Kunen's inconsistency theorem can be generalized as follows:

Theorem 1. Suppose \(j : M \rightarrow N \) is a nontrivial elementary embedding between models of ZFC with the same ordinals. Then at least one of the following holds:

1. There is \(\alpha \in M \) such that \(\langle \alpha, j(\alpha), j^2(\alpha), j^3(\alpha), \ldots \rangle \notin M \).
2. There is \(\alpha \in M \) such that \(j[\alpha] \notin N \).
3. Some ordinal is regular in \(M \) and singular in \(N \).

We investigate embeddings that come as close as possible to the boundaries imposed by the above theorem. One example shows that an inner model which is arbitrarily close to \(V \) may be self-embeddable.

Theorem 2. Suppose \(\kappa \leq \lambda \) are regular. \(\kappa \) is \(\lambda \)-supercompact if and only if there is a \(\lambda \)-closed transitive class \(M \) and a nontrivial elementary \(j : M \rightarrow M \) with critical point \(\kappa \) and \(\lambda < j(\kappa) \).

We say \(j : M \rightarrow N \) is **amenable** when alternative (2) above fails, which implies \(M \subseteq N \). We give examples of such embeddings with various fixed-point properties, and also investigate the structure of the concrete categories of systems of models with the same ordinals and amenable maps between them. Let \(\text{AmOut}(M) \) be the category of models \(N \) with the same ordinals as \(M \) such that there is an amenable \(j : M \rightarrow N \), with the arrows being all amenable embeddings between these objects.

Partial and linear orders are naturally represented as categories. A pseudotree is a partial order that is linearly ordered below any given element. We define a canonical countable pseudotree that contains every other countable pseudotree as a substructure. We show:

Theorem 3. Suppose there is a countable transitive model of ZFC plus a measurable cardinal. Then there are many countable transitive \(M \models \text{ZFC} \) such that:

1. For every linear order \(L \), \(\text{AmOut}(M) \) has a subcategory isomorphic to \(L \) iff \(L \) is countable.
2. For every countable partial order \(P \), there is a subcategory of \(\text{AmOut}(M) \) isomorphic to \(P \).
3. There is an incompatibility-preserving injective functor from the "universal countable pseudotree" into \(\text{AmOut}(M) \).

There are many natural questions about these categories which we do not know how to answer at present.

This is joint work with Sy Friedman.