Topological applications of Wadge theory II

Andrea Medini

Kurt Gödel Research Center
University of Vienna

January 27, 2020
Reasonably closed Wadge classes

Given $i \in 2$, set:

$$Q_i = \{ x \in 2^\omega : x(n) = i \text{ for all but finitely many } n \in \omega \}$$

Notice that every element of $2^\omega \setminus (Q_0 \cup Q_1)$ is obtained by alternating finite blocks of zeros and finite blocks of ones.

Define the function $\phi : 2^\omega \setminus (Q_0 \cup Q_1) \rightarrow 2^\omega$ by setting

$$\phi(x)(n) = \begin{cases} 0 & \text{if the } n^{\text{th}} \text{ block of zeros of } x \text{ has even length} \\ 1 & \text{otherwise} \end{cases}$$

where we start counting with the 0^{th} block of zeros. It is easy to check that ϕ is continuous.

Definition (Steel, 1980)

Let Γ be a Wadge class in 2^ω. We will say that Γ is *reasonably closed* if $\phi^{-1}[A] \cup Q_0 \in \Gamma$ for every $A \in \Gamma$.
Why would anybody need that?

Lemma (Harrington)

Let $\Gamma = [B]$ be a reasonably closed Wadge class in 2^ω. If $A \leq B$ then this is witnessed by an injective function.

The above lemma will be useful to us because every injective continuous function $f : 2^\omega \rightarrow 2^\omega$ is an embedding.

Proof.

Let $A^* = \phi^{-1}[A] \cup Q_0$. Since Γ is reasonably closed, we can fix $\sigma : 2^{<\omega} \rightarrow 2^{<\omega}$ such that $f_\sigma : 2^\omega \rightarrow 2^\omega$ witnesses $A^* \leq B$. We will construct $\tau : 2^{<\omega} \rightarrow 2^{<\omega}$ such that $f_\tau : 2^\omega \rightarrow 2^\omega$ witnesses $A \leq A^*$ and $f_\sigma \circ f_\tau$ is injective.

Make sure that

1. $\tau(s)$ always ends with a 1
2. There are exactly $|s|$ blocks of zeros in $\tau(s)$
3. $s(n)$ is the parity of the n^{th} block of zeros in $\tau(s)$
Begin by setting $\tau(\emptyset) = \langle 1 \rangle$.

Given $s \in 2^{<\omega}$, notice that $\tau(s) \vec{0} \in A^*$ and $\tau(s) \vec{1} \notin A^*$.

Since f_σ witnesses that $A^* \leq B$, we must have $f_\sigma(\tau(s) \vec{0}) \in B$ and $f_\sigma(\tau(s) \vec{1}) \notin B$. Therefore, we can find $k \in \omega$ such that

$$\sigma(\tau(s) \vec{0}^k) \neq \sigma(\tau(s) \vec{1}^k)$$

Now simply pick $\tau(s \vec{i}) \supseteq \tau(s \vec{i}^k)$ for $i = 0, 1$ satisfying conditions (1), (2) and (3).

To check that f_τ has the desired properties, observe that

- $\text{ran}(f_\tau) \subseteq 2^\omega \setminus (Q_0 \cup Q_1)$ (By conditions 1 and 2)

- $\phi(f_\tau(x)) = x$ for every $x \in 2^\omega$ (By conditions 1 and 3)
Our main tool: Steel’s theorem

Given a Wadge class Γ in 2^ω and $X \subseteq 2^\omega$, we will say that X is everywhere properly Γ if $X \cap [s] \in \Gamma \setminus \tilde{\Gamma}$ for every $s \in 2^{<\omega}$.

Theorem (Steel, 1980)

Let Γ be a reasonably closed Wadge class in 2^ω. Assume that X and Y are subsets of 2^ω that satisfy the following:

- X and Y are everywhere properly Γ
- X and Y are either both meager or both comeager

Then there exists a homeomorphism $h : 2^\omega \rightarrow 2^\omega$ such that $h[X] = Y$.

Proof.

Without loss of generality, fix closed nowhere dense subsets X_n and Y_n of 2^ω for $n \in \omega$ such that $X \subseteq \bigcup_{n \in \omega} X_n$ and $Y \subseteq \bigcup_{n \in \omega} Y_n$. We will combine Harrington’s Lemma with Knaster-Reichbach systems. (To be continued...)
Knaster-Reichbach covers
Fix a homeomorphism $h : C \to D$ between closed nowhere dense subsets of 2^ω. We will say that $\langle U, V, \psi \rangle$ is a Knaster-Reichbach cover (briefly, a KR-cover) for $\langle 2^\omega \setminus C, 2^\omega \setminus D, h \rangle$ if the following conditions hold:

- U is a cover of $2^\omega \setminus C$ consisting of pairwise disjoint non-empty clopen subsets of 2^ω
- V is a cover of $2^\omega \setminus D$ consisting of pairwise disjoint non-empty clopen subsets of 2^ω
- $\psi : U \to V$ is a bijection
- If $f : 2^\omega \to 2^\omega$ is a bijection such that $h \subseteq f$ and $f[U] = \psi(U)$ for every $U \in U$ (we say that f respects ψ), then f is continuous on C and f^{-1} is continuous on D

Lemma (see Medini, 2015)
Let $h : C \to D$ be a homeomorphism between closed nowhere dense subsets of 2^ω. Then there exists a KR-cover for $\langle 2^\omega \setminus C, 2^\omega \setminus D, h \rangle$.
Knaster-Reichbach covers
Knaster-Reichbach covers
Knaster-Reichbach covers

\[\mathcal{C} \xrightarrow{h} \mathcal{D} \]
Knaster-Reichbach covers
Knaster-Reichbach systems

Fix an admissible metric on 2^ω. We will say that a sequence $\langle \langle h_n, K_n \rangle : n \in \omega \rangle$ is a *Knaster-Reichbach system* (briefly, a KR-system) if the following conditions are satisfied:

- Each $h_n : C_n \to D_n$ is a homeomorphism between closed nowhere dense subsets of 2^ω
- $h_m \subseteq h_n$ whenever $m \leq n$
- Each $K_n = \langle U_n, V_n, \psi_n \rangle$ is a KR-cover for $\langle 2^\omega \setminus C_n, 2^\omega \setminus D_n, h_n \rangle$
- $\text{mesh}(U_n) \leq 2^{-n}$ and $\text{mesh}(V_n) \leq 2^{-n}$ for each n
- U_m refines U_n and V_m refines V_n whenever $m \geq n$
- Given $U \in U_m$ and $V \in U_n$ with $m \geq n$, then $U \subseteq V$ if and only if $\psi_m(U) \subseteq \psi_n(V)$
Knaster-Reichbach systems
Knaster-Reichbach systems
Knaster-Reichbach systems
Knaster-Reichbach systems
Why do we care about Knaster-Reichbach systems?

Because they give us homeomorphisms!

Theorem (see Medini, 2015)

Assume that \(\langle h_n, K_n \rangle : n \in \omega \) is a KR-system. Then there exists a homeomorphism \(h : 2^\omega \to 2^\omega \) such that \(h \supseteq \bigcup_{n \in \omega} h_n \).

Corollary

Let \(X \) and \(Y \) be subspaces of \(2^\omega \). Assume that \(\langle h_n, K_n \rangle : n \in \omega \) is a KR-system satisfying the following additional conditions:

\[
\begin{align*}
\text{\(X \subseteq \bigcup_{n \in \omega} C_n \)} \\
\text{\(Y \subseteq \bigcup_{n \in \omega} D_n \)} \\
\text{\(h_n[X \cap C_n] = Y \cap D_n \) for each \(n \)}
\end{align*}
\]

Then there exists a homeomorphism \(h : 2^\omega \to 2^\omega \) such that \(h \supseteq \bigcup_{n \in \omega} h_n \) and \(h[X] = Y \).
Proof of Steel’s theorem
Proof of Steel’s theorem
Proof of Steel’s theorem

\[X_0 \]

\[2^{\omega} \]

\[f \]

witnessing

\[X \leq Y \cap [s] \]

\[2^{\omega} \]

\[Y_0 \]

\[[s] \]
Proof of Steel’s theorem

\[X_0 \rightarrow [t] \]

\[f \]

witnessing

\[X \leq Y \cap [s] \]

\[2^\omega \]

\[2^\omega \]

\[Y_0 \]

\[[s] \]
Proof of Steel’s theorem

The diagram illustrates the proof of Steel’s theorem, involving relations between sets X_0, Y, Y_0, and $X \leq Y \cap [s]$. The diagram shows the following:

- X_0 is related to 2^ω.
- $Y \leq X \cap [t]$ is witnessed by g.
- $X \leq Y \cap [s]$ is witnessed by f.
- Y_0 is related to 2^ω.

The diagram visually represents the hierarchical and comparative relationships among these sets.
Proof of Steel’s theorem

Remember that our strategy is to construct a KR-system $\langle\langle h_n, K_n \rangle : n \in \omega \rangle$. We have seen how to begin:

- $C_0 = X_0 \cup g[Y_0]$
- $D_0 = Y_0 \cup f[X_0]$
- $h_0 = (f \upharpoonright X_0) \cup (g^{-1} \upharpoonright g[Y_0])$

Then obtain a KR-cover $\langle U_0, V_0, \psi_0 \rangle$ for $\langle 2^\omega \setminus C_0, 2^\omega \setminus D_0, h_0 \rangle$.

The next step is like the first one, but with the following changes:

- Instead of working between 2^ω and 2^ω, work between U and $\psi_0(U)$, where $U \in U_0$
- Instead of looking at X_0 and Y_0, look at $X_1 \cap U$ and $Y_1 \cap \psi_0(U)$
- Repeat for every $U \in U_0$, then union up the partial homeomorphisms to get h_1

Keep going like this for ω more steps...
Thank you for your attention

and have a good evening!