \in \omega$.

Then a space X is Fréchet (resp. α_i) if every point $x \in X$ is Fréchet (resp. α_i).
Fréchet, α_i and strong Fréchet properties

A point $x \in X$ is a Fréchet point if whenever $x \in \overline{A}$ there is a sequence $\{x_n : n \in \omega\} \subseteq A$ such that $x_n \to x$.

Definition (Arhangel’skii, 79)

A point $x \in X$ is an α_i-point ($i = 1, 2, 3, 4$) if given a family $\{S_n : n \in \omega\}$ of sequences converging to x, there is a sequence $S \to x$ (we identify a convergent sequence with its range) such that:

1. (α_1) $S \setminus S_n$ is finite for all $n \in \omega$,
2. (α_2) $S \cap S_n \neq \emptyset$ for all $n \in \omega$,
3. (α_3) $|S \cap S_n| = \omega$ for infinitely many $n \in \omega$,
4. (α_4) $S \cap S_n \neq \emptyset$ for infinitely many $n \in \omega$.

Then a space X is Fréchet (resp. α_i) if every point $x \in X$ is Fréchet (resp. α_i).
Fréchet, α_i and strong Fréchet properties

A point $x \in X$ is a Fréchet point if whenever $x \in \overline{A}$ there is a sequence $\{x_n : n \in \omega\} \subseteq A$ such that $x_n \to x$.

Definition (Arhangel’skii, 79)

A point $x \in X$ is an α_i-point ($i = 1, 2, 3, 4$) if given a family $\{S_n : n \in \omega\}$ of sequences converging to x, there is a sequence $S \to x$ (we identify a convergent sequence with its range) such that:

1. $S \setminus S_n$ is finite for all $n \in \omega$,
2. $S \cap S_n \neq \emptyset$ for all $n \in \omega$,
3. $|S \cap S_n| = \omega$ for infinitely many $n \in \omega$,
4. $S \cap S_n \neq \emptyset$ for infinitely many $n \in \omega$.

Then a space X is Fréchet (resp. α_i) if every point $x \in X$ is Fréchet (resp. α_i).
Fréchet, α_i and strong Fréchet properties

Definition (Arhangel’skii, 79)

A space X is **absolutely Fréchet** if in some Hausdorff compactification bX of X, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ (x clusters at \mathcal{A}) if $x \in \overline{A}$ for every $A \in \mathcal{A}$. A filter base \mathcal{G} **converges** to a point $x \in X$ if for every neighborhood V of x, there is a $G \in \mathcal{G}$ such that $G \subseteq V$. We then write $\mathcal{G} \rightarrow x$.

Definition (E. Michael, 72)

X is **bisequential** at $x \in X$ if for every ultrafilter \mathcal{U} in X such that $x \in \overline{\mathcal{U}}$ there is a sequence $\mathcal{G} = \{G_n : n \in \omega\} \subseteq \mathcal{U}$ such that $\mathcal{G} \rightarrow x$. A space X is bisequential if it is bisequential at every point.
Fréchet, α_i and strong Fréchet properties

Definition (Arhangel’skii, 79)

A space X is **absolutely Fréchet** if in some Hausdorff compactification bX of X, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ (x **clusters** at \mathcal{A}) if $x \in \overline{A}$ for every $A \in \mathcal{A}$. A filter base \mathcal{G} **converges** to a point $x \in X$ if for every neighborhood V of x, there is a $G \in \mathcal{G}$ such that $G \subseteq V$. We then write $\mathcal{G} \to x$.

Definition (E. Michael, 72)

X is **bisequential** at $x \in X$ if for every ultrafilter \mathcal{U} in X such that $x \in \overline{\mathcal{U}}$ there is a sequence $\mathcal{G} = \{G_n : n \in \omega\} \subseteq \mathcal{U}$ such that $\mathcal{G} \to x$. A space X is bisequential if it is bisequential at every point.
Fréchet, α_i and strong Fréchet properties

Definition (Arhangel’skii, 79)

A space X is **absolutely Fréchet** if in some Hausdorff compactification bX of X, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ (x **clusters at** \mathcal{A}) if $x \in \overline{A}$ for every $A \in \mathcal{A}$. A filter base \mathcal{G} **converges** to a point $x \in X$ if for every neighborhood V of x, there is a $G \in \mathcal{G}$ such that $G \subseteq V$. We then write $\mathcal{G} \rightarrow x$.

Definition (E. Michael, 72)

X is **bisequential** at $x \in X$ if for every ultrafilter \mathcal{U} in X such that $x \in \overline{\mathcal{U}}$ there is a sequence $\mathcal{G} = \{G_n : n \in \omega\} \subseteq \mathcal{U}$ such that $\mathcal{G} \rightarrow x$.

A space X is bisequential if it is bisequential at every point.
Fréchet, α_i and strong Fréchet properties

Definition (Arhangel’skii, 79)

A space X is **absolutely Fréchet** if in some Hausdorff compactification bX of X, every point $x \in X$ is a Fréchet point.

Given a family $\mathcal{A} \subseteq \mathcal{P}(X)$ we will say that $x \in \overline{\mathcal{A}}$ (**x clusters at \mathcal{A}**) if $x \in \overline{A}$ for every $A \in \mathcal{A}$. A filter base \mathcal{G} converges to a point $x \in X$ if for every neighborhood V of x, there is a $G \in \mathcal{G}$ such that $G \subseteq V$. We then write $\mathcal{G} \rightarrow x$.

Definition (E. Michael, 72)

X is **bisequential** at $x \in X$ if for every ultrafilter \mathcal{U} in X such that $x \in \overline{\mathcal{U}}$ there is a sequence $\mathcal{G} = \{G_n : n \in \omega\} \subseteq \mathcal{U}$ such that $\mathcal{G} \rightarrow x$.

A space X is bisequential if it is bisequential at every point.
Relationship between strong Fréchet and α_1 properties

First countable

α_1

α_2

bisequential

α_3

absolutely Fréchet

α_4

Fréchet
Impact of these properties in the product of Fréchet spaces

- The product of a countably compact space with an α_3-FU space is Fréchet.
- $X \times [0, 1]$ is Fréchet iff X is α_4-FU.
- If X is absolutely Fréchet and Y is first countable then $X \times Y$ is absolutely Fréchet.
- The product of an absolutely Fréchet and a bisequential space is absolutely Fréchet.
Some results

- (Arhangel’skii, 79) There is a Fréchet space which is not α_4.
- (Arhangel’skii, 79) There is a non-bisequential space X such that it is α_4-FU.
- (Simon, 80) There is an α_4 space which is not α_3.
- (Nyikos, 89) There is an α_3 space which is not α_2.
- (Nyikos, 90’s) There is an α_2 space that is not first countable.
- (Dow, 90’s) It is consistent that all countable α_2 spaces are α_1.
- (Dow & Steprans, 90’s) It is consistent that all α_1 spaces are first countable.
Some results

- (Arhangel’skii, 79) There is a Fréchet space which is not α_4.
- (Arhangel’skii, 79) There is a non-bisequential space X such that it is α_4-FU.
- (Simon, 80) There is an α_4 space which is not α_3.
- (Nyikos, 89) There is an α_3 space which is not α_2.
- (Nyikos, 90’s) There is an α_2 space that is not first countable.
- (Dow, 90’s) It is consistent that all countable α_2 spaces are α_1.
- (Dow & Steprans, 90’s) It is consistent that all α_1 spaces are first countable.
Some results

- (Arhangel’skii, 79) There is a Fréchet space which is not α_4.
- (Arhangel’skii, 79) There is a non-bisequential space X such that it is α_4-FU.
- (Simon, 80) There is an α_4 space which is not α_3.
- (Nyikos, 89) There is an α_3 space which is not α_2.
- (Nyikos, 90’s) There is an α_2 space that is not first countable.
- (Dow, 90’s) It is consistent that all countable α_2 spaces are α_1.
- (Dow & Steprans, 90’s) It is consistent that all α_1 spaces are first countable.
Some results

- (Arhangel’skii, 79) There is a Fréchet space which is not α_4.
- (Arhangel’skii, 79) There is a non-bisequential space X such that it is α_4-FU.
- (Simon, 80) There is an α_4 space which is not α_3.
- (Nyikos, 89) There is an α_3 space which is not α_2.
- (Nyikos, 90’s) There is an α_2 space that is not first countable.
- (Dow, 90’s) It is consistent that all countable α_2 spaces are α_1.
- (Dow & Steprans, 90’s) It is consistent that all α_1 spaces are first countable.
Some results

- (Arhangel’skii, 79) There is a Fréchet space which is not α_4.
- (Arhangel’skii, 79) There is a non-bisequential space X such that it is α_4-FU.
- (Simon, 80) There is an α_4 space which is not α_3.
- (Nyikos, 89) There is an α_3 space which is not α_2.
- (Nyikos, 90’s) There is an α_2 space that is not first countable.
- (Dow, 90’s) It is consistent that all countable α_2 spaces are α_1.
- (Dow & Steprans, 90’s) It is consistent that all α_1 spaces are first countable.
Some results

- (Arhangel’skii, 79) There is a Fréchet space which is not α_4.
- (Arhangel’skii, 79) There is a non-bisequential space X such that it is α_4-FU.
- (Simon, 80) There is an α_4 space which is not α_3.
- (Nyikos, 89) There is an α_3 space which is not α_2.
- (Nyikos, 90’s) There is an α_2 space that is not first countable.
- (Dow, 90’s) It is consistent that all countable α_2 spaces are α_1.
- (Dow & Steprans, 90’s) It is consistent that all α_1 spaces are first countable.
Some results

- (Arhangel’skii, 79) There is a Fréchet space which is not α_4.
- (Arhangel’skii, 79) There is a non-bisequential space X such that it is α_4-FU.
- (Simon, 80) There is an α_4 space which is not α_3.
- (Nyikos, 89) There is an α_3 space which is not α_2.
- (Nyikos, 90’s) There is an α_2 space that is not first countable.
- (Dow, 90’s) It is consistent that all countable α_2 spaces are α_1.
- (Dow & Steprans, 90’s) It is consistent that all α_1 spaces are first countable.
A family \(\mathcal{A} \subseteq [\omega]^\omega \) is an almost disjoint (ad) family if \(|A \cap B| < \omega \) for every \(A, B \in \mathcal{A} \). \(\mathcal{A} \) is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.

Given an ad family \(\mathcal{A} \), the ad space generated by \(\mathcal{A} \) is the subspace \(\omega \cup \{\infty\} \) of the one-point compactification of \(\Psi(\mathcal{A}) \).

We will say that an ad family \(\mathcal{A} \) satisfies a topological property \(P \) if its ad space does.

Definition

An ad family \(\mathcal{A} \) is hereditarily \(\alpha_3 \) if \(B \) is \(\alpha_3 \) for every \(B \subseteq \mathcal{A} \).

Question (Gruenhage, 06)

For an ad family \(\mathcal{A} \) is it equivalent being \(\alpha_3 \)-FU (hereditarily \(\alpha_3 \)-FU) with its bisequentiality?
An ad family $\mathcal{A} \subseteq [\omega]^\omega$ is an almost disjoint (ad) family if $|A \cap B| < \omega$ for every $A, B \in \mathcal{A}$. \mathcal{A} is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.

Given an ad family \mathcal{A}, the ad space generated by \mathcal{A} is the subspace $\omega \cup \{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$.

We will say that an ad family \mathcal{A} satisfies a topological property P if its ad space does.

Definition

An ad family \mathcal{A} is hereditarily α_3 if B is α_3 for every $B \subseteq \mathcal{A}$.

Question (Gruenhage, 06)

For an ad family \mathcal{A} is it equivalent being α_3-FU (hereditarily α_3-FU) with its bisequentiality?
AD spaces

A family $\mathcal{A} \subseteq [\omega]^\omega$ is an almost disjoint (ad) family if $|A \cap B| < \omega$ for every $A, B \in \mathcal{A}$. \mathcal{A} is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.

Given an ad family \mathcal{A}, the ad space generated by \mathcal{A} is the subspace $\omega \cup \{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$.

We will say that an ad family \mathcal{A} satisfies a topological property P if its ad space does.

Definition

An ad family \mathcal{A} is hereditarily α_3 if B is α_3 for every $B \subseteq \mathcal{A}$.

Question (Gruenhage, 06)

For an ad family \mathcal{A} is it equivalent being α_3-FU (hereditarily α_3-FU) with its bisequentiality?
AD spaces

A family $\mathcal{A} \subseteq [\omega]^\omega$ is an almost disjoint (ad) family if $|A \cap B| < \omega$ for every $A, B \in \mathcal{A}$. \mathcal{A} is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.

Given an ad family \mathcal{A}, the ad space generated by \mathcal{A} is the subspace $\omega \cup \{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$.

We will say that an ad family \mathcal{A} satisfies a topological property P if its ad space does.

Definition

An ad family \mathcal{A} is hereditarily α_3 if B is α_3 for every $B \subseteq \mathcal{A}$.

Question (Gruenhage, 06)

For an ad family \mathcal{A} is it equivalent being α_3-FU (hereditarily α_3-FU) with its bisequentiality?
AD spaces

A family $\mathcal{A} \subseteq [\omega]^\omega$ is an almost disjoint (ad) family if $|A \cap B| < \omega$ for every $A, B \in \mathcal{A}$. \mathcal{A} is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.

Given an ad family \mathcal{A}, the ad space generated by \mathcal{A} is the subspace $\omega \cup \{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$.

We will say that an ad family \mathcal{A} satisfies a topological property P if its ad space does.

Definition

An ad family \mathcal{A} is hereditarily α_3 if B is α_3 for every $B \subseteq \mathcal{A}$.

Question (Gruenhage, 06)

For an ad family \mathcal{A} is it equivalent being α_3-FU (hereditarily α_3-FU) with its bisequentiality?
AD spaces

A family $\mathcal{A} \subseteq [\omega]^\omega$ is an almost disjoint (ad) family if $|A \cap B| < \omega$ for every $A, B \in \mathcal{A}$. \mathcal{A} is maximal almost disjoint (mad) if it is ad and maximal with respect to this property.

Given an ad family \mathcal{A}, the ad space generated by \mathcal{A} is the subspace $\omega \cup \{\infty\}$ of the one-point compactification of $\Psi(\mathcal{A})$.

We will say that an ad family \mathcal{A} satisfies a topological property P if its ad space does.

Definition

An ad family \mathcal{A} is hereditarily α_3 if B is α_3 for every $B \subseteq \mathcal{A}$.

Question (Gruenhage, 06)

For an ad family \mathcal{A} is it equivalent being α_3-FU (hereditarily α_3-FU) with its bisequentiality?
Some results

- (Folklore) There are bisequential ad families (actually, every \mathbb{R}-embedable is bisequential).
- (Nyikos, 09) Under $b = c$, there is a Fréchet ad family which is not α_3. The example consists of graph of functions on $\omega \times \omega$, so...

Question (Nyikos, 09)
Is there a non-bisequential ad family consisting of functions such that it is α_3-FU?

Theorem (C.-Hrušák)
non(\mathcal{M}) = c. There exists an α_3-FU (even α_2-FU) ad family (consisting of functions in $\omega \times \omega$) which is not hereditarily α_3.
Some results

- (Folklore) There are bisequential ad families (actually, every \mathbb{R}-embedable is bisequential).
- (Nyikos, 09) Under $b = c$, there is a Fréchet ad family which is not α_3. The example consists of graph of functions on $\omega \times \omega$, so...

Question (Nyikos, 09)
Is there a non-bisequential ad family consisting of functions such that it is α_3-FU?

Theorem (C.-Hrušák)
non(\mathcal{M}) = c. There exists an α_3-FU (even α_2-FU) ad family (consisting of functions in $\omega \times \omega$) which is not hereditarily α_3.
Some results

- (Folklore) There are bisequential ad families (actually, every \mathbb{R}-embedable is bisequential).
- (Nyikos, 09) Under $b = c$, there is a Fréchet ad family which is not α_3. The example consists of graph of functions on $\omega \times \omega$, so...

Question (Nyikos, 09)
Is there a non-bisequential ad family consisting of functions such that it is α_3-FU?

Theorem (C.-Hrušák)
$\text{non}(\mathcal{M}) = c$. There exists an α_3-FU (even α_2-FU) ad family (consisting of functions in $\omega \times \omega$) which is not hereditarily α_3.
Some results

- (Folklore) There are bisequential ad families (actually, every \(\mathbb{R} \)-embedable is bisequential).
- (Nyikos, 09) Under \(b = c \), there is a Fréchet ad family which is not \(\alpha_3 \). The example consists of graph of functions on \(\omega \times \omega \), so...

Question (Nyikos, 09)

Is there a non-bisequential ad family consisting of functions such that it is \(\alpha_3 \)-FU?

Theorem (C.-Hrušák)

\(\text{non}(\mathcal{M}) = c \). There exists an \(\alpha_3 \)-FU (even \(\alpha_2 \)-FU) ad family (consisting of functions in \(\omega \times \omega \)) which is not hereditarily \(\alpha_3 \).
Theorem (C.-Hrušák)

\(b = c \). There exists an hereditarily \(\alpha_3 \)-FU almost disjoint family (consisting of partial functions) which is not bisequential.

Question

Can the above family consist of total functions?

Since \(b \leq \text{non}(\mathcal{M}) \), it follows that under \(b = c \) the tree concepts are different.
Theorem (C.-Hrušák)

$b = c$. There exists an hereditarily α_3-FU almost disjoint family (consisting of partial functions) which is not bisequential.

Question

Can the above family consist of total functions?

Since $b \leq \text{non}(\mathcal{M})$, it follows that under $b = c$ the tree concepts are different.
Theorem (C.-Hrušák)

$b = c$. There exists an hereditarily α_3-FU almost disjoint family (consisting of partial functions) which is not bisequential.

Question

Can the above family consist of total functions?

Since $b \leq \text{non}(\mathcal{M})$, it follows that under $b = c$ the tree concepts are different.
Other constructions

Theorem (C.-Hrušák)

\((s \leq b)\) There is an \(\alpha_3\)-FU not hereditarily \(\alpha_3\) ad family.

Corollary

\((c \leq \aleph_2)\) There is an \(\alpha_3\)-FU non-bisequential ad family.

Theorem (C.-Hrušák)

\(\diamondsuit (b) \Rightarrow \) There is an \(\alpha_2\)-FU not her. \(\alpha_3\) ad family of size \(\omega_1\).

\(\diamondsuit (b) \Rightarrow \) There is an her. \(\alpha_3\)-FU not bsq. ad family of size \(\omega_1\).
Other constructions

Theorem (C.-Hrušák)

\((s \leq b)\) There is an \(\alpha_3\)-FU not hereditarily \(\alpha_3\) ad family.

Corollary

\((c \leq \aleph_2)\) There is an \(\alpha_3\)-FU non-bisequential ad family.

Theorem (C.-Hrušák)

\(\lozenge (b) \Rightarrow\) There is an \(\alpha_2\)-FU not her. \(\alpha_3\) ad family of size \(\omega_1\).

\(\lozenge (b) \Rightarrow\) There is an her. \(\alpha_3\)-FU not bsq. ad family of size \(\omega_1\).
Other constructions

<table>
<thead>
<tr>
<th>Theorem (C.-Hrušák)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((s \leq b)) There is an (\alpha_3)-FU not hereditarily (\alpha_3) ad family.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>((c \leq \aleph_2)) There is an (\alpha_3)-FU non-bisequential ad family.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (C.-Hrušák)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\diamondsuit(b) \Rightarrow) There is an (\alpha_2)-FU not her. (\alpha_3) ad family of size (\omega_1).</td>
</tr>
<tr>
<td>(\diamondsuit(b) \Rightarrow) There is an her. (\alpha_3)-FU not bsq. ad family of size (\omega_1).</td>
</tr>
</tbody>
</table>
On some questions of Arhangel’skii

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) α_1-FU space which is not bisequential?

A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_0} < 2^{\aleph_1}$.

Theorem (C.-Hrušák)

CH. There is a countable α_1 and absolutely Fréchet space which is not bisequential.

Theorem

There is (in ZFC) an absolutely Fréchet space which is not bisequential.
On some questions of Arhangel’skii

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) α_1-FU space which is not bisequential?

A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_0} < 2^{\aleph_1}$.

Theorem (C.-Hrušák)

CH. There is a countable α_1 and absolutely Fréchet space which is not bisequential.

Theorem

There is (in ZFC) an absolutely Fréchet space which is not bisequential.
(79) Is there an absolutely Fréchet space which is not bisequential?

(79) Is there a (countable) α_1-FU space which is not bisequential?

A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_0} < 2^{\aleph_1}$.

Theorem (C.-Hrušáč)

CH. There is a countable α_1 and absolutely Fréchet space which is not bisequential.

Theorem

There is (in ZFC) an absolutely Fréchet space which is not bisequential.
On some questions of Arhangel’skii

- (79) Is there an absolutely Fréchet space which is not bisequential?
- (79) Is there a (countable) α_1-FU space which is not bisequential?

A consistent example for the second question was given by Malyhin under the assumption $2^{\aleph_0} < 2^{\aleph_1}$.

Theorem (C.-Hrušák)

CH. There is a countable α_1 and absolutely Fréchet space which is not bisequential.

Theorem

There is (in ZFC) an absolutely Fréchet space which is not bisequential.
On some questions of Arhangel’skii

- (79) Is there an absolutely Fréchet space which is not bisequential?

- (79) Is there a (countable) \(\alpha_1 \)-FU space which is not bisequential?

A consistent example for the second question was given by Malyhin under the assumption \(2^{\aleph_0} < 2^{\aleph_1} \).

Theorem (C.-Hrušák)

CH. There is a countable \(\alpha_1 \) and absolutely Fréchet space which is not bisequential.

Theorem

There is (in ZFC) an absolutely Fréchet space which is not bisequential.
Some questions (if time allows)

- Is there (in ZFC) an α_3-FU non-bisequential ad family?

Definition

Let \mathcal{A} be an ad family:

- \mathcal{A} is completely separable if for every $X \in \mathcal{I}(\mathcal{A})^+$ there exists $A \in \mathcal{A}$ such that $A \subseteq X$.

- \mathcal{A} is almost completely separable if for every $X \subseteq \omega$ such that $X \cap A$ is infinite for infinitely many $A \in \mathcal{A}$, there exists $B \in \mathcal{A}$ such that $B \subseteq X$.

- \mathcal{A} is weakly tight if for every family $\{X_n : n \in \omega\} \subseteq \mathcal{I}(\mathcal{A})^+$, there is $A \in \mathcal{A}$ such that $A \cap X_n$ is infinite for infinitely many $n \in \omega$.

- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an α_3-FU non-bisequential ad family?
Some questions (if time allows)

- Is there (in ZFC) an α_3-FU non-bisequential ad family?

Definition

Let \mathcal{A} be an ad family:

- \mathcal{A} is **completely separable** if for every $X \in \mathcal{I}(\mathcal{A})^+$ there exists $A \in \mathcal{A}$ such that $A \subseteq X$.

- \mathcal{A} is **almost completely separable** if for every $X \subseteq \omega$ such that $X \cap A$ is infinite for infinitely many $A \in \mathcal{A}$, there exists $B \in \mathcal{A}$ such that $B \subseteq X$.

- \mathcal{A} is **weakly tight** if for every family $\{X_n : n \in \omega\} \subseteq \mathcal{I}(\mathcal{A})^+$, there is $A \in \mathcal{A}$ such that $A \cap X_n$ is infinite for infinitely many $n \in \omega$.

- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an α_3-FU non-bisequential ad family?
Some questions (if time allows)

- Is there (in ZFC) an α_3-FU non-bisequential ad family?

Definition

Let \mathcal{A} be an ad family:

- \mathcal{A} is **completely separable** if for every $X \in \mathcal{I}(\mathcal{A})^+$ there exists $A \in \mathcal{A}$ such that $A \subseteq X$.
- \mathcal{A} is **almost completely separable** if for every $X \subseteq \omega$ such that $X \cap A$ is infinite for infinitely many $A \in \mathcal{A}$, there exists $B \in \mathcal{A}$ such that $B \subseteq X$.
- \mathcal{A} is **weakly tight** if for every family $\{X_n : n \in \omega\} \subseteq \mathcal{I}(\mathcal{A})^+$, there is $A \in \mathcal{A}$ such that $A \cap X_n$ is infinite for infinitely many $n \in \omega$.

- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an α_3-FU non-bisequential ad family?
Some questions (if time allows)

- Is there (in ZFC) an α_3-FU non-bisequential ad family?

Definition

Let \mathcal{A} be an ad family:

- \mathcal{A} is **completely separable** if for every $X \in \mathcal{I}(\mathcal{A})^+$ there exists $A \in \mathcal{A}$ such that $A \subseteq X$.

- \mathcal{A} is **almost completely separable** if for every $X \subseteq \omega$ such that $X \cap A$ is infinite for infinitely many $A \in \mathcal{A}$, there exists $B \in \mathcal{A}$ such that $B \subseteq X$.

- \mathcal{A} is **weakly tight** if for every family $\{X_n : n \in \omega\} \subseteq \mathcal{I}(\mathcal{A})^+$, there is $A \in \mathcal{A}$ such that $A \cap X_n$ is infinite for infinitely many $n \in \omega$.

- Is there (in ZFC) an almost weakly tight ad family?
- Does it follow from the existence of the above family, the existence of an α_3-FU non-bisequential ad family?
Thank you for your attention!