
Supported by SRNSFG Grant Numb: MG TG-19-1447

The Uniform Subsets
of the Eucliedean Plane

Mariam Beriashvili

I. Vekua Institute of Applied Mathematics
Tbilisi State Univeristy

mariam beriashvili@yahoo.com

January 30, 2020

Mariam Beriashvili (Tbilisi State University) Short title January 30, 2020 1 / 16



Uniform Set

Definition

Let X be a subset of R2 and ~e is an arbitrary vector in R2, X called an
Uniform subset of R2 in direction ~e if for each p′ parallel to ~e, we have

card(p′ ∩ X ) ≤ 1

.

According to the standard terminology in N. N. Luzin, Collected Works (in
Russian), Izd. Akad. Nauk SSSR, Moscow, 2 (1958)
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Luzini Problem

Many years ago Luzin posed a problem, in particular Luzin asked whether
there exists a function

φ : R→ R

such that the whole plane R2 can be covered by countable many isometric
copies of the graph of φ.
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Sierpinski Partition

Partially, Sierpinski has answered to the Luzini Problem and under the
Continuum Hypothesis has proved next theorem.

Sierpinski’s Theorem.

Assuming Continuum Hypothesis in R2 there exists two subsets A and B,
such that

1 The set A is uniform with respect to the axis R× 0;

2 The set B is uniform with respect to the axis 0× R;

3 There exists a countable family {hn : n > ω} of translations of R2, for
which we have

∪{hn(A ∪ B) : n < ω} = R2

.
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Solution of Luzini Problem without CH

Theorem of Davies

Let (~ei )i∈ω be an injective countable family of vectors in R2. Then there
exists a family {Xi : i ∈ ω} of subsets of R2 such that

1 ∪{Xi : k ∈ ω} = R2;

2 for each i ∈ ω the set Xi is uniform in direction ~ei .
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Finite set in direction vector ~e

Definition

Let ~e be an arbitrary nonzero vector in R2. A set B ⊂ R2 is finite in
direction ~e if

card(l ∩ B) < ω

for any straight line l ⊂ R2 parallel to ~e.

Theorem

Let Z ⊂ R2 be a finite set in direction ~e, where ~e is an arbitrary vector in
the plane, then there exists an uniform set X ⊂ R2 in the same ~e
direction, such that Z is a countable many Π2-configuration of X .
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Let E be a set and let M be a class of measures on E (in general, we do
not assume that measures belonging to M are defined on the one and
same σ-algebra of subset of E ).

Definition

We say that a set X ⊂ E is absolutely measurable with respect to M
if X is measurable with respect to all measures from M.

We say that a set Y ⊂ E is relatively measurable with respect to M if
there exists at least one measure µ from M such that Y is
µ-measurable.

We say that a set Z ⊂ E is absolutely nonmeasurable with respect to
M if there exists no measure from M such that Z is measurable with
respect to all measures from M.
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Measurability of the Uniform subset

Let Π2 denote the group of all translations of the plane R2 and let λ2
stand for the ordinary two-dimensional Lebesgue measure on R2.

Theorem

There exists a Π2-invariant extension µ of the Lebesgue measure λ2, such
that all uniform sets in direction Oy -axis are measurable with respect µ.

Corollary. The uniform set in any direction in R2 is absolutely measurable
with respect to the class of all nonzero σ-finite Π2-invariant measures.

Theorem

Under CH, there exist a set A uniform in direction of Oy -axis and a set B
uniform in direction of Ox-axis, such that A ∪ B is absolutely
nonmeasurable with respect to the class of all Π2-invariant extensions of
the Lebesgue measure λ2.

A.B. Kharazishvili Questions in the theory of sets and in measure theory ,
TSU, Tblisi, 1978
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Auxiliary notions

Let M(R2) be a class of all nonzero σ-finite translation invariant measures
on R2.

Definition

A set X ⊂ R2 is called negligible with respect to M(R2) if these two
conditions are satisfied for X :

there exists a measure ν ∈ M(R2) such that X ∈ dom(ν);

for any measure µ ∈ M(R2), the relation X ∈ dom(µ) implies the
equality µ(X ) = 0

A proper subclass of negligible sets, consisting of the so called absolutely
negligible sets, is of special interest for the general theory of invariant
measures.
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Auxiliary notions

Definition

A set X ⊂ R2 is called absolutely negligible with respect to M(R2) if, for
every measure µ ∈ M(R2), there exists a measure µ′ ∈ M(R2) such that
the relations

µ′ extends µ,Y ∈ dom(µ′), µ′(Y ) = 0

hold true.
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In the paper
A. Kharazishvili, Small sets in uncountable abelian groups, Acta

Univ. Lodz, Folia, Math No. 7 (1995) 31-39

has proved next statement:

Lemma

If X ⊂ R2 is finite in some direction ~e, then M is negligible with respect to
the class M(R2).

Mariam Beriashvili (Tbilisi State University) Short title January 30, 2020 11 / 16



Auxiliary proposition

Lemma

Every Hamel basis of the space Rn is absolutely negligible subset of Rn.

Notice that a more general result can be stated. For any natural number
n, denote by Hn the set of all those vectors in R2 whose representation via
the Hamel basis H contains at most n nonzero rational coefficients. Then
each set Hn, n < ω turns out to be R2-absolutely negligible in R2.

[A. Kharazishvili, One property of Hamel bases, Bull. Acad.

Sci. GSSR, 95, 2 (1979), 277-280.]

Mariam Beriashvili (Tbilisi State University) Short title January 30, 2020 12 / 16



Main Result

Theorem

There exists a uniform subset of R2 which is Hamel basis of R2.

Remark: The proof of this result is similar to the proof of the fact that
there exists a Mazurkiewicz set in R2 which is a Hamel basis of R2.
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Conclusion

In general, the solution of the Luzin Problem by Davis and the character
of the uniform set infer that any uniform subset of R2 is Π2-negligible and
not Π2-absolutely negligible.
In connection with this fact is interesting next question
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Open Problem

Does there exists a subset of the Euclidean space Rn which is
Πn-absolutely negligible and simultaneously, Dn-absolutely nonmeasurable?
Where, Dn is the group of all motions (i.e. isometric transformations) of
Rn and Πn the group of all translations of the space Rn
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